A Numeric Error Algebra

W.S. Brown
C.S. Wetherell

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Wetherell recently described an algebra of error values that could be
added to the ordinary arithmetic of a programming language. Along
with ordinary arithmetic values, error values were included in the set
of computational quantities. The error values could participate in all
arithmetic operations and return meaningful results. Unfortunately,
the definitions of the error values were not precise enough. Using
Brown’s model of computer arithmetic, we supply precise definitions
for the error values, define the fundamental arithmetic operations on
the new values, comment on their properties, and discuss briefly how
they might be used and implemented. We also compare our model to
the error handling features of the proposed IEEE floating point
standard.

1. Introduction

Wetherell recently described the use of error values in the data-
flow language VAL[1]. VAL has, in addition to the ordinary values
of every data type, some extraordinary data values used to report
various error conditions. For the arithmetic data types, these error
values participate in an algebra that sometimes allows the effect of an
error to be undone by later calculations. In VAL, however, the
algebra was something of a byproduct; the underlying language
demanded that errors not cause sudden halts and hence the error
values were invented as a way to avoid interrupts or exceptions.

But an error value algebra may have merit outside the confines of
VAL and VAL’s special needs. In particular, error values allow an
erroneous computation to be handled in one of three graceful ways,
depending on the external environment:

1. The error may be reabsorbed because it does not affect later
computations. This is the effect of an underflow swallowed in
the roundoff error of a later computation.

2. The error may be output from the computaticn but ignored.
For example, full matrices are often computed when only a few
elements are desired; if an error value shows up as one of the
unneeded elements, no one cares.

3. The error may be tested for explicitly. Because the error is
propagated, the test may come at a critical point of the
computation and there need not be tests for validity of every
unimportant partial result.

These virtues are worth much less, however, if their presence causes
the loss of conventional numerical accuracy or portability of numerical
software. In the remainder of this paper, we propose a way to build
an error algebra compatible with a strong model of numerical
computation.

CH1892-9/83/0000/0086$01.00 © 1983 IEEE

86

2. The Propagation of Errors

The most important feature of an error data value algebra is that
the error values must be full fledged members of the class of data
elements. Thus, error values must be allowed to participate as
operands in data operations without causing the operations to fail. It
may be, of course, that the participation of an error value means that
the operation has no reasonable result; in such a case, the operation
presumably must construct another (possibly different) error value as
result. This is the propagation of error values and it is exactly
equivalent to saying that the algebra of normal and error values is
closed under all operations.

But error value propagation must not be uncontrolled if we are to
reap all its benefits without damaging other properties of our
numerical types. In particular, a conservation principle must be
heeded:

No operation may generate a result that has more
information than is implied by its operands.

So, for example, if we include an overflow value as one of the error
values, adding two (positive) overflows should result in an overflow
again. However, we must take care when subtracting an ordinary
(positive) number from an (positive) overflow; if the ordinary number
is large enough (that is, close to the overflow threshold), the result
may no longer be overflow. The reason is that the ordinary number
might be able to bring the overflow value back below the threshold.
In this case, the result of the subtraction is neither overflow nor an
ordinary number; it is a positive value of unknown magnitude. (We
shall introduce a symbol for this value later.)

A second principle must also be heeded in the design of the
algebra:

Operations on the new data items must not confuse the
error analysis provided for the rest of the arithmetic values.

That is, expansion of an arithmetic system with error values must not
disrupt the properties and behavior of the system in normal cases. In
addition, the error values must behave in an intuitively natural
manner wherever possible and it would be desirable to be able to
extend theorems smoothly over the new values.

The proposed IEEE floating point standard[4] also provides
mechanisms to handle arithmetic errors; obviously the two proposals
compete. Although they are not compatible with each other, each can
be described in terms of Brown’s model of computer arithmetic[2].
We can roughly characterize the differences by saying that our
proposal encodes all errors as intervals of values while the IEEE
proposal includes denormalized numbers, some less defined error
values, and exceptions. In the rest of the paper, we will remark on
the differences and relative advantages of the two schemes where
appropriate,

3. Definition Of An Error Algebra

For the purposes of description, we will assume that the error
values are to be added to a floating point number system that is a

simple instantiation of Brown’s model. It is clear to us that simply
adding the algebra that Wetherell proposed to Brown’s model
arithmetic would not be wise; the definitions of Wetherell’s values are
not precise enough.! Our new approach, by contrast, permits extension
of computation into the domain of error values without fear of
anomalies. We will define the new values directly in terms of the
parameters of Brown’s arithmetic.

3.1 Review Of The Brown Vodel
The relevant portions of the model can be described by a few lines

from Brown’s paper[2].

The model includes a few basic parameters and a few derived
parameters for each floating-point system that is supported by
the host computer. If a computer supports two or more such
systems (e.g., single and double precision), then each has its
own parameters. The basic parameters, all integers, are

(1) the base, b;

(2) the precision, p,

(3) the minimum exponent, ey
(4) the maximum exponent, e 5.

These define a system of model numbers consisting of zero
and all numbers of the form

x = fb* 1)
where
[= (b7, b7),
fimle e b
S fp =0, ,b~1 (2)
and
emin € € K epax (€))

The parameters must be chosen so that these model
numbers are exactly representable in the machine...

We do not assume that the computer actually uses a
normalized sign-magnitude representation for floating-point
numbers. In fact, the details of the hardware representation
are of no concern to us. What we do require is simply that
the model numbers be possible values for program variables,
and that arithmetic operations be at least accurate enough to
satisfy the axioms [not presented here —Aurhors].

Since the model numbers with a given exponent e are
equally spaced on an absolute scale, the relative spacing
decreases as the magnitude of the fraction-part f increases.
For error analysis, the maximum relative spacing

e=bl? 4)
is of critical importance. Also of interest are the
smallest positive model number

g = b)]
and the largest model number

A= b=(1-bP). ©

1. It is also the case that VAL's algebra has some errors and omissions in the
propagation laws. These were known to Wetherell, but the warts were left as is so
that the paper accurately reflected the VAL language at the time of publicaticn.

87

The four parameters of the model are linked by several
inequalities of which two are of interest in this paper:

emin $2—2p and eny 2 2p — 1

These inequalities force a range of at least 4p—3 in the exponent.
Thus a value near the middle of the range is much less than one unit
in the last place (ulp) of a value near the large end of the range. In
addition, we use one more parameter for easy description of the error
values.

A" is one ulp more than A and equals 5.

Although e, and en,, can be chosen arbitrarily in Brown’s
model, we will require here that they meet the condition

oA =1

This choice makes the definition of the error values much easier and
simplifies the resulting algebra. If this condition is violated, the error
values representing overflow and underflow are no longer exact
reciprocals; complications then grow quickly in the error algebra.

Brown’s model permits additional machine numbers that are either
extra-precise or cut-ofrange. A machine that conforms to the
proposed IEEE floating-point standard (for this paper, an IEEE
machine) conforms a fortiori to Brown’s model. However, on such a
machine, ¢ is the smallest positive normalized number and the
denormalized numbers are out-of-range. IEEE extended precision
number may conveniently be viewed as extra-precise, or if the user
controls when the extended precision numbers are used (by a
language data type, say), the extended precision system can be
modeled separately from the standard system.

3.2 New Arithmetic Error Values

Each of our new numbers represents an interval of the real line
with the projective infinity added. The first two values are their own
negatives.

oo is the projective infinity. 1f we need to make the distinction,
the ends of the ordinary real number line will be marked as
—oo and +oo.

1) is the entire set of numbers (—eo, +o0) |J {eo}. It represents

the state of no knowledge whatsoever.

We also add three signed numbers.

5 is the positive open interval from zero to ¢, i.e., (0, 0); this
may be thought of as the result of positive underflow.’

p is the open interval (\", +o0); this is the exact reciprocal of 8
and may be thought of (to within rounding) as positive
overflow.

w is the open interval (0, +0) containing all the positive

numbers; this is the positive unknown value that is created
when all but sign information is lost.

These error values all have corresponding negative values —é, —p, and
—w. If we let R stand for the representable real numbers in the
interval [, A], then the representable real line in our algebra is

o,—p, =R, =5,0,8, R, p,

Notice that projective infinity = stands at both ends.

The proposed IEEE floating-point standard provides an infinite
value corresponding to our oo when the projective mode is selected. If
the affine mode is selected instead, the IEEE standard has —ee and
+co at the ends of the number line. It also provides a large number
of NaN’s (NaN = Not a Number) which correspond roughly to our
Q1. The IEEE standard does not provide intervals like 8, p, and w, but
it does provide denormalized numbers that are equally spaced
throughout our interval é.

Unary Negation
X -X
0 0
é -8
R -R
p —p
w =W
oo o0
0 Q0

TABLE 1. Definition Of Unary Negation

3.3 Operations On The New Error Values

The arithmetic algebra for the expanded system can be stated in a
few tables. The structure of the algebra relies on the interpretation of
the error values as intervals; from this observation, most operator
results can be derived by inspection from the represented intervals. In
all the tables, R stands for a value from the representable positive
real numbers R. The first rule, covering unary negation, is shown in
Table 1. It is constructed directly from the definitions of the error
values themselves.

Absolute Value
x [x]
—w
'y P

-R R
-6 8

0 0
& [
R R
p P
w w
(== [=+]
[Q0

TABLE 2. Definition Of The Unary 4bs Operator

Similarly, the definition for the absclute value operator can be
found in Table 2. One might expect that || would be w because all
the negative numbers that are members of O have their signs changed
to positive by the absolute value operation. However, w does not
include zero or +o and O does; this keeps || from being contained
in w. If w were defined as [0, +oo) (U {eo}, then || would be w, but
some more important multiplication results would be less natural.

The revised definition of addition is fairly simple. First, Table 3
defines addition for all combinations of positive and signless

quantities. Table 4 likewise defines subtraction for ali differences of

positive quantities. Using these two tables, the definition of negdtion
from Table 1, the ordinary laws of signs, and particularly the equation

X =y =x+ (=)
all sums and differences can be computed.
Several points need to be made about addition.
* Addition is still commutative.
e Zero is still the additive identity.

* Projective infinity o is a kind of additive eraser; the unknown
value © is a slightly less powerful eraser.

2. One of the problems with Wetherell’s earlier paper was that it jdentified the error
values specifically with underflow, overflow, and the like. These terms are too vague
for analytical use, although they may be of some use in explanation. Care should be
taken when using these intuitive but vague terms.

Addition
+ 0 [} R p w o
0 0
4) w
R | R (D (8
el »p p pp
w | w w w p w
(o] o0 oo <0 o0 o0 oo
Qi Q O O Q oo 0

TABLE 3. Definition Of Addition
See text for equations (7) and (8).

¢ The entries for the sum or difference of a representable number R
and § are not immediately obvious. However, remember that § is
a very small value, so small that it may be lost in the rounding
error when added to R. On the other hand, if R is very near g,
then 6 could change it by an unknown amount and it is impossible
to return an accurate approximation to the sum. This gives rise to
the rule

R ifR 2 a/e
w otherwise

R +5= { @)

In the proposed IEEE standard, the availability of
denormalized numbers throughout the underflow interval § allows
an addition rule that is much more attractive than (M. If R is
normalized and J is denormalized, then

R if R 2 g/

R’ otherwise (72)

R+ d- {
where R’ is within an ulp of the exact value of R=+d.
Furthermore, the sum or difference of two denormalized numbers
is always at least approximately correct on an IEEE machine,
whereas in our model, 6+8 loses all information except sign and
4—6 loses all information.

The sum or difference of two representable real numbers may
underflow, overflow, or be representable depending on the
magnitude of the result. The magnitude of the result is given by
the rule in the equation and the sign follows the ordinary rules:

& if the difference underflows
R = R'= {p if the sum overflows (8)
R" otherwise

On an IEEE machine, this rule is replaced by

[d if the difference underflows
R + R = oo if the sum overflows (8a)

R" otherwise

where d is a denormalized number within an ulp of the exact
value of R+ R’. Note that the identification of overflow with oo
has no mathematical foundation.

The value of §—6 is, unfortunately, Q because the magnitudes of
the quantities going into the computation are unknown. The
mathematical result could be anywhere in the open interval
(=v, 0); we have no value to represent this interval,

The difference p—R in Table 4 is analogous to the addition entry
for R+6;

©

p fR <a'
poR=1, otherwise

On an IEEE machine, the analogous rule is oo—R=oo. Hence,
if R+R’ overflows, we have (R+R’)—R=co, which illustrates the

vagueness of the 1IEEE . In our proposal, the value of this
expression would be w, which accurately reveals the machine’s
inability to do the desired computation, while retaining some
useful information.

o The value of p—6 is p because of the inequalities governing e mi,
and ¢, mentioned above.

Subtraction

- 0 1) R p w ©o Q
0 0

8 é Q0

R|R (O ®

PP p (9 Qq

w w) 0 (4] Q

o o0 oo o0 oo =] o
20 0 0 0 a = 0

TABLE 4. Definition Of Subtraction
See text for equations (7), (8), and (9).

