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ABSTRACT

This paper discusses the implementation of RAS
arithmetic modules using VISI technology. The
modules are based on the interconnection of read-
only memory look-up tables. The paper first out-
lines a memory model for a single look-up table
which allows the selection of the most efficient
layout for memories which do not have power of 2
dimensions. The paper then discusses various
examples of interconnected memory modules with
associated optimizing layout algorithms. Finally,
an example is given of the application. of one of
the modules to a large prime modulus multiplier.

1. INTRODUCTION

With recent advances in VISI technology, it
has become evident that digital signal processing
(DSP) algorithms can be implemented in cost-effec-—
tive technology [1-4]. Such implementations
operates faster, consumes less power, and are far
more reliable than their predecessors (SSI and MSI)
Those advantages are due in part to the great
reduction in the number of connections among chips,

In building VLSI chips for DSP applications,
two approaches can be followed. The first is to
build a processor with large arithmetic capabil-
ities and having flexible data handling and func-
tion sequencing architectures. A second approach
is to partition the application requirements so
that the processing functions are distributed to
several single chip processors. Signal processing
applications are particularly well suited to this
type of partitioning. The second approach has
added advantages of modularity both for growth and
future applications.

Residue Number Systems (RNS) have been proven
by many authors [5-7] to be a successful implemen-
tation for high speed DSP applicatioms. Combining
a modular structure and the technological advan-
tages offered by VISI technology leads to enhance-
ment in RNS implementation in speed, cost, power
dissipation, and chip density. The VISI approach
is promising [8] as RNS supports the main VISI
design features:

1. RNS has a parallel nature where the arithmetic
operations are performed independently for

each module which supports distributed process-

ing. This concurrency minimizes overall
execution time and results in higher data
throughputs.
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2, The memory intensive architecture is very
suitable for VISI, as the memory modules
achieve higher level of integration than any
other computational element, this is due to
the regular geometry, and straight, simple
and regular interconnections.

3. The interconnections topology among modules
are regular and straight which enhance the
VLSI implementation.

Designing a VISI RNS system requires develop-
ing design methodology based on a set of rules,
guidelines and disciplines which makes the design
of a complex system manageable and produces the
most efficient design by exploring all the viable
design alternatives.

This paper looks at modelling look-up table
arithmetic chips either for special or general
purpose useage. A model for a memory module
required for storing a certain look-up table
implemented in NMOS technology, has been developed
featuring the performance measures in this environ-
ment: (1) area required for computational modules
and the interconnection among them, and (2) time-
delay contributed by the computational modules and
the interconnections among these modules. A pro-
cedure has been developed to obtain the most
efficient design for am RNS chip. A set of multi-
look~up table chips have been proposed to be used
as building blocks for implementing DSP algorithms
on a modular basis.

As an application, a Number Theoretic Trans-
form (NTT) multiplication algorithm has been pro-
posed and then implemented using J-modules.
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Y, 8 Is the grouping of the hierarchical structure
at each level in W and H directions,
respectively

Area time-delay product, AT = AxT
m Is the Modulus

w Is the word width of the memory
Take next highest integer

log Log2

2. MEMORY MODEL

We will use the hierarchical structure [9],
which is based on the fact that: a bus wire of
length Ko that has K driving transistors of arca
a_ and one receiver of area Ko _ operates in K time
units, e.g., a unit-sized transistor can drive
another unit-sized transistor at the end of a un:.t
length wire in just one time unit. Or, a bus
driver tree with a branching factor of K has a
delay of K for each level that a signal ascends
from a leaf-node driver.

The storage array is organized in this hier--
archical fashion to avoid large delays. level 0
(the leaves of the tree) comprises the basic cells
for storing bits, each of square area A =0, X

o
where o, is the length of the basic cell in unit

length. The model is organized as follows:
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where H, W are the height and width of the memory
module in unit length, respectively.

