A Multiplier with Multiple Error Correction Capability1

Marco Annaratone

Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

This paper presents a technique for increasing the reliability of arithmetic
units. An error model is then presented: ihis model well represents the
Jaulty bekavior of many arithmetic units. The Residue Number System
and its related properties are used in order 1o obtain a simple architecture
(culled Reliability Network, R-Net). The main characieristics of the
presented technique are a significant reduction in the numier of gates and
a limited increase of global execution times. The extensive use of
combinational logic makes it possible to implement the R-Net almost
completely by means of Programmable Logic Arrays (PLA’s). Finally,
both the intrinsic regularity of the R-Net and its simple internal
interconnection scheme make this appreach suitable Jor a practical VL5
implenientation.

1. Introduction

Most techniques commonly used in fault-tolerance (e.g. Triple Modular
Redundancy, duplication with checker, input complementation as in
Takeda[22] and so on) often result unsarisfactory when applied to
arithmetic devices, due to their high cost (both in term of area and of
design effort) and negative influence on the ultimate machine’s
performance,

Moreover, the design effort becomes very high when speed constraints
are severc and complex architectures are required; this fact restricts
reliable computation to special applications where cost can be
considered a secondary constraint. In order to make reliable
computation more available, it is necessary to reduce design’s as well as
devices’ cost, If self-correcting units were available, the cost of design
would be significantly reduced.

This paper deals with the design of reliable arithmetic units; the design
of a fault-tolerant multiplier will be presented as an example. Residue
number representation has been chosen for its powerfuil checking
capabilities. Presently, a custom VLS fauli-tolerant multiplier, using
N-channel, MOS technology (A = 1.5 micron), is being devzloped.

]'l‘nis research was sponsored in part by the Defense Advanced Research Projects
Agency (DOD), ARPA Order No, 3597, manitored by the Air Force Avion ics Laboratory
Under Contract F33615-81-K-1539.

The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official policies. either ex pressed or implied,

of the Defense Advanced Research Projects Agency or the US Government.

This research was also Sporsored in part by the Consiglio Nazionale dzlie Ricerche,
C.N.R., ltaly.

2 .) - Lo
The “hard-core” is the arca that is hot protected against fault.

CH1892-9/83/0000/0044$01.00 © 1983 IEEE

“

Renato Stefanellj

Dipartirnento di Elettronica
Politecnico di Milano
Milano, Italy

The approach presented in this paper features:

*strong regularity of the whole structure, which allows an extensive
use of standard cells (PLA’s and/or ROM’s);

*limited increase of global exccution time due to the redundant logic;

*minimization of the hard-core areaZ,

2. General Architecture and Error Model

The Residue Number System (RNS) has been a well-known number
representation for almost thirty years. Important contributions are
those of Svobuoda [21] and Garner [8] to which the reader is referred for
a survey of iesiduc algebra. Scveral studies have been performed,
especially in the 60's; on the application of RNS to reliable
computation, for example, by Rao ([18], [19] and [20]), Avizienis (121,
[3D. Watson [25], Garner [9], Brown (5] and Massey [14]. RNS has also
been used to implernent fault-tolerant arithmetic units with non-binary
data representation (see [3], [25], {13}, [15]). Error detection and
correction codes based on RNS have been used in data transmission or
mass storage (see {23]. [16], [17], [10], {4]).

In the present paper, fauit-tolerance is not achieved by self-correcting
residue codes, but by a proper architecture (the Residue-Network, R-
Net). The R-Net is a three-input structure: the two operands and the
result of the arithmetic unit. The particular architecture depends on the
error model, which is here defined in an “additive sense”, i.e. for any
possible fault, the correct output is derived from the output of the
arithmetic unit algebraically added to the amount of error,

A fault can produce different errors in the arithmetic unit output,
namely:
1. One-bit error: when the amount of crror E is;

E = =z

This fault is peculiar of most adders when a “stuck-at” at the output
of a gate occurs.
2. Two (or more) bit error in an Ly position:

E = £ 9
3. Two consecutive bit error: for the first error we have:
El = « 21
when a second error takes place we have:
EII = EI + 2j;

in this case, however, E' is known and stored. This case is different
from the previous one: the R-Net does not have 10 compute a global
cerrection, but only that of the second error. The above assumption
holds only for permanent faults,

In this paper it is always assumed that the arithmetic unit can only
produce a single error, i.e.:

Significant examples satisfying the error model are:

*a full-adder (e.g. the 7483);

*a multiplier implemented by Dadda’s [6] or Wallace’s approach [24]
or by related approaches, as presented in [11];

*any nctwork performing a function as f{.) = A? + B? (but not f(.) =
A*[B -+ A*BJ

In the next section an R-Net capable of correcting a single error will be
presented. The discussion will deal only with the architectural aspects
of the problem, since the theoretical foundations are well-known (see
[19], [20]). This architccture is the basic building-block for further
improvements (i.e. multiple error correction).