The definition for multiplication is similar and can be found in
Table 5. Division can be read off the multiplication table by use of
the equation

x/y = xx(1/y)
where Table 6 gives the reciprocals of all the algebraic values. Some
comments about multiplication and division also need to be made.

® The definition of Rx§ depends on the exact value of R; the
turnover point is one.

6 fR K1
R X§m= (1))

w otherwise

On an IEEE machine, if R is
denormalized, the corresponding rule is
d ifR <2
NalN otherwise

normalized and d is

Rxd= { (10a)
where d’ is a denormalized number (or possibly normalized if
R>1) within an ulp of the exact value of R xd, while the NaN is
one that accompanies an invalid operation exception.

The product of two representable real numbers can result in 5, a
representable number, or p, depending on whether the product
underflows, is normal, or overflows. The rule is

6 if the product underflows

R X R"= {p if the product overflows an
R” otherwise
On an IEEE machine, the analogous rule is
0 if the product underflows below d /2
d if the product underflows a larger value
RXR = (11a)

o if the product overflows
R" otherwise

where d;, is the smallest positive denormalized number and d is
a denormalized approximation to the exact value of RxR’ (with
at least one significant bit). Note that (gXg)/g =0 and
(AXX)/\ = co. In our proposal, both of these expressions would
have the value w, which accurately reveals the machine’s inability
to perform the requested computation.

¢ Similarly, pxR depends on the value of R going the other
dirzction.

p ifR 21
pXR= w otherwise

On an IEEE machine, the analogous rule is coXR=00. Hence
if R'/R overflows, we have (R'/R)XR = o, which again
illustrates the vagueness of the IEEE infinity. In our proposal, the
value of this expression would be w, which accurately reveals the
machine’s inability to perform the desired computation.

The representable value ¢ has a surprising reciprocal—p.
Unfortunately, its natural reciprocal, *, is not representable
without special effort. This does not seem a major gap. However,
a representation for A* could be added specially to the number
system to close the gap; the implementation cost is likely to be
higher than any gain.

12)

Multiplication
x 1] 8 R p w o)
0 0
& 0)
R 0o o an
p 0 w (12) p
w 0 w w w w
oo 0 oo oo oo oo oo
[4) 0 [Q Q0 0 Q a

TABLE S. Definition Of Multiplication
See text for equations (10}, (11), and (12).

4. Other Error Values

Once error values have been added to the real numbers, they must
also be added to other data types as well. For example, what is the
result of converting the real value p to an integer value? Surely it
should not be an overflow signal; why rid the algebra of exceptional
conditions in one area only to retain them in another? The integers
will require their own p, w, %, and Q values to match those of the
reals (but not 8, of course).

Similarly, Boolean operations need to be extended. What, for
example, is the result of the comparison

w <7

The answer can be neither true nor false because w represents an
interval of values that includes 7.3 Rather than simply failing on such
an unordered relation, we choose to add a Boolean value 0 that
stands for the set {true, false}, in other words, for the state of no
knowledge about the result of a comparison (or other Boolean
operation). Once this value is added, the Boolean operations are easy
to extend.

Other basic data types may also need new values, The values may
be as simple as an undefined value (as Boolean Q1) or may be much
more complicated, depending on the use of the data type. The Ada ®*
language’s fixed point data typel3], for example, might have use for
nearly as complete a set of error values as the real error values
proposed here. Compound data types may also be in need of
extension. For example, what is the effect of indexing an array with
the integer value Q? Should the program simply halt with an
exceptional condition—perhaps with the message "Array index out of
bounds"? In VAL, such an indexing operation generated the new
error value Out-of-bounds-reference which in turn propagated to)
(or its equivalent) in all further operations. Depending on the use of
the error algebra, it may be desirable to include these extra compound

3. The relation —w < 7 is true,
comprising ~w is less than 7.

4. Ada is a Registered Trademark of the
Office.

however, because every clement of the interval

US. Government—Ada Joint Program

89

Reciprocal
x 1/x
0 o
8 p
R R
P [
w W
oo 0
[¢] 0

TABLE 6. Definition Of The Reciprocal Operation

data values. VAL includes a rationale and proposal for such values

Finally, it may be necessary to have a completely undefined error
value for each data type representing the result of a meaningless
computation that goes outside the set. Real square root, applied to a
negative argument, produces such a value. If all operations result in a
reasonable value, then the need for automatically raised exceptions is
eliminated. A considerable software and hardware simplification may
result.