Hb, Wb are the number of bits in the vertical
and horizontal directions, respectively. The
module's parameters are: W, H, A, T, vy, B, and
N, where W and H are as defined above, and &
is the area of the module in unit area: A =
WxH, T is the access time of the memory
module, in unit time. <y, B is the grouping
at each level (branching factor of the tree]
in W and H directions, respectively. N is
the number of levels the memory is organized
in the hierarchical structure.

Following the same procedure as in [9, 12], we get:

1 2y N
W= |a + + — log B | ¥ 1)
[ ° ¥l vy J
1 28 1 .
H=|a + 35—+ - logy | B 12)
[ ° Bl (g_1)? }
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T = Max {Nono Y, Nog B} (3)

3. A LOOK-UP TABLE LAYOUT

The layout of a memory module for storing a
modulo m look-up table 1s controlled by some
assumptions expressing the constraints and fea-
tures of the model; they are denoted by A, and
outlined as follows:

Al: neither Wb nor Hb is necessarily a power of
2, the same for the storage array size
(Wb x WH).
A2: The memory word width w is given by:
w = rlog (m - 1)—1 (%)
A3: The minimum vy or B is w.
Ab: Wb 2w, Hb2wW (5)
A5: one of the two dimensions is selected as a

reference (e.g., Wb) , so, Wb = kYN, where
k is an integer constant.

This layout of a memory module is not unique.
It can have various options, each has different
performance as discussed below.

Definition 1: A layout option L is is defined by
7 tuples of the form {Wb, Hb, W, H, A, T, AT}
where AT is the area time-delay product, the other
parameters as previously defined.

Definition 2: An option Y is called redundant, if
there is another option X such that: Wy 2Wyg,

Hy 2 Hy, and Ty 2 Ty so, X 2 Y means Y is
redundant and X offers either better performance
or at least the same performance as Y.

Redundant options can be cancelled, since they do
not offer better performance., Table 1 shows some
layout options of a memory module for modulo 7.
We notice the redundancy included in the table,
e.g., X 2Y; P2 0, R, Q; G= J. Fig, 1l shows
the relations among the module's parameters.

In [12] it has been shown that Wb is bounded
by m?. The proof is straight forward as the
number of bits of a look-up table modulo m is

m2 r-log (m - 1f1 and the minimum number of bits
in any dimension is riog (m-—l)_l (A3). Table 1
shows that all the options following option Q

(for N = 1) are redundant.

To get all the viable options of the memory
layout required for storing a look-up table
modulo m algorithm 1 has been developed shown
in Fig.2., Table 2 shows the viable layout options
for a look-up table modulo 7.




TABLE 1 Some Iayout Options for Modulus 7 Without
Any Constraints

for N=1

Wb Hb ) H A T AT
3 49 27 54,1 1461.96 49 7163.6083
6 25 20.4 32.4 661.41 25 1653.517
9 17 22.1 26.8 592,32 17 1006.936
12 13 22.2 23.1 513.41 13 667.433
15 10 24.9 20.5 511,30 15 766,950
18 9 17.8 22.1 613.30 18 1103,938
X — 21 7 28.5 20.8 593,11 21 1245.540
Y—~——24 7 31.4 20.8 654.14 24 1569.926
27 6 T74.4 20.4 701.54 27 1894.151
30 5 37.3 20.3 758.64 30 2275.91¢
33 5 40.3 23.1 932.30 33  3076.57%
36 5 43,3 23.1 1001.04 36  3602.747
P—39 4 44,2 24 1060.45 39  4135.772
Q— 42 4 47,2 24 1131.13 42 6754.931
R— 45 4 50.2 24 1203.84 45  5417.293
Q—— 48 4 53,1 24 1275.60 48  6122.862
51 3 56.1 27 1515.80 51 7730.585
54 3 59,1 27 1596.59 54  8621.556
57 3 62.1 27 1677.39 57  9561.133
60 3  65.1 27 1758.22 60 10549.310
63 3  68.1 27 1839.06 63 11586.080
66 3 71.1 30.8 2186.57 66 14431.380
69 3  74.1 30.8 2278.68 69 15722.870
723 77.1 30.8 2370.79 72 17089.700