3. Single Error Correcting Architecture

The architecture is shown in Fig. 1. 1t is derived fromn what is presented
in [19] and overcomes the problem of the hard-core, by reducing it to
the last stage (the MUX section). Let us consider now how the R-Net
redundancy influences the speed of the overall unit.

\i/ \i/
\
l R | RESTDUE BASE A RESIDUE BASE B
Mu1t1p11er]1 RBA RBS

Syndrome l \l/
Gen. Multiptier
Networkl

RBA 9 -

I

Multipiier

R8B

Subnetwork A

st s2

,

Correction Network

Adder
— | o
MUX k
Gates
\JV Output

Figure 1. Architecture for single error cotection.

When the arithmetic unit {in our example, the multiplier) is working
correctly, the delay introduced by the redundant logic consists of the

The term “any kind" indicates either permanent or transient/intermittent errors and
either contemporaneous of consecutive errors.

45

.-

residue conversion of the result, the MUX centrol logic and the MUX
itself. Note that the residue conversion of the multiplier output
introduces a very limited delay, due to the right-to-left carry
propagation inside the multiptiecr. Morcover. the subtractor does not
introduce any delay. The approach is similar to that presented in [7],
although the subtraction was not performed in that approach.

4. Multiple Error Correcting Architectures
As regards the occurrence of two (or more) errors, we shall examine two
different instances:

*two or more errors of any kind®: the proper architecture will be a
suitable expansion of the basic structure shown in Fig. 1;

*two or more permanent errors (stuck-at-0 or stuck-at-1 in any gate),
which take place at different times (they will be called, from now on,
“consecutive errors”): the first-error syndrome can be stored, thus
making the correction of a sccond error simpler. In this case the
R-Net will be significantly modified.

As already pointed out, the error is considered in an “additive sense”
and always leads to an error which is power of two; therefore, the
amount of error will be:

E = 20 %3

In the sequel we shall not consider two errors with same magnitude and
opposite sign (zero-error occurrence) and two crrors with the same sign
and magnitude, as they lead again to a single error:

i+l

E = 2 4+ 2

For the same reason, errors of this kind will not be taken into account:

£ gl = 1ol

E =
Threfore, the syndrome S produced by two errors is simply:
S5 = [s, + Sj]b’
being 5, and S, the syndromes of each error and b the residuc base.

If a single error occurs, all the residues constituting the syndrome are

different from zero; if two errors occur, a residue can be zero. For
instance, if b = 17:
— i i+d _

Tieg = (24277 = 0

Two different approaches can be pursued to overcome the problem:

1. the selection of a couple of bases each of them producing a non-zero
syndrome for any possible combination of two errors;

2. the selection of a wriple of bases in such a way that, for any possible
occurrence of two errors, only one residue can be zero.

The first approach is not efficient, because it compels us to use large-
valued bases. The second approach is more attractive, because a fault
in the syndrome computing network produces one non-zero residue:
this error is, thus, detectable. A further consideration leads to prefer
the second solution: if a fault producing the first error occurs in the
syndrome computing netwurk, the couple of error-free residues can still
correct a second error generated by a fault in the multiplier.

