APPLICATIONS FOR ARITHMETIC ERROR CODES IN LARGE, HIGH-PERFORMANCE COMPUTERS*

Algirdas Avizi

TUJCLA Computer Science Department
University of California
Los Angeles, CA 90024 USA

ABSTRACT

Large, high-performance computers are toc costly to
allow full replication for fault detection and error correctior in
the communication and processing of numerical information.
For this reason more cost-effective arithmetic error ccde
applications offer an attractive alternative.

Part I of this paper presents a generalization of low-cost
inverse residue codes into two-dirmmensional encodings. Error
detecting and error correcting properties of two-dimensional
inverse residue codes are discussed.

Part II discusses a multi-phase application of inverse
residue codes in which the form of encoding is altered and
additional time is allocated after feults occur. The goal is to
defer repair and to continue cperation at a slower speed until
scheduled maintenance can take place.

Part I
Two-Dimensional Low-Cost Arithmetic Error-Detecting Codes
by Algirdas Avizienis
1. Introduction

A general approach to the cost and effectiveness study
of low-cost arithmetic error codes has been presented in [AVIZ
71a). This paper introduced the concepts of inverse residue
codes and of multiple arithmetic error codes. The concept of
repeated use faults was presented and the effectiveness of
various arithmetic codes with respect to both determinate and
indeterminate repeated-use faults was established. An impor-
tant result was the proof that inverse residue codes can detect
the *‘compensating” determinate repeated-use faults that are
not detected by ordinary residue codes. The modulo 15 inverse
residue code was applied in the JPL-STAR experimental com-
puter [AVIZ 71b]. Further results on determinate faults were
presented in [PARH 73] and [PARH 78]. An extension to
signed-digit arithmetic is found in [AVIZ 81]. A.M. Usas hLas
demonstrated the advantages of inverse residue codes for mul-
tiple unidirectional error detection, when compared to inverse
checksum codes [USAS 78].

A new generalization presented here extends the appli-
cation of low-cost inverse residue codes into two dimensions:
row (byte) and column (line) residues. This extension improves

* This research has been performed at the UCLA Computer
Science Department and supported by ONR contract NOCO14-
79-C-866, '"Research in Distributed Processing,” and a Research
Grant from the Battelle Memorial Institute.

CH1892-9/83/0000/0169%$01.00 © 1983 IEEE

C. S. Raghavendra'

Electrical Engineering-Systems Department

169

University of Southern California
Los Angeles, CA 90089 USA

the detection of errors, especially of those due to indeter-
minate faults, and provides certain error-correction capabili-
ties.

The purpose of this paper is to demonstrate the advan-
tages offered by two-dimensional inverse residue codes in the
detection and correction of errors that affect byte-wide com-
munication paths and processing elernents. Such paths are
widely used in high-performance array processors and for
inter-processor communication in large multi-processor sys-
tems. Byte-wide processing elements are very suitable for the
implementation of large processing arrays [AVIZ 70], [TUNG 70]
and variable-precision signed-digit arithmetic [AVIZ 62].

2. Hodeis of the Coonmunication Path, Codes and Faults
We consider a parallel communication path consisting
of b bit lines (0,1, b—1). A message X consists of kb

bits, transmitted as k bytes (Xp, . . . , X{, . . . , Xg—)) of b bits
length each (Figure 1).

Six types of low-cost encoding are applicable:

Checksum Code: the k bytes are summed modu.lo A
and the checksum byte representing C= =2 ZX,, is

(a)

attached to the message (now k +1 bytes long).
(b) Inverse Checksum Coda: instead of C above, the check-
sum byte represents the value C'=2°—C.
(c) Residue Code: the k bytes carry an error-detecting
encoding byte X, that represents the mpdulo 2b -1
residue X' of the message X: X’=(2°—1)[3(; and the
message is now k+1 bytes long. Usually the residue
value X'=0 is represented by a string of b ones. If the
all-zero message can exist, its residue will be b zeros,
unless explicitly disallowed.
(d) Inverse Residue Code: the inverse residue byte X,
represents the value X" th.at is the (2°—1)'s comple-
ment X. is obtained as
= (Rb— 1)—X' = (2% —1) (2"—-1)JX and the mes-
sage is again k +1 bytes long. The residue value X'=0 is
represented by b ones, and the inverse residue X" in
this case is represented by b zeros. The all-zerc mes-
sage X has an inverse residue code X' represented by
b ones.
(e) Byte-Parity: One parity bit is attached to each byte.
One more check line is added to the communication
path (now b +1 lines wide).

o Two-dimensional Residue (or Mmverse Residue) Coda:
Instead of parity bits, the check bits on the check line
now represent the modulo 2¥*!—1 line residue Y, or
the inverse line residue Y" of the message. The mes-
sage is now treated as b lines of k +1 bits length each.
If the residue is taken maodulo 2%*1 we obtain a check-
sum (or inverse checksum) encoding of the lines
instead.

The faults of interest are of three classes:
1 faults affecting single bits of the message;

) faults affecting one byte (or adjacent bytes) of the mes-
sage;

3 faults affecting one line (or adjacent lines) of the path.

The first and second classes are likely to result because
of transient external interference with the transmission cf the
byte(s), or because of failures in the source of the information
being transmitted. The third class are “‘repeated-use” faults
due to failures of the transmission path itself.

Determinate (permenently stuck-on-one or stucik-on-
zero) faults and indeterminate faults that vary between one
and zero during repeated uses of the faulty line(s) need to be
considered for each type of faults enumerated below:

1. One-Byte Faults (b bits per byte except b +1 bits when
the check line is used): (a) one bit; (b) two adjacent
bits; (c) any two bits; (d) m adjacent bits (b +1=m >2);
(e) any m bits (b+1>m >2).

2. Adjacent-Byte Faults
same as in (1) abave, for p22 adjacent bytes.

3. Bit-Line (Repeated Use) Faults (k+1 bytes per nes-
sage; k when parity alone is used): (a) one line; (b) two
adjacent lines; (c) any two lines; (d) m adjacent lines
(b +12m>2)

The measure of effectiveness of a given code class r is
given in miss percentage M(z) which is calculated as:

= Do. of undetectable error patterns
M(z) total no. of possible error patterns 100

The error patterns are determined by assuming that the
correct message may contain either a ‘0" or a “1" in each
position affected by the fault. A_"1" in the error pattern
represents the change 0-+1, and 1" (minus cne) — a change
1-+0. A zero indicates that a given position is not changed by
the fault. Thus an “all-zero” error patterns indicates that the
fault does not cause an error for the given original mess&age.
The bit error value E’] assumes one of three values for a given
bit X{ of Figure 1:

E = lforX?changing 0-1
H= TforXZchanging 1-0
= 0 for no change in X7,

For example, a *“stuck-on-cne’ fault affecting two adja-
cent bit positions (containing 00, 01, 10, or 11) will prodice
four possible error patterns

11(00+11),10(01+11),01(10-11), and 00(11-11)
The miss percentage for parity is: M (parity) = 100(1/ 4, =

25%, since only the 0011 transformation goes undetected. A
“stuck-on-X indeterminate fault in two adjacent bit positions

170

Check line line line line byte
linedb b-1 J 1 0

X3 xt - ox{ - x¢ X Xo

> ¢4 xp-t X X! xP X
X xgod X X X Xy
X x X X X2 check
byte
Check
bits message bytes (b bits each)

Figure 1 —Maodel of the Path and Messages

will produce 18 error patterns of nine distinct types, of which
those with two nonzero entries (total of 4) will be undetected.
Thus the miss percentage again is
M (parity) = 100(4/ 16) = 25%.

In general, when a determinate fault affects m posi-
tions, 2™ (unidirectional) error patterns are possible. When
the fault is indeterminate, there are 22™ (bidirectional) error
patterns, of which 3™ are distinct.

3. Detection and Correction of Unidirectional Errors Due to
Determinate Faults

Given a modulo 2°—1 inverse residue code, the
undetectable unidirectional errors are those that have mes-
sage error values £ congruent to zero modulo 2° ~1, where

5

=0 kW=0 i

o

All other unidirectional errors will be detected; however, there
are no error correction properties.

There is one undetectable one-byte unidirectional
error; it results when an all-zero byte X; is changed to an all-
ones byte, or vice versa. The miss percentage for this *‘stuck
byte” fault is (100/2%)%. Introduction of byte parity bits will
detect only one of the two (stuck-on-one and stuck-on-zero)
“stuck bytes.”

The stuck byte detection problem is fully solved by the
use of two-dimensional inverse residue encoding. There is one

additional check bit for each byte X; (1 =0, . . . ,k). The
check bits (X2, . . .,) represent the modulo 2 *!—1 inverse
line residue Y"' of the message X that is now interpreted as b
lines X7 G=0,...,b5-1) of k+1 bits length each. It is evi-

dent that every ‘“‘stuck byte” now will be detected by the use of
Y™ as long as the condition (b+1)<(2k H-1) is satisfied.

In general, the remaining undetectable errors in the
message X are those that are missed by both checks: modulo
2° —1 over the bytes (not including the check line bits X?), and
module 2¥*1—1 gver the lines, with the check byte bits X
included in each line j. Most unidirectional errors are detect-
able; furthermore, the detection of bidirectional errors is
significantly improved, as discussed in the next section.

The introduction of the inverse line residue Y also
makes error correction possible. As shown in [AVIZ 71a], tte
low-cost inverse residue codes have the “partial error loci-
tion'” property. Therefore a single-bit error value E{=i:1
(0<j=<b—1; O<i<k) will produce a unique indication for line j
in the modulo 2°~1 check and for the byte i in the moduio
2%+1_1 check, making a correction of E}’ possible in the me:-
sage X.

The correction property can be extended to unidirec-
tional single-line errors as follows. I[f we assume a determinate
single-line fault on line j, the message error values E{j) will
fall into the range:

DN EH<EG) s E
i=0 i=0

The positive values will be due to a stuck-on-one {s-0-1) ard
negative values — due to a stuck-on-zero {s-0-0). The actual
byte check results will assume the values C(j)=(2% —1)EE' (7).
and es long as (k +1)<(2%~1) holds, all error values duk to a
s-o-1 fault will be detectable and have a unique byte check
result C(j) in the range

0< Cy(j)< (R®~1){(k+1)

Similarly, the error values due to a s-0-0 fault will have tte
byte check result in the range:

0= Co(s) < (R2—1)(—2F)k +1)

However, many other error patterns (on two or more lines) cen
produce the same values of check results, and error correcticn
is not possible with the byte residue encoding alone.

To obtain single-line unidirectional error correction, ve
use the additional information provided by the line check
result obtained from the inverse line residue encoding. Given a
byte check result Cl(j) discussed above, we find its value to be
N, represented by b bits (Ny_;, . . . Ng).

First we form the hypothesis that N is due to a single-
line stuck-on-one deterrninate fault on line j (0sj<b-1). If
the fault is on line j =0, then N(0)=N error bits £P=1 in line
0 will produce the byte check result N. We determine the
numbers N(j) of error bits Ef=1 on lines j=1,...,b-1
respectively that would be needed to produce the byte check
result N by end-around shifting N to the right b —1 times. The
shifts will preduce the numbers N(1), . . ., N{b—1) in succes-
sion.

The number of error bits E"j:T (due to a stuck-on-zero
line) that would be needed to produce N(j) for any 0<sj<b--1
is given by (2°~1)—N(j), that is, the “‘one’s complement” of
N(7). All values of N(7) and (2® —1)—N(j) that are greater
than k +1 are discarded as impossible solutions.

To test the hypothesis that a given byte check result N
is due to a single-line determinate fault, we use the line check

result
R = (2k+1_1)|i L
)

M‘zwi
=0 =0
This result will contain N(j) digits B; =1 (Osi<k +1) if there is
a single-line determinate (stuck-on-one) fault in the line j. The
presence of each ;=1 indicates that the digits X{ should be
corrected by the 1-+0 change.

The line check result K will contain (2°—1)-N(j)
digits F;=0 (O<i<k +1) if there is a single-line determinate
(stuck-on-zero) fault in the line j. The presence of each R;:=0
indicates that the digit X7 should be corrected by the 0-»1
change.

171

Example 1: Singledine Error Correction

Consider a message X with seven bytes (k=7) of 4 bits
each (b=4). Inverse reside coding is used for the bytes
(modulo 2% —~1=15) and for the lines (modula 2%*!-1=255).
The encoded message (following Figure 1) is shown below:

check line line line line
line 3 2 1 Q

1 0 1 0 0 byte O
0 0 0 1 1 byte 1
0 1 0 0 1 byte 2
0 0 0 0 0 byte 3
0 1 4] 1 1 byte 4
1 o 0 1 0 bytes
0 1 0 1] byte 8
0 [1 1 0 check byte 7

The byte check result (modulo 15) is N=1111, and the line
check result (modulo 255) is #=11111111. No errors are indi-
cated.

Now assume a stuck-on-one line 2 and set all digits in
line 2 to one. The new byte check result is N=1001. The
single-line determinate fault possibilities are:

Stuck-on-One Stuck-on-Zero
N(©)=1001=8 15-N{0) = 6
N(1) = 1100 = 12 15-N(1) =3
N(@)=0110=8 15-N(2) =9
N(@B)=0011=3 15-N(3) = 12

The values greater than k +1=8 are discarded, and the remain-
ing possibilities are: line 2 (8 errors) or line 3 (3 errors) stuck-
on-one, and line 0 (8 errors) or line 1 (3 errors) stuck-on-zero.

The new line check result is
R =(Ry ...,Re =01111110

The six ones in A indicate that the ‘*'line 2 stuck-on-one”
hypothesis is valid, and the corresponding six positions in line 2
are corrected by setting them to zero.

Example 2

Now assume that line 1 is stuck-on-zero.
check result is N=0101, and the possibilities are

The byte

Stuck-on-One Stuck-on-Zero
N(D)=0101=5 15-N(0) = 10
N(1) = 1010 = 10 15-N(1) =5
N(@@) =0101=5 15-N(2) = 10
N(8) =1010= 10 15-N(3) =5

The remaining possibilities all point to five errors. The module
265 line check result is

R = 00001101

The five zeros in K (positions 7,8,5,4,1) indicate a stuck-on-zero
on line 1 or line 3. To resolve the ambiguity, we find that 3
already has *‘1’" digits in positions 8 and 4, and cannot be
corrected there; therefore it must be line 1.

4. Detection of Bidirectional Errors

[t has been noted that low-cost inverse residue codes
are considerably less effective in detecting bidirectional errors
due to indeterminate repeated-use faults [AVIZ 71a]. The addi-
tion of the line residue (i.e., the second dimension of encoding)
allows the detection of all bidirectional errors that affect a sin-
gle line, as well as all bidirectional double errors affecting ary
two bits of the message X. The double bidirecticnal errors cn
one line that were undetected by the byte check are now
detected by the line check, while those in one byte are
detected by the byte check.

The remaining undetectable bidirectional errors are
those that are simultaneously undetectable by the byte check
and the line check. An illustration is the quadruple error thet
changes Z to Z* as shown below:

_01 _10
Z=1p=2"=354

Here an even number of oppesite-direction changes occurs
simultaneously in the bytes and lines of the message X. In
general, all quadruple errors of this type (at four corners of a
rectangle of bits within the message X) are undetectable.

Part I

Multi-Mode Applications of Arithmetic Codes in
Interprocessor Cammunication
by Algirdas Avizienis and C.S. Raghavendra

1. Introduction

We consider computer systems that use a large number
of processors, with high-speed communication among proces-
sors in the execution of programs. In such a system the inter-
processor communication must be highly reliable. Examples of
such systems are the Data Flow Machine [DENN 80, LEUN 80]
and the cellular architecture for executing reduction language
programs [MAGO 79].

In the MIT data flow machine, a large number of pro-
cessing elements is organized as a network of self-timed
modules which communicate by sending packets to each other
In this architecture, packet communication is completely asyn-
chronous, and packet bytes are transmitted and received ir
byte-serial manner. It is extremely important that the packet
communication should be protected from hardware failures
and transient faults, as otherwise the performance of this
machine will be severely degraded. The coding scheme
described in this paper is one approach to provide fault-
tolerance in data flow and such other machines.

2 A Three-Mode Checking Scheme

The approach consists of three modes of checking that
offer increased error correction capability at the cost of addi-
tional time required for message transmissior:.

In Mode A, the twe-dimensional inverse residue check-
ing is applied. The messages are as shown in Figure 1, with the
typical value of byte length b =8 and module 255 inverse resi-
due encoding. The number k of bytes per message can be
varied; k=8 or k=16 appear to be typical; such that line
checking is module 29—1=511, or 27 -1, The cost of encoding
is one added bit line (the check line), and one extra byte
transmission time per message (for the check byte).

When an incorrectable error is detected in Mode A
operation, or a permanent one-line fault occurs, Mode B is
invoked. In Mode B every byte X; of the message is provided
with its own check byte of the value X;=(R2? —=1}~X;, which is

the one’s complement of X;. The check line now carries byte
parity both for X; and X; respectively. The time to transmit
the message is now 2k byte times.

Byte check results are formed for every pair of bytes.
A check sum (modulo 255) of all ones means that either there
is no error ar there may be some compensating errors. A com-
pensating double error occurs when a particular bit (say the
Jth) of both X; and X; are incorrect. That is, the received
values are interchanged. If any one position of the check
result has a single O or a single 1, then we have detected a sin-
gle error. The parity bits are used to find out_whether the
errer is in information byte X; or code byte X;. This also
allows us to correct the single bit error because we know which
bit is in error. Any other check result indicates multiple
errors, and such errors can only be detected. In fact, this code
scheme allows us to detect all possible unidirectional errors
(due to stuck-at type faults). It should be noted that the check
adder can be transformed to Exclusive-OR circuits by discon-
necting the carry connection and still serve as a byte compara-
tor for Mode B.

The only type of error that cannot be detected when
operating in Mode B of the coding scheme is that with an even
number of compensating errors. 0dd numbers of compensat-
ing errors can be detected because in such situations both the
parity bits will indicate an error, but the checker will not. The
occurrences of compensating failures are quite rare in digital
systems; the chance of two or more compensating failures will
be extremely small.

When error correction cannot be performed, i.e., when
multiple errors are detected, we switch to Mode C. In this
mode, for each byte X two more bytes X' and X" are gen-
erated by rotating the bits of X by nl and n2 positions
respectively. Now, the redundancy is increased to 200% and
hence there is a further degradation in performance. This is
basically redundanecy in time and thus no complex hardware is
required. The bits of X, X", and X" travel on different physical
wires because of the rotation of bits. At the receiver the bits of
the three bytes are voted by majority voters. We note that the
Carry output of a binary full adder (FA) serves as a Majority
output and the Sum output serves as a Disagreement Detector
when all three FA inputs accept the inputs to be voted; then
the same checking hardware is still usable.

Mode C operation allows the masking of all single errors
and of many double and triple errors. If the double and triple
errors are such that they don't occur on same bits of X, X',
and X", they can be masked by the voters. In fact, for any
value of 71 and n2 (n1 # n?) there are N combinations of
double and N combinations of triple errors that can be
masked. Since transient faults may introduce multiple errors,
and usually on adjacent lines, we select .1 and n2 such that
there is maximum protection from trensient faults. The
optimum values of n1 and .2 for byte serial communication
are 3 and 8 respectively. This selection allows maximum
separation between ith bits of X, X', and X'

3. Reliability Analysis

In this section we perform reliability analysis of the
coding scheme and derive a simple expression for reliability of
communication. The parameters used in the analysis are: R,
the reliability of a line, and N, the number of lines. We have
the following cases for which the communication is correct:

(1) All lines are working;

) Any one out of N lines failed;

3) Any two failures such that they are masked by
voters;

(4) Any three failures such that they are masked by

voters.

The circuits required for generating error code, checking cir-
cuits, circuits for rotating information bits, and voting circuits
are assumed to be protected by other forms of fault-tolerance,
such as self-checking. Their reliability is not included here. We
also assume that the coverage for switching from one meode to
another is 1.

Now we have the following simple expression for reliabil-
ity of communication,

R, = R”+NR”“(1—}?)+NR”‘2(1—R‘)2+NR”"3(1—R)3

The amount of rotation of information bits in mode B car be
any number of positions. For maximurn protection against
transient faults the amount of rotation should be N/ 3 and
2N/ 3 for the second and third bytes respectively.

We have assumed previously that the probability of
undetected errors is extremely small. Now we give a quantita-
tive estimate of this probability. The probability of undetected
errors corresponds to the occurrence of an even number of
compensating errors. A simple expression for this probability,
under the pessimistic assumption that the probability of a rnor-
mal error is the same as the compensating error, is given by:

Ry =%Co(1 =R +¥Cy(1 - R +....

Only the first term will be significant. With N=9 and £ =0.95
this probability is,

Ry, =2.25x% 10

A more realistic assumption about the probability of compen-
sating errors is that it is ten times smaller than the normal
errors, in which case we have:

Ry =2.25% 1078

Therefore, we can conclude that the probability of detecting all
types of errors with the proposed coding scheme is extremely
high.

4. Concluding Remarks

The goal of Part II has been-to point cut the flexibility
and convenience of arithmetic checking of data communicalion
in large-scale computers. We also note that arithmetic codes
can be used to check the numeric operations that follow the
interprocessor transmission of operands. These factors
strongly suggest the superiority of arithmetic codes to other
methods of checking.

An early successful application of error correction by
alternate data retry is found in the “Output Addressing’ circu-
itry of the fault-tolerant Saturn V Launch Vehicle Digital Com-
puter [ANDE 67]. The same computer alsc extensively used
“TMR" majority voting to protect its serial CPU. Arithmetic
codes were extensively used in the JPL-STAR computer [AVIZ
71b]. Thus the approach discussed here is not an innovation of
method, but a synthesis of time-tested methods to fill an
important need in a flexible manner. Recent work, such as
[SHED 78] and others also address the alternate-data reiry;
however, in our case it is the coding rather than alternation
that defines the mode of operation.

REFERENCES
[ANDE 67)] Anderscn, J.E., Macri, F.J., "Multiple Redun-
dancy Applications in a Computer,” Proc. 1967
Mn. Symp. Reliability, Washington, D.C., 1¢67,
Pp. 563-562.

173

[AVIZ 62)

[AVIZ 70]

[AVIZ71a]

[AVIZ71b]

[AVIZ 81]

(DENN 80]

[LEUN 80]

[MAGO 79]

[PARH 73]

[PARH 78]

[SHED 78]

[TUNG 70]

[USAS 78]

Avizienis, A. "On a Flexible Implementation of
Digital Computer Arithmnetic,”” Information Pro-
cessing 1962, C.M. Popplewell, ed.,, North Hol-
land Publishing Co., Amsterdam, 1963, pp. 6864-
870.

Avizienis, A., Tung, C., “A Universal Arithmetic
Building Element (ABE) and Design Methods for
Arithmetic Processors,” IEEE Trans. on Com-
puters, C-19: 733-745, August 1970.

Avizienis, A. “Arithmetic Error Codes: Cost and
Effectiveness Studies for Application in Digital
System Design,”” IEEE Trans. on Computers, C-
20: 1322-1331, November 1971.

Avizienis, A., et al., "“The STAR (Self-Testing and
Repairing) Computer: An Investigation of the
Theory and Practice of Fault-Tolerant Computer
Design,”” IEEE Trans. on Computers, C-20:
1312-1321, November 1971. Reprinted in Best
CQomputer Papers of 1971, L. Petrocelli, ed.,
Auerbach Publishers, 1972, pp. 185-185.

Avizienis, A., “Low-Cost Residue and Inverse
Residue Error-detecting Codes for Signed-Digit
Arithmetic,” Proc. 5th Symposium on Com-
puter Arithmetic, 1981, pp. 165-168.

Dennis, J.B., ‘Data Flow Supercomputers,”
Computer, November 1880, pp. 48-56.

Leung, C.K.C, Dennis, J.B., “Design of a Fault
Tolerant Packet Communication Computer
Architecture,” Proc. of the 1980 Fault Tolerant
Computing Conference, Kyoto 1980, pp. 328-335.

Mago, G.A., "*A Network of Microcomputers to
Execute Reduction Languages,” Int. Jour. of
Computer and Mhformation Sciences, Vol. 8,
No.5,8, 1979, pp. 349-385, 435-465.

Parhami, B., Avizienis, A., “‘Application of Arith-
metic Error Codes for Checking of Mass
Memories,” Digest of the 1973 Int. Symposium
on Fault-Tolerant Computing, pp. 47-51, June
1973.

Parhami, B., Avizienis, A., “‘Detection of Storage
Errors in Mass Memories Using Low-Cost Arith-
metic Codes,” [EEE Trans. on Computers, C-
27-4: 302-308, April 1978.

Shedletsky, J.J., “Error Correction by
Alternate-Data Retry,” [EEE Trans. on Comput-
ers, C-27: 108-112, February 1978.

Tung, C., Avizienis, A., ‘‘Combinational Arith-
metic Systems for the Approximation of Func-
tions,” AFIPS Conf. Proc. (1970 Spring Joint
Computer Conf., Atlantic City, NI), 36: 95-107,
1970.

Usas, A.M., “*‘Checksum Versus Residue Codes for
Multiple Error Detection,” Digest of the &th
Mnual International Conf. on Fault-Tolerant

Qomputing, p. 224, 1978.