N=2

9 25 47.3 59.4 2805.47 10 28054.72
36 9 74,9 47.3 13538.08 12 42457

G— 81 4 112.6 56 6307.87 18 113541.7
J——144 4 184.5 56  10329.91 24 247917.9
N=3

27 8 74,2 64 4752 9 42767.96

8l 16 222,7 128 28511.98 12 342143.8

4. SELECTING THE OPTIMAL LAYOUT

It is a key problem to minimize both the time
and area of a VISI layout; which is very difficult
to minimize both of them simultaneously. The
designer selects the optimal solution for a cer-
tain design according to the imposed constraints.
If there is no constraints the minimum are time~
delay product is selected as a measure of
performance.

TABIE 2 The Viable Ilayout Options of a Memory
Module for Modulus 7 by Applying Algorithm 1

Wb Hb W H T A AT
N=1 3 49 27 54.1 49 1461.96 71636.08
6 25 20 32,4 25 661.41 16545,18
9 17 22 26.8 17  592.32 10069, 36
12 13 22.2 23.1 13 513,41 6674.33
15 10 24,9 20.5 15 511.30 7669.50
18 9 27.8 22,1 18 613.30 11039.38
21 7 28.5 20.8 21 593.11 12455.40
27 6 34,4 20.4 27 701,51 18941.51
30 5 37.3 20.3 30 758.84 22759.19
39 4 44,2 24 39 1060.45 41357.72
N=2 9 25 47.3 59.4 10 2805.47 28054.72
36 9 74,9 47.3 12 3538.09  42457.01

81 4 112,6 56 18 6307.87 113541,70
N=3 27 8 74,2 64 9 4752 42767.96

5. MULTI-LOCK-UP TABIES MODULES

In VISI environment, the designer has con-
trol on the chip function, geometry, and topology,
so, some modules are proposed in which several
independent look-up tables are stored in the same
chip with appropriate interconnections. This
approach has the advantage of saving in the cost
of interconnections among the different look-up
tables. The topology of these modules are select—
ed according to the requirements of most DSP
algorithms, these modules are: the joint module
(J), fork module ( F), and joint-fork module (JF)
as discussed below:

5.1, Joint Module

Fig. 4 shows a J-module having three look-up
tables, the area and time-delay of this module is
calculated (depending on the selected modules) as
follows:

1. Calculate Hy, Wy, Hy and W, of Table 1 and
Table 2 by algorithm 1 and selecting the
minimum AT,

2. The channel dimensions are calculated based
on the worst case and the techniques in []O]
as follows:

channel width W = 1+2 [1log (m-1)] (&)

channel height Hch =3 ]-'1c>g (m - 1)_] (€h)]

Assuming that the time-delay is linear with the
wire length [10, 11], then:
channel time-delay Ty, = K(l +5 [ 1log (m- 1] ) + 1
(8)
where K

Cap. of Unit Ilength
Cg of the Tr

( consider it %—as [10] ]




TABLE 3
berrormance N Wb Hb W
A 1 15 10 24.94
T 3 27 8 74.25
ALT 112 13 22.2149

optimal solutions.

The Optinal Options for Modulus 7

H A T AT
20.49 511.3 15 7669.501
64.0 4752.0 9 42768
23.111 513.4104 667.4334

Table 3 shows the optimal options according to the selected measure of performance.

Figure 3 shows these

3. Calculate the Hj, Wy using algorithm 1 and
selecting Hy as close to (Hl + Hy + 1) to save
in area as it was shown in Fig. 3, the con-
straint here is that the corresponding time

i T3 should be within a certain percentage with

£ respect to the optimal time.

4, Calculate the overall dimensions of the module

Ho=Max { (B +H,+1), 8, } 9

1 2
W= w2+(1 + I_'log(m1 - 1)

\k + r log (n12 - 1)_] )+ W3 (.0)
(W, 2w))
? T=T +T,+T, (.1
(t, 2 1,)

H=Max{ (2H + 1), iy}

W=wW +2 [log(m-1)7] + W,

5.2. Fork Module

Fig. 5 shows an F-module, it has the same
topology as J-module, but the data flow is in th=
reverse direction. To calculate the module's
parameters, a procedure similar to the J-module is
followed:

4 L. Calculate Hy, W; for Table 1 by algorithm 1

g and selecting Hj larger than W; within a cer-

. tain limits for the corresponding area and
time-delay.

2. Calculate the channel parameters:
W, = I log (@ - D] +1
H, =3 riog(ml -7 -1

1
Ten = %

ch (3 [ 1og (m) - 0] ) + 1
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4, Calculate the overall dimensions of the
module as in J-module.
5.3. Joint-Fork Module

Fig, 6 shows a Joint-Fork module. This
module combines the features of both J and F
modules topologically and functionally. To calcu-
late the module's parameters, we follow the same
procedures developed before:

1. Tables 1, 2, and 3 parameters are calculated
as in J-module,

2. Tables 4 and 5 parameters are calculated as
in F-module.

3. Calculate the overall dimensions of the
module:
H=Max { ( H) +Hy + 1), uchl, Hchz, Hy,
(H, +H, + 1) } (12)

W= w1 + Wch1 + W3 + Wch2 + W4 (13)
W1 2 WZ and W4 2 WS
T = T1 + Tch + T3 + Tch + T2 (14)

1 2

6. APPLICATIONS

The modules discussed in the previous section
are able to be used as building blocks for many
different DSP operations. In order to keep this
paper brief, we present one typical use in the
following sub-section. Other application can be
found in [12].

6.1. NTT Multiplication

In [13] a scheme has been proposed to imple-
ment Number Theoretic Transforms (NTT's) using
arrays of look-up tables. The transforms are
computed in a ring which is isomorphic to a direct
sum of Galois fields where the multiplication is
computed modulo a prime number. That scheme is
based on using the isomorphism between a multipli-
cative group g having elements {gn} = {1,2, 3, ..,
m; - 1} with multiplication modulo m,, and the
additive group K having elements {Knﬁ = { 0, 1, 2,




. mi-Z} with addition modulo my ~ I, my being
restricted to primes.

For the large moduli a submodular approach
has been considered, where the modulus is decom-
posed into two relatively prime moduli, and the
addition is carried out within these two moduli
system. The final result is reconstructed using
a look-up table. Fig. 7 illustrates the proced-
ure with a modulo 19 multiplier.

The developed multiplication algorithm can
be implemented by the proposed J-module in one
chip as shown in Fig. 8. Tables I, II, III of
Fig. 7 are combined in Table (1) of 361 x 3 =
1083 bits, also, Tables IV, V, VI are combined
in Table (2) of 1083 bits. This composition
cannot be done in an economical way using comme:i:-
cially available LSI modules. Table (3) is 42x) =
210 bits. The dimensions of the module are 94.
and 76.4 (unit length) for H and W, respectivelv,
The time delay is 33 + 13 + 12 = 67 unit times.

7._CONCLUSIONS

The paper has presented a model for the VLSI
layout of RNS arithmetic modules using NMOS tech~—
nology. The modules are based on interconnectedl
ROM's and the nucleus of the paper has concerned
itself with a memory model for allowing optimiza-
tion of a look-up table layout. The memory model
proves flexible, in that it allows dimensions
other than power of 2, which proves useful for
optimal RNS look-up table storage.

The model can also be used, in conjunction
with multi-look-up table modules, to efficiently
layout useful RNS processing elements. Algorithms
have been presented to perform the optimization,
and an example illustrates the use of one of the
modules in a finite field multiplier using a large
prime modulus.
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