5. Correction of Two Errors of Any Kind

The architecture is shown in Fig. 2. The syndrome generator computes
S Sy Sy if both the first and the second error take place in the
multiplicr, the multiplexer controller cheoses among I', I” and ' (the

L

SYNDROWE GENERATOR

AY ‘\l/

N
MULTIPLIER 7

CONTROLLER

L

TWO ERROR SINGLE ERROR SINGLE ERROR SINGLE ERROR
CORRECTION CORRECTION CORRECTION CORRECTION
GENERATOR (2ECG) GENERATOR (1ECG) GENERATOR (1ECG) GENERATOR (1ECG)
ADDER ADDER ADDER ADDER ADDER
P 1 I 1
MULTIPLEXER
T

Figure 2: General architecture for two-error correction

two outputs of the “two-error-correction generator” will be used in the
occurrence of two consecutive crrors); if a fault occurs in one of the
residue compuling sections, the two error-free sections protect the unit
against a second fault. In the sequel, only the “two-erior-correction
generator” will be dealt with, because the three sub-units called “single-
error-correction generator” are identical to that of Fig, 1.

The triple of bases must satisfy the following constraints:

a. NS’ = & where S = {s;} is the set of syndromes related to
single errors and S” = {siJ} is the set of syndromes related to
double errors;

b. if a double error takes place, one residuc can be zero at the most;

¢. any couple of bases must be able to correct any single error.

For the detection of a third error, the following constraints must be
satisfied:

a. SiJ | st have one zero at the most;
b. NS = 4.

Some drawbacks are present, however:

1. a very large PLA has to be used to store all the correction patterns;
2. large-valued bases are to be considered to satisfy the constraint a..

For these reasons the R-Net needs to be modified: moreover, the
possibility that two contemporancous errors occur is ncgligible, An
architecture able to overcome these problems needs further
investigation of the faulty behavior of some basic arithmetic: units.

6. Errors Produced by Permanent Faults

A fault does not necessarily appear at the output pins. In other words,
its detection depends also on the input stream that can mask a fault
{which is considered a “latent fault”, untit not detected).

A parallel multiplier is often designed as a “cascade” of two circuits: the

46

first one, by means of an AND network, produces a “matrix™ of partial
products of the two operands; the second one performs the sum of
these partial products (the rows of the matrix). The sum can be
performed in two different ways:

a. reduction of the matrix into a two-row matrix with parallel
counters (full-adders) (see [6], [24]) and subsequent sum of the two
Tows;

b. sum of the rows of the matrix by means of a regular, bi-
dimensional array of full-adders.

A fault in the AND neétwork (stuck-at-0 or stuck-at-1) produces, for
different input operands, either a zero-error or a power-of-two errnr (si,
i does not depend on the input data).

We shall consider now three different full-adders (four stages adders),
namely:

*7483;
*Lai and Muroga’s full-adder ([12]), L. M-adder:
*a well-known full-adder scheme (see Fig. 3), WK-adder.

A fault in a gate of the three adders always leads to an error which is a
power of two, but with an input-dependent exponent: depending on
the faulty gate, either one, two or three syndromes can be generated for
all possible input patterns. We shall refer to these instances as,
respectively, a single-syndrome error, a double-syndrome error and a
triple-syndrome error.

The faulty behavior of the three adders is shown in Table 6-1 (s, is, as
usual, the syndrome of a 2! error, while S5 is the syndrome o% a -2
error). The LM and the WK adders may have a triple-syndrome error
when a single fault occurs. This fact largely depends on the internal
fan-out of these units; for example, the instance marked by a star occurs
for a stuck-at-0 in the gate circumscribed by the block in Fig. 3: if this
gate is duplicated, Fig. 4, the faulty behavior of the adder (WKm)
changes as shown in the fourth column of Table 6-1.

|
§
}
|
:
1
i
:
&
Ed

Tripie of Single error correction Twa error
residues with a couple of residues correction
"any
i 3 I3 ij ik jk Min, kind" cons.
3 13 23 12 22 132 12 9 10
5 7 19 12 36 18 12 12 12
5 11 19 20 36 45 20 10 20
3 23 29 22 28 308 22 11 22
7 11 17 30 24 40 24 14 24
5 19 43 36 28 63 28 12 28
7 11 29 30 84 140 20 17 30
11 13 19 60 45 36 36 13 6
11 17 19 40 45 72 40 12 40
13 23 29 132 42 308 42 13 42
5 23 59 44 116 >450 44 22 44
11 13 47 60 230 276 60 18 60
17 19 23 72 88 198 72 20 72
7 29 53 84 156 182 84 19 77
13 23 59 132 384 2450 132 25 82
19 23 29 198 252 >450 198 26 89
11 23 53 110 260 >450 110 29 g2
23 29 37 308 396 126 126 39 126
23 31 53 140 182 260 140 20 140
11 37 59 180 145 >459 145 28 145
23 29 59 3os >450 >450 308 43 157
19 23 59 198 261 2450 198 28 166
19 29 53 252 >450 182 182 19 182
37 43 53 252 234 364 234 22 204
23 41 47 220 253 >450 220 30 220
29 47 69 >450 >450 >450 2450 a4 228
43 47 53 azz2 364 450 322 22 238
31 53 59 260 290 450 260 45 240
23 47 59 253 >450 >450 253 43 >260
19 53 59 >450 261 >450 261 36 3250
37 47 59 >450 >450 >450 >450 39 >250
47 53 59 450 >450 450 450 39 >250
Table 5-1: Correction range for various triples of residucs.
a b

%J k
¢

__5 v

A

Figure 3: Original scheme: the block contains a gate with high fan-out

7. Two Consecutive Error Correcting
Architectures*

The architecture depends on the number of different errors produced

by a permaneni fault. A structure including a device with a single-

syndrome error (as Lai and Muroga's full adder with only a possible

stuck-at-0) will be considered. Then a double-syndrome error device

(as a multiplier implemented with 7483 full-adders) and a triple-

4 . .
In this section only permnanent faults are cons:dered.

47

Figure 4: Modified scheme of the adder shown in Fig. 3

syndrome error device (as a multiplier implemented with Lai and
Muroga’s full-adders or with full-adders as in Fig. 3) will be considered.

SINGLE-SYNDROME ERROR

The architecture is shown in Fig. S; the complete discussion of the
behavior of the unit is presented in appendix. s is a triple of syndromes
51,8, and S3.

If the structure of Fig. 5 is compared with that of Fig. 1, properly
extended by the considerations developed in section 4, it has two small
PLA’s able to correct a single error. The choice of the three bases,

7483 LiM-adder WK~-adder WK, - adder
s s
s, L 1
i S1 or s i S or s .
- ; -
stuck-at-0 s, or S5 s s, or Si+1
s * s i °f %in
S, Or s_Lor S,
s
s, S i s,
1 1 i
s; ors_. S 0F s Sy oors_; s. or s
stuck-at-1 S. or S. 1 i -1
S. or S, 1 i+1
i i+1 s
S, 0F s_Lor Sy

Table 6-1: Faulty Behavior of Four Adders

necessary to compute the syndrome, is not completely unconstrained
the following conditions having to be satisfied:

3

L the syndrome wiple s can have only one zero-element, two zeros
indicating a fault in the R-Net;

- any residuc-pair must be capable of correcting a single error in the
multiplier;

J.the elements of §* must be completely different from the
corresponding elements of §”, to distinguish a singlc error from a
double error;

[l

i
5% Sy Vijk;-n<ijk< +n
4. All the elements of S’ must be different, to be able to correct a single
error:

5,25, Viji-n<ij< +n

. The i-th column S"i = {si ‘} (n < j < +n) of the matrix $” must
have all different elements In order to te able to correct the second
error. However, this condition can be derived from the previous
ones, in fact:

Proof

If si‘j =8, then

wh

i, a0t _ el Ak
2'+2) =02 + 27,
but sj =8, and S’ would have two equal slements.

DOUBLE-SYNDROME ERROR

The architectural approach is similar to onc previously introduced (see
Fig. 6). Only the corc part of the structure is shown. Two registers
(RSC1 and RSC2) store the two different syndromes 5; and s’i and the
corresponding corrections ¢;and ¢’, due to the first fault. The behavior
of the unit is fully described in [1}.

As in the previous scction, the bases have to satisfy certain conditions,
The same conditions related above are still valid, namely:

1. The Sij syndrome does not present two zcros.

2. Any residue-pair must be able to correct one error.

3.8'nS” = 3, s0 as to distinguish single errors from double errors.
4. 55,5028 to distinguish all different single CrTOTS.

5. the column S'j must have all its own different elements.

However, two new conditions have to be satisfied:

48

Multiplier

RSC
J Syndrome
T Generator S ¢
J
L J
N st
PLA 1 PLA 2 ay
Lb)
cl cl L}
! MUX
\L J/ Controller
Adder Adder
P pr: pre:
B

Multiplexer

L

Figure 5. R-Net for two consecutive crror correction:
single-syndrome error family.

6. The elements of the two columns S"i and S”i + must be completely
different.

7. The elements of the two columns S“i and S"_]. must be completely
different.

Conditions 6. and 7. do not impose more constraints, since they can be
derived from the previous ones, in fact:

*Condition 6.
Proof
If Sij = Sielx then:

|
;
1

i J1 — i+l sk
[‘!+2]b_[.‘! + 2%,

i — i+l 4l) ST
[, = 27¥1-2'+ 2, =

= [+ 2N,
consequently:
5=, andS'NS” = @,
*Condition 7.

Proof
If s. =5 then:

ij ik
2"+ 2 = [-2' + 24,
thus
i a1 _ (K
[2*2' + =N I

and ,consequently:
Si1y = 5,and 8N S” = &,
A problem can arisc when the two external columns are considered

(S"n and S"_n); in this case the number of bit of tae result P’ must be
reduced by one unit.

In Table 5-1 some interesting cases are presented; it shows also some
advantages, concerning the dimension of the multiplier, if compared
with the approach referred in section 5. Both consecutive and “any
kind” errors are taken into account.

TRIPLE-SYNDROME ERROR

The architecture is similar to that shown in Fig. 6 with one only
difference in a register RSC3 and in a PLA 4. The selection of the
triple of bases imposes that the above conditions must be still satisfied;
a new condition, however, has to be considered:

The elements of the three columns §”,87, and S7;, 1 must be distinct.

This condition cannot be derived from the previous ones and reduces
the number of result bits that can be corrected. The more complex
architecture of the R-Net and the degradation ir, performance can
justify the choice of full-adders with low fan-out, see F ig. 4.

Other tables, referring to single-syndrome and triple-syndrome cases,

are shown in [1], together with the content of each PLLA for all the three
cases.

8. Three or more Consecutive Error Correction
Architecture

All the assumptions presented in the previous sections are still valid;

only a three-error case will be considered. For more than three errors it

will be sufficient to extend the results. In order to compute the

syndrome, four bases are necessary and must satisfy the following

conditions:

a. The four bases must be able to correct three errors in the
multiplier.

b. Any triple of bases, if an error takes place in the syndrome
generator, must be able to correct two errors in he multiplier.

c. If a second error takes place in the syndrome generator, any
couple of bases must be able to correct one error in the multiplier.

The structure able to cope with three errors of any possible kind (“any
kind”-error) is simply an up-grading of the structure in Fig. 2; it needs
one “error correcting generator (ECG)” to correct three errors, four

49

RSC1 RSC2
S5 c1 s'i c;
2 N
s' — -
PLAL s’ st
c' PLA3
PLAZ2
J/ ¢’ J/ c'
Adder Adder -

Figure 6: R-Net for two consecutive error correction:
double-syndrome error family.

ECG?s to correct two errors and six ECG’s to correct one single error.
This structure, thus, is fairly expensive. If we consider the errors as
consecutive, the structure of Fig. 7 is obtained.

The four bases correct three consecutive errors s, 5 and 5,; the circuit
of Fig. 7 is an extension of that of Fig. 6. The syndromes of the first
two errors are stored, together the correspondent corrections c and c,
in RSC1 and RSC2. After a second error has occurred, if a third error
takes place, we have the following possibilities:

error correction performed by
5; PLA 1
S PLA1
8, PLA 1
5, PLA20orPLA3
Sk PLA 2
Sk PLA3
Siik PLA4

The R-Net in Fig. 7 is fairly complex; the increase of hard-core may
lead to a unit globally less rcliable than a unit with a more limited
correction range. A three errors correction can be therefore considered
the limit of applicability of this technique.

9. Summary

The paper presents a methodology useful for designing arithmetic
devices satisfying severe constraints of reliability. The goal was achieved
by suitably matching the properties of the Residue Number System
with the architectural aspect of the problem.

The main emphasis is in multiple error correction; we show that a three
errors correcting architecture can be considered the limit of
applicability of the technique, a wider correction range leading to
unreasonably complex structures.

The architectural approach is particularly oriented to the VLSI design,
by performing several functions with standard devices, such as PLA’s,
and featuring regular interconnection schemes. Moreover, 70% of the
remaining structure is built out of one simple cell, i.e. a full-adder. A
custom device is presently under development, using N-channel, MOS
technology, A = 1.5 micron. The unit is a 23 x 23 bit multiplier.

An interesting result of the approach described in the present paper is
the negligible increase in global execution time, when the unit is
working correctly. If a fault occurs, the speed is degraded by the adder
before the multiplexer, which can be however carefully designed to
guarantee O(Jog n) computation time.

RSC1

RSC2

¢
S ¢
i 1 J 3
NP N
SYNDROME \L \L .
MULTIPLIER
GENERATOR l’ —] [_ I
AY
PLA 1 | a2 pa 3 P
P LLLLL
N J \I_,\L Hux
ADDER ADDER ADDER ADDER CONTROLLER
' v v
P € P b) ,
MULTIPLEXER

J

p

Figure 7: R-Net for three consecutive error correction

Some problems are still open and deserve further investigation. The
faulty behavior of recoded multipliers should be studied: they are faster
and smaller (but with more complex wiring and less regular structure)
than the iterative cellular array multipliers we have taken into account.
The faulty behavior of carry-lookahead adders should also be
considered.

Only at that point, a whole fault-tolerant arithmetic unit, featuring
acceptable performance, could be implemerted in a single chip.

Appendix

The behavior of the architecture shown in Fig. 5 is now discussed, the
assumption being that the multiplier belongs to the “single-error
syndrome family”.

a. Correct behavior: the three elementary syndromes are equal zero
and ay = 0; the multiplexer controller generates a signal 8 = 0
and the multiplexer chooses the P° input.

b. First detection of an error (obviously, single) in the multiplier
(fault and related error taking place i the syndrome generation
network will not be discussed, see section 4 and Fig. 2).

A syndrome 8’ = 5, is produced: it contains three elementary non-
zero syndromes 8,0 5 2nd Si3 (a3 = 1). The PLA 1 produces the
correction ¢’ = ¢; and the adder on the left produces the correct
result P; a signal ay is generated by PLA 1; this signal is one if
and only if the syndrome s belongs to the set of addresses of the
PLA 1itself’. The multiplexer controller (al3 =1, @) = 1) selects
the second input P”; the same time the syndrome 5, and the
corresponding correction ¢; are stored into the RSC register (note
that some extra hardware, not shown in Fig. 5, has to be added: a

SThe PLA 1 recognizes only all the single errors

6For some error occurrences, the PLA’s can correct errors in a wrong, way; this fact is
caused by previous errors that took place in the PLA’s: for this reason the PLA’s need
suitable protection. A possible solution is to store into any PLA the correction amount,
its residue and the address of the proper decode sectior.,

30

bistable element is set to ‘1° at the first occurrence of an error; if
s » 0 and the bistable element has a ‘0’ stored, the unit is forced to
copy s and ¢ in RSC).

c. Further single errors: the operations are similar to those referred in
b. {correction produced by PLA 1 and sclection of the P” input in
the multiplexer). The new syndrome and correction, differently
from the previous case, are not stored into the RSC register.

d. Second error occurrence: a syndrome s, is produced if the first
error has not influenced the result (zero-error); on the other hand,
a syndiome S;; is produced if both faults contribute to a wrong
result. The first case is similar to point ¢., because it is considered
as a single error. In the second case, PLA 1 does not recognize Sij
as a single error (oz1 = 0) and, as:

S; =8+ Sp
we have:
s = s). andc” = g

PLA 2 recognizes (ax2 = 1) only the syndromes deriving from a

single fault. The multiplexer controller receives a; = 1(two non-

zero syndromes, at minimum), a, = 0 (it indicates the presence of

a syndrome 8., l.e. a non-single-error) and a, =1 (sj SETRE

single error); if such condition is met, it forces 8 = 2'in order to

select the third input P,

More than two errors: if a, = 0 and a, = 0 then the error cannot

be considered single and does not contain the i-th error; in this

instance a third error has occurred: this error is not corrected but
only detected.®

M

{2

(3]

(5]

(6]

{7

(8}

19}

[0}

]

{12}

[13}

[14]

(1]

[16]

References

Annaratone. M. and Stefanelli, ~..

General Approach to Fault-tolerant Arithmetic Urit Design by Means of
Multi-residue Codes.

1983.

Technical Report in preparation.

Avizienis, A.
Arithmetic Error Codes: Cost and Effectiveness Studies for Application in
Digital System Design.

IEEE Trans. on Computers C-20(11):1322-1331, bovember, 1971.

Avizienis, A.

Low-Cost Residue and Inverse Flesidue Error Detecting Codes for Signed-

Digit Arithmetic.
In Proc. of the 5th Symposium on Computer Arithmetic, pages 165-168.
IEEE, IEEE, May, 1981.

Bose, B. and Rao, T.R.N.
Unidirectional Error Codes for Shift Register Memories.
In Proc. FTCS-10, pages 26-28. IEEE, |EEE, Ortcber, 1980.

Brown, D.T.
Error Detecting and Correcting Binary Codes for Arithmetic Operations.
IRE Trans. on Electronic Computers :333-337, September, 1960.

Dadda, L.
Some Schemes for Paralle) Multipliers.
Alta Frequenza 34:349-356, May, 1965.

Gajsky, D.D. and Vora, C.
High-speed Modulo-3 Generator.
Electronics Letters 13(25):770-772, December, 1077,

Garner, H.L.
The Residue Number System.
IRE Trans. on Electronic Compu'ers :140-147, Ju e, 1959.

Garner, H.L.
Errar Codes for Arithmetic Operations.
IEEE Trans. on Electronic Computers EC-15(10):763-770, October, 1966.

Goto, M.
Rates of Unidirectional 2-Column Error Detectable by Arithmetic Codes.
In Proc. FTCS-10, pages 21-25, |EEE, IEEE, October, 1980.

Jayshree, T. and Basu, D.

On Binary Multiptication Using the Quarter Squara Algorithm.
IEEE Trans. on Computers C-25(9):957-960, September, 1976.
Lai, H.C. and Muroga, S.

Minimum Paralle! Binary Adders with NOR (NANC) Gates.
C-28(9):648-659, September, 1979.

Liu, CK. and Wang, T.L.
Error-Correcting Codes in Binary-Coded-Decimal Arithmetic.
/EEE Trans. on Computers C-27(11):977-984, November, 1978.

Massey, J.L. and Garcia, G.N.
Error-Correcting Codes in Computer Arithmetic.
Advances in information Systems Science , 1972.

Newmann, P.G. and Rao, T.R.N.
Error-Correcting Codes for Byte-Organized Arithrnetic Processors.
IEEE Trans. on Computers C-24(3):226-232, March, 1975.

Parhami, B. and Avizienis, A.
Application of Arithmetic Error Codes for Checking of Mass Storage.
In Proc. FTCS-3, pages 47. IEEE, IEEE, June, 1973.

51

[17]

[18]

(19}

[20)

[21)

{22]

[23]

[24]

[25]

Parhami, B. and Avizienis, A.

Detection of Storage Errors in Mass Memories Using Low-Cost Arithmetic
Codes.

IEEE Trans. on Computers C-27(8):302, August, 1978.

Rao, T.R.N.
Error-Checking Logic for Arithmetic-Type Operations of a Processor.
IEEE Trans. on Computers C-17(9):845-849, September, 1968.

Rao, T.R.N.
Biresidue Error-Correcting Codes for Computer Arithmetic.
IEEE Trans. on Computers C-19(5):398-402, May, 1970.

Rao, T.R.N. and Garcia, O.N.
Cyclic and Multiresidue Codes for Arithmetic Operations.
IEEE Trans. on Information Theory IT-17(1):85-91, January, 1971.

Svoboda A.
Rational Numerical System of Residual Classes.
Stroje Na Zpacovani Informaci , 1957.

Takeda, K. and Tohma, Y.

Logic Design of Fault-Tolerant Arithmetic Units Based on the Data
Complementation Strategy.

In Proc. FTCS-8, pages 348-350. IEEE, IEEE, October, 1980.

Wakerly, J.F.

Detection of Unidirectional Multipie Errors Using Low-Cost Arithmetic
Codes.

IEEE Trans. on Computers C-24(2):210, February, 1975.

Wallace, C.S.
A Suggestion for a Fast Multiplier.
IEEE Trans. on Electronic Computers cC-13(2):14-17, February, 1964.

Watson, R.W. and Hastings, C.W.
Self-Checked Computation Using Residue Arithmetic.
IEEE Proceedings 54(12):1920-1931, December, 1966.