4.1 Testing Predicates

In VAL, some error values always propagate to the most
undefined error value in every operation; in particular, when they
appear in relationals, they always generate the Boolean 0. Thus
VAL includes explicit predicates to test for each of the possible error
values. Such a predicate might be written

is_0(x)

This predicate would return true if its argument had the value 0 and
false otherwise. Under VAL's propagation rules, such a predicate can
not be built from simple relations. Even if a language did not have
such a stringent propagation regimen, however, error value predicates
might be worth inclusion.

4.2 More And More Error Values

One of the rules that may seem strange is that 5+5 sums to w in
spite of the fact that the sum is known to be very small Why not add
another error value, say A, that covers the interval (0, ¢/e)? Then the
smallness of the problem sum is captured. However, this leads to an
indefinite regress because we need to have a rule for the sum 3+A, yet
another small (but not quite so small) number. And if we add a
special symbol for this sum, what about the next? Instead, we provide
one graceful chance to catch an error and then subside into w.

5. Examples

A typical iterative scheme, such as Newton’s method, forms a new
value by adding some computed term to an old value. The process
terminates when the increment becomes smaller than some limit.
Using the error values, if the added term happens to underflow, it will
automatically terminate the iteration because & is less than any
representable positive quantity. On the other hand, if the term
overflows or becomes anomalous in any other way, the program will
report the erroneous condition as an error value and the condition will
not go unnoticed. Thus, naive programs are likely either to work
correctly or to report the presence of a problem even if they do not
correct it.

Quite often, of course, the additive term takes the form of a
quotient. The quotient can sometimes be arranged so that the
numerator is never greater than one and the denominator is never less
than one. Then either of two numeric errors might occur: first, the
numerator may underflow; second, the denominator may overflow. In
either case, convergence has been achieved, but a conventional
machine would probably require special trap coding to recognize the
convergence. In the error algebra, the possible converging cases are

R/R’, R<<R'

3/R', R'>1
9= 1R/p ,R<1
3/p

In each case, the quotient g can be tested by the relation
lgl < e

because g will be either a representable real number or &. If the
program can be arranged so that one of these four conditions is
guaranteed for the quotient, then no checks for computation errors
need be made explicitly; all errors will be swallowed by the division
operation.

As a second example, consider the summation of a series. If all
the elements of the series are representable numbers, there still may
be an underflow or overflow during the operation. However, if some
partial sum underflows, the next term is quite likely to be big enough
to absorb the & so generated and the summation can go to completion
with a reasonable result. If the next term is not big enough, then the
result will be w or 2 and will at least signal that a problem occurred.
Similarly, if an overflow occurs, p will be generated and signal a
problem. Notice that this naive approach is reasonable even if there
are error values (particularly 5) in the series.

On the other hand, a result of w need not mean that the series can
not be summed. It may need to be reordered or summed more
carefully. If the series happens to have all positive terms, a & can only
arise because there are § values in the series itself. Instead of adding
them directly, count them, and when the representable values have
been summed, see if the net effect of all the § values could make the
entire sum uncertain. If so, then produce w as a result; otherwise,
ignore the contribution of the § values. This algorithm, of course, is
slightly more complicated than a naive summation; it is, however, just
the first step towards scaled summation, necessary in general to
preserve precision.

6. Implementation

The implementation of error vatues in hardware is not too difficult.
One or more special exponent values will probably be reserved for the
error values. The configuration of the significand, since it carries no
numeric information, can be used to code the particular value
selected. Most operations involving error values can be trapped very
early in the arithmetic processor and pushed down special (and
simple) paths; for example, if an 0 appears in a multiplication, the
result is always an ().

In a few cases, the result of a computation is dependent on
conditional tests applied either to the input values or to the output
values However, whenever the result depends on input conditions (for
example, R x5), the test is always a simple one on the exponent value
of the ordinary value (here, is the exponent less than one?).
Similarly, conditional output only arises in situations where ordinary
units would signal overflow, underflow, or another error condition;
replacing the signal with a value is straightforward.

Because the significand of an error value is mostly unused, it can
be utilized as storage for an error trace. If every operation that
propagates an error value carries the old trace information forward, it
may be fairly simple to pin down the spot where a bad computation
first appeared. Since a major part of debugging is finding the genesis
of the erroneous output, error traces are likely to be of significant
help. The details of an error trace must depend on the particular
hardware implementation.

7. Conclