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ABSTRACT

This paper proposes & scheme for the
representation and processing of fractions
in a residue system. The scheme is kased
on a mixed radix representation of a frace-
tion in a residue.system. The algorithms
for basic arithmetic operations of addition,
subtraction, and multiplication involving
fractions are developed and are shown to
provide some improvement over an existing
method. Application of these algorithms to
divisicn of two integers in the residue sy s~
tem has been shown.

INTRODUCTION

Residue Number Systems are not new to
mathematicians as envidenced by the fact
that one of the earliest known results in
this area, the Chinese Remainder Theorem-
was stated as far back as the first century
A.D. The Residue Number System is well-pube-
téd for the representation and processing
of integers as far as the operations of
addition, subtraction and multiplication
are concerned, due to its carry free charae
teristic., But it might be desirable for
the machine to be able to handle fractions
as well, Operations with fractions have
been described before by Svoboda [(5J. In
this paper, we propose a scheme for the re-
presentation of fractions in a residue sys-
tem and, based on this, we define algorithms
for basic arithmetic operations involving
fractions, The advantages of the proposed
algorithms over Svoboda's algorithms have
been discussed,

RESIDUE CODES

Consider a residue system consisting
of an ordered set of moduli which are pair-
wise relatively prime as

M:{ml,m2,...,mn§, m; 22, for 1<ign,

n
Let M =T m; .

i=]
The residue representation of an integer X,
0&X<M, is defined as X €3> (X, Xqree.s %),
where x;, is the least non—nega%ivé renainder
obtaineé after dividing X by m,., The least
non-negative remainder is deno%ed as

lei=xi. This representation is uniquel[ 6]
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We represent a fraction £ in the Residue
System as (, T 10 T_or e r_n), where

r r r
f = r;:’-l- +m————'rﬁ toees F g =B - (1)
1 172 17°2*°**"'n
and

- <
Oé]‘-i<mi’ l€i<gn,

This, in fact, is a mixed-radix represen-

tation of a fraction which is a generaliw

zation of the representation of a fraction
in a fixed=radix system,

CONVERSION SCHEMES

In this section, we propose schemes
which will convert a given fraction in
base b to its equivalent representation in
a residue system and vice-versa,

INPUT CONVERSION

The problem of converting a base b
fraction £ to the representation
(. Cis Ths seesr T n) in the residue sys-
< -

tem is called 'Input Conversion'. From
relation (1), we obtain
r r
- -2 -n
fm, = r + =+ - b — (2)
1 -1 m, m My===m
Let fm1 = I1 + fl’ where I1 and f1 denote
the integral and fractional parts of fml,
respectively, We now show that
o2 Tin
I. =r and £, = —= 4 e 4 = .
1 -1 1 m my===m
Consider . _ fe2 o 4 r
n_ mi Mmy==m,
m, +r m 4+ ww~ 4+ '
r_, i25 i"™ra3 §t4 i -n
F-
i=2 i
or n n
m.-1) T my +(m,=1) L”_mi+...+(mn—1)
< 2 i=3 i=
- n o
T m
iz 1




n
or m,-1

1
i=2
FL = — 1,
o m
i=2 *

Hence F<1, This means that F represents
the fractional part and I 4, represents the
integral part of ¥m., le€e, I =r_j and
f, = F. Therefore, from rela%ion (2), r_y
cdn be obtained by taking the integral
part of fm,. Similarly r , can be comput-
ed by takifig the integral part of the
product £.m,, and so on. In general, the
algorithm, ¥hich we refer to as the 'Input
Conversion Algorithm' is derived as follo-
wSs:

Step 1 : Initialize Ro==f, r,=0 and i=1,
Step 2 : Compute R—i=(F'-i+1-r-i+1) my

Step 3 : Obtain r_; =LR__i_J, where | RJ
denotes the integral part of R,

Step 4 : i € i+1, 1If i£n then, go to
Step 2, else Exit,

Therefore, a given base b fraction
denoted by {£), is converted by the
'Input Conversion Algorithm' into its
fractional representation in the residue
system. The latter representation is
denoted by <f>\f~'L i.e.,

<f>\M — ( 'r_llr_zl---’o r_n)
such that <f2h1§<f>b'

Lemma : For a given <f)]_, the fractional
representation computed”by the Input Con-
version Algorithm is unique, The proof
of this is fairly straightforward.

implementation of Input Conversion Algori-
thms

The implementation of the proposed
algorithm 1s fairly straightforward using
residue arithmetic operations,

Consider <f>b = .8_; 8, --- a_jr where

a_ i, ¥£1igj, are the base b digits of f,
LE% us ignore the radix point and treat
a_18_, === a—j)'b as an integer, Let

If =<é_1a_2-u_ qd>b. .

If we assume the condition that mek< M,
where m, is the largest modulus, then the
productk.[fm can be obtained by residue
multiplication., If this product is con-
verted back to its base b representation
by using the method suggested in (1,21,
then the rightmost J digits correspond to
the fractiohal part f., of the product fm,,
and the rest correspond to the integral
part I, (Recall I, = r_,). Similarly,

other r_,, 24£1¢n, are also canputed,
We now eXpress this in algorithmic form.

Step 1 : Initialize fo = f and 1 = 0,
Step 2 : Convert mi+1 and Ifi into its

residue representation,
Step 3 : Multiply If by My 41 in the resi~
due number system,

Step 4 : Convert the residue representation
of If M1 into its base b representation,
i

Step 5 : The rightmost j dlgits correspond
to the fractional part of fimi+1 denoted 4

by f » and the integral part is assigned
to r'i+1

-i41°

Step 6 : i & i1,
step 2, else Exit.

If 1<n, then go to

We now consider an example to illus-
trate the working of the Input Conversion
Al gorithm,

Example 1 : Let M =43,5,7,11), b=10, and
f)b = 0,5]. Then j = 2 satisfies the
relstion bJm 4 M, Here I_ = 51, Now
Iem, €3 10,2,4,3) is be cgnputed by using
reéslidue multiplication, Using the output
translation method [1,2], we obtain
<Ifm1>b = 102, Hence {f.) = 0.02 and

r_ 1z . The residue code’for g (for
computing r_,) is easily obtained ‘as
follows:

If1=:[fm1‘1ojr_.1 <> (2,2,2,2) in the

residue system, Then If m, is computed

by using residue multipllcation, and
r_, is calculated in a manner similar to
th&t for r ,, Similarly, the successive
r_; can alsd be computed.

QUTPUT CONVERSION

The problem of obtaining the base b
estimate {f) of a given residue fraction
{£>mis refefred to as Qutput Conversion.
Consider the relation,

r r r
! -]l -2 =N
<f> = e—— + om—— o ——— .,
S ml mlm2 mlmz----mn

It can be expressed as

S L 1 “-n
<f3\1_ m (r_ +.. ‘+m:; S W))...)-jﬁ)
Hence 1 _ j 3 r-nb
. m (r_,p’+ ... +mn_1(r_n+1b + m DI
E)5 3 4

where j is the number of base b digits in
the fraction f, Clearly, the value of i
is limited by the requirement bim <M,
where m_ is the largest modulus, kWe
approximate { f)b as

bl
[r:xll—l (r__lbJ 4—-—+|:mrll_1 (r_n+1bj +|:rx;n ])—-—ﬂ

N |
2

<f>b =
3
b I—

where [N] denotes the rounded value of N.




We now represent a fraction f as

<f?/VLH (.r_l, r_zo -y r-n)o

Implementation of Output Conversion Method

The output conversion method can be
implemented by using residue operations
only. Initially, it is assumed that the
residue representations of

m, »*
Lai_],lgign are available in the machine.

The value of Zi is rounded to the nearest
integer in the following way:

. X o
D )
That is, we add X and|%

» and then
scale the sum Y by m. (Scal%ng

of ¥

involves computing X:jfm R

Y
).

We now suggest the algorithm which
can be implemented using residue arithme-
tic cperations only. The value of j has
been decided by the relation mekL M,
where m is the largest modulus.

Step .1 : Form the residue representations
of bJ and r_q¢ 141 ¢n,

which 1is the

largest integer &

Step 2: Set i = -nand T = 0.
Step 3 : Multiply ry and b? in residue
form and form X = rybl + T

X
Step 4 : Compute T = tli .
Step 5 : i & i+l, If i¢-1, then go to
step 3.

Step 6 : (), = .T and exit.

The following example illustrates the
use of this algorithm,

Example 2 : LetJM = §10,11,13,17}, b = 10
and {f), > (.8,2,9,12).

In this case, the minimum value of
j is § = 3. We now compute r~4b in the
residue system,
Moduli 10 11 13 17
r_, = 12 (2 1 12 12)
103 « (0 10 12 14)
X, = r_10° € (0 10 1 15)

It is ass;.lnmed that the residue representa-
tions of)_zd-_,, 1<4ig¢ n are available.

Therefore,

my

|3]-5 «5 (5 5 5 5,
ma

L-—ﬂ: 5 <&« (5, 5 5, 5),

*LIJ denotes the largest integer £ 1.
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m
3
'.—2. 6

= &« (6,6, 6, 6),
and
My
—=|=8 € (8, 8, 8 8).
Now . m

4 1

X_l_LX_l__L_z—JJ =y
My. Mg My

z, <> (8, 7, 9, 6) is obtained by residue
addition., Further, zl is scaléd by Mye
Scaling of any X by m has been shown in [6]

Let
-—Xl Zl
T = X?l— = E'Q_J .
-4 4

Therefore,

T «> (5, 1,
Compute x:'_3103 >
residue multiplication,
to form X2 as

3
X, = r_310
* - X
2
Compute T =[‘—TGJ<E———> (7, 10, 6, 16).
Now 3
1:_210 &~
Then 3
Xy = r_210 + 7 e
Compute

3, 8).
(0, 2, 4, 7) by using
2dd r_,10° and T

+ T &> (5, 3, 7, 15),

(o, 9, 11, 11),

(7, 8, 4, 10).

X
G ]
m

Jes 0, 8 3, 12).
2

Finally,

X =1y

3

107 + 7 «— (0o, 0, 8, 5)

and %
S 3
T _[mlj <« (5,0, 6, 9).
Therefore,
LE)

Using the output translation algorithm, we
obtain (5, 0, 6, 9) €« <825>10.

Therefore,
<£) b = 0.825

(Actual value =~

b:.T .

.825) .,

ARITHMETIC OPERATIONS

We now define algorithms for the basic
arithmetic operations involving fractions.
Let f1 and f2 be two fractions represented
as

{ED Q€ lorly, £ty ==,

r:n)

KL Ny € (rfp, £h . =y )
Denote

(fpmby f1 and <f2>m,by f2‘
ADDITION

Let £ = f1 +f2.




Then f e (.r_l, L_or ===, r_n) is defineqd we get

ml-l--r_l mz—l—r_2 : mn—r n
as fOllOWS; f = 1-f 1'1'11 + m1m2 + -—-+m1m2-_mn'
r . =[rh+rW+c.| . l<j«n,
~] -J =3 -] mj Hence, the fractional representation for
the complement of f is
1 1iff r'_.4r'.+c . 2m f 1 -1- _— -
where o E3 R R f € (em -1 T_qe My-l-r_,, ¢ mo-r_ ).

-j+1 = ----(5)

. Now
0 otherwise 4

£+ Ez =f) + (1-£,) =1 4 (£, - £).
and c_p = 0. Here €. i 1s the carry into There arise two possibilities:

the ith position. It is clear that if (1) If £,>£,, then £,~f, is obtained by
subtracting 1 from f_+f

€, = 1, then the sum exceeds 1,

© . : B} . which is

We now suggest an implementation of frac- ‘ i 17

tional addition by using residue addition. equivalent to ignoring -the carry from
Let ¢, ¢ > (! 1 . the leftmost position, when f. ang £,
£ (1_1,r_2, e g are added, This carry is used to

‘ indicate that the difference is posi-
and £, €= (r:l,rfz, -==r ) tive, P
denote two integers obtained by ignoring (2) The absence of any carry f
: LS ‘ . Y > Yy from the
the radix points from the representaticns leftmost fractional position in compu-
of £, and £,. Then, ting £, + £, indicates that the diffe.
£1 = fi + £ & (I*l’ r*z,m-_,r*n), rence is obgained as follows:
2 - - - = *%
where 4= ~f ) =alg o ™7 since
r*i= |ty o+ rfilmi: lsign, £1< fp. Now 1- [[£,-£, )15 the correct
is obtained by simple residue addition, complement of "fl-fzh— Therefore, we
Let

take the complement of 1- {£,-£f to
c €« (c_q. Cogr ===, c_p) o l -5,

t the abso £ -f_,
be a residue number obtained by using g€ he absolute value o fl f2
Eogdition (5). Here c__ = o. MULTIRLICATION
e
£ = £f' + ¢ € (r 19 T_gr ===, T n)’ For simplicity we first consider the
- = = multiplication of fractions in a system of
where N e tWwo moduli and then extend the method to
r_j= [cx o+ C-i’mi’ l<ignm, n moduli system,
Then R .
£ <« (,;_1, r_2, —-— an) The Two Moduli Residue System:
is the fractional part of the sum of £ Consider M, = {ml, m23 .
and fz. If €, = 1, then the sum excee&s 1. Let . rll r:z
5U BTRACTION £ = my * mym,
The following two steps are needed and r:l r:z
for computing f = f1 - rz. f2 = EI_ + g
(1)  Compute the complement (additive r, T,
inverse) £, of £, £ o= e £f,f, is obtained as
C= 435 4t 172
(2) Compute £, 0+ f2 using the addition follows: "y o . .
algorithm suggested earlier, £ F = Qn-1 Y ) x ~1 + -2 )
h = I
We first digpuss the computation of the 172 1 mlmz 1 m1m2
complement £ of a given fraction £, The . " ' " ' u ' '
complement is defined as 1 - £ and can be - ‘o1 o1 + r-1 r-2 + r_2 r-1 . r-2 r:z
computed as follows: 2 > 7o .
ml mlm2 m1 m2
m,~-1 m.,=1 m -1 m r! "
1,2, __. + mn;l — e n m:l. Since ——%——53 is very small, we neglect
My S P 172°°*"n-1 172°**"n my my

it from t .
Therefore, for ' the product. Therefore,

r r r
P + =2 4 -=- 4 —=D ' **"X[[ represents the absolute value of X,
m m,m m.m, —e-m_ *
1 172 172 n




) . 1 "
rlyrly  rljrly +rl, rly
£18, % —3 ) .
my my m,
$ ] 1 [
TPl TiiFlo , f=2fa
I N | M.
™1 M2
Now r_; and r_, of £ are computed by the
following algorithm:
Step 1 Express
- (] £t —
2y =rlyxrt, as 2, = lel + Yy
—_ ) —_ e
Z, = r_lr:2 as 2, = Lzml + Y,
=nd 43 = Tlprly 88 Z3 = Kym +y3 .
fo
) 0&yye ¥or ¥34my.

Step 2 Set r_, ky + kg + vy m,*

Step 3 Compute
22 =

Ky +ky +y) -1,
m

2

Step 4 Set £, = k1 + £ and Exit,
Analysis of the algorithm shows that the
maximum absolute error in computing f is
given by

1 1 2 1
e & (&= - =) + + =5 .
max m1 m2 m1m2 mf

The amount of error can be reduced by
slightly modifying the multiplication
algorithm, If we use Y, and V3 from Step
1 to obtain

Yo +¥3 = Kgly + y4e 0&y, 4my
then set ]
rop = fky + kg 4 ky 4 yllmz

and k2 + k3 + k4 + ¥y - T,
2z =
M3
The maximum absolute error is now given by
1 1 1 1
e & (=2 - =) 4+ + .
max my T om, mym, ;?

Therefore, for a given system {ml, m2},
the upper bound for the error is fixéd.
Hence the maximum relative error decreases
as the product flf2 approaches 1.

Multiplication in the n Moduli System:

It becomes fairly difficult to define
a general algerithm for multiplication in
the n moduli system, Therefore, we first
map the n modull system to an equivalent
two moduli system., The fractions are then
multiplied in this two moduli system using
the previous algorithim and the result is
converted back to the n moduli system.

The
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conversion relations are obtained as
follows:

Let the equivalent two moduli system

consists of mi and mé, where
i n

m! = T m, andm! = T m,,

LR P 27 yoi41’

Given a fraction f, we can express it in
the n moduli system as

_ r_l r_2 r

-n
f = + +om—— o ———— (6)
my mymy MM y===m
A fraction £ can be expressed in two
moduli systems as
1 ]
rly rl,
£ =g +gmT -
1 172
From relation (§), we obtain
r! r r r .
-1 -1 -2 -3
—= = 4 + m— ———,
m m, m,m, myMyes oMy
or i
“ ¥ — ——— B
r'y =r_y ;gz My + +r_y &)
Similarly,
n
r',=r T M, + === ¢ r_ 1))
=2 - (1+41) jeie2 I n

Therefore, both r_'1 and r_'_2 can be compu-

ted from r_., 1« ign, After multiplica-

tion, the ré&sult must be converted back to
the original system. From r:l and rlz,
L e 1<1i<n can be computed iteratively.
The following example will show the addi-
tion, subtraction, and multiplication of

two fractions,

E_x%le 3: Letgq= {10, 11, 13, 17} ,b=10.

Consider )
£, > (8, 2, 9, 10)x .825
and
£, € (6, 5, 8, 15)~ -625
Now,

f' = fi + fé <« (4, 7, 4, 8).

Compute ¢ €= (0, 1, 1, 0) by using condi=,
tion (5),

Here ¢ = 1. Therefore, the sum exceeds 1.
Now

f" = £' + c &> (4, 8, 5, 8),
Therefore, £ € (.4, 8, 5, 8) is the
fractional part of the sum of f_ and f2.
By using the output conversion &ethod,

{EY | = 477

Since ¢ = 1, therefore, the final value
of the “sum in base b is 1.477.
Sibtraction

In order to compute £ = f1 - f2, we

first compute f2 as




f2 H (-3' 5'-41 2)0
We now add f1 and f2 as

£+, e> (.1, 8 0, 12)

and there is a carry from the leftmost
position, Hence the difference is posi-~
tive and is equivalent to .173 in decimal
system,

Maltiplication
1
Let ml = m1m2' m2 = m3m4 and
L}
£r o =l + -2
- [] [ [ 4
1 m1 mlm2
r" rll
1 -2
fi = + T e
2 ml mlm2

Compute the values of .r:_'l, r_'2, r_“l and
r’, by using relations (8) and (7) as

r'_:1 = 90,
r:z = 163,
r:l =7,
r_"2 = 151.
Therefore, the values of f1 and f2 hawe

been mapped to the 2 moduli system as
f]'_ €« (90, 163)

fé <« (71, 151).

f = fi x fé is computed by the method

suggested in the previous Section,
Therefore,

and

* r*
£ x £ywE = 3 4 o32 59 17
1 2 my mlm2 m} m1m2

Thus, £ €= (.59, 17) in the 2 modul i
system, From the values of r:l and r:2,
the residues r_q. r_o T 3, S of £ in
the 4 moduli system §10, 11, 13, 17} can
be computed as follows:

r* = W, + I

-2
i.e.,
59 = r_ym, + r_,
Then
r_, = l59]m2 =4 and r_, =5,
Similarly,

r_, = |17[m4 = 0 and r_ 3 =1,

Therefore, £ € (.5, 4, 1, 0)%<.5370), .

The actual result is approximately
<,5379>.10, Hence, the relative error in

computing the product is about «18 percent,
The maximum absolute error in this system
is .0047,

APPLICATION TO DIVISION

The algorithms suggested earlier can be
used for carrying out integer division
in the Residue Number Systems, The proce-
ss of integer division, where the value
of the quotient is computed to the nearest
integer has been discussed before in €3,6].
With the division method proposed in this
section, the quotient is obtained up to
fractional accuracy.

Let us consider the evaluation of

o))

= g . where both a and b are integers,
and a £ 0, For simplicity, let us assume
that both a and b are positive, Let

= b x y, where y denotes the reciprocal
Newton's method is employed to
compute y and this is multiplied by b to
compute d, By definition, y = 1/a,

Hence i a =0,
1
L £ == - a,
et (y) 7~ 2

Substituting this in the iterative formula
L[43],

£ (y.)
— P l
Yijg =Y Ty
we get 1
(- _
Yy 2 .
Yip1 =¥ - - yiXi2-axy,).
)
Y3

1t is known [4] that the iterations will
converge if and only if the starting value
¥, satisfies the condition 0<y, <§ .
This condition also ensures that
O<a x Yy < 2.

Hence 2 - a x Yy = Ii + fi' where
I, = 0 or 1 and Ozgfi <1,
vy x (2-a x yy) = I, x vy + £ % Yj. Now
I, x Y either eguals 0 or Yy and fixyi

is obtained by using the fractional multi
plication algorithm suggested earlier,

Therefore,

We now consider the selegtion of the
initial value y.. The following scheme
vields a suitabfe value of Yoo

1, If a = m;, 1€i<nor a = m, where
n‘mj denctes the product of some 1

moduli, then choose Yo = %— or1T )
i

respectively., No, further iteratiohs
are required and 3= Yo

2. If a #’mi or a £7ij, then compute
the mixed radix digits of a [e].

If r; is the most significant non-
zero mixed-radix digit of a, then




choose Yo =°% » where = myM, === M,
Clearly, « > a. Henge }‘41. There~
fore, a x Yo = @ X Z 42, and this

ensures convergence,

One possible method for the implemeh-
tation of this scheme is to have two
tables of starting values available.
a given set of moduli {m,, m,,

For

——, m
v nd

the first table would be an associative
store, This store contains entries for
all my, 1£ig¢n, and for all products

ﬂ'mj.
Trmj is the fractional representation of

Associated with an entry m, or

E or ==, respectively, Such a table
my Trmj :
would have a total of > nci entries,

i=1
here n = —-_(r_)—LY—
W Ci i) (n=1)f *

The second table would contain the
fractional representations of

'-3£L—*': 143 ¢«n.
m o
i=1

if ri is found to be the most significant
non-zero mixed radix digit of a, then k
is used to address the second table. The
kth location in the+table would contain
MyMp===my

A simple example in a two moduli
system 1is used to illustrate the division
process,

Example %. LetM={10, 11}, a=2, and
b =1, Then

d = =% -
2 . ,
Choose Yo such that 0<.yo<-a- i,e., O<y0< 1
Let y, = .2 €<=» (.2, 0). Therefore,
axy,=.4€> (.4, 0) <2, and this ensu-

res convergence, The iterations are listed
in Table 1.

Table 1

Iterations for Example 4
No.la x y; £y vy X fl Yi41
i
0 (.4, 0) [ (.6, 0) (.1, 2) (.3, 2}
1 (.6, 4) | (.3, 7) (41, 0) (.4, 2)
2 [ (.8, 4) | (.1, 7) (.0, 6) (.4, 8)
3 (.9, 5) | (.0, 6) (.o, 2) (.4, 10)
4 (.9, 9| (.o, 2) (.0, 0) (.4, 10)
We see from Table 1 that Yg = Y4. Hence
we stop further iteration. Therefore,
%wy4<—-) (.4, 10) = <.49) ;4. Hence,

d = 3w 49) .
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S

Operations with fractions have been
described before by Svoboda [5]. Using
hig scheme, a fraction x is defined as

X = X where 0 (X<M and M =

n
’ T[m - If
M i=1 *
(xl, Kpr wens Xn) is the residue code for
X, then x is represented by /Xl' Xy ...,an

Svoboda‘'s representation might be consi-
dered a 'pure residue' representation for
a fraction, since the residue digits of X
are used to represent x. Although the
algorithms for addition, subtraction,
multiplication of fractions are fairly
straightforward using Svododa's represen-
tation, his method suffers from one major
disadvantage.,

and

His multiplication algorithm reguires
extension of the range M to avoid the
possibility of multiplicative overflow.
The extended range Mext must be such that

Moxt = MM';;(M-l)z, where M' is the factor

by which the original range must be exten-
ded. Therefore, for any practical sized
M, the range must be squared in order to
use the maltiplication algorithm., Alter-
natively, the computations must be carried
out in relation to a reduced range Mred

such that M__ %M . This would, of course,
limit the agsgracy of the results, In
comparison, our fractional multiplication
algorithm does not require the range to be
extended or reduced.

Another disadvantage of Svoboda's
representation becomes obvious when we
consider the addition of x and y.

X+ Y

X Y
X+y=gF+g="xg—-

=

To determine whether x + y >1 or not, we
must determine if X + Y>» M. This process
requires at least 2n operations for n
moduli, whereas, in our method x + y »1
is indicated by the carry from the left-
most fractional position after addition.

CONCLUSION

In this paper, we have proposed a
scheme for representing fractions in a
residue system and defined arithmetic alge-
rithms involving fractions, Some of the
algorithms are long but otherwise, straigh-
tforward. Application of these algorithms
to integer division in the residue systems
has been proposed. A method for choosing
a trial solution which always ensures
convergence in division has also been sugg-
ested. Some of advantages of our scheme
over Svoboda's scheme have been discussed.
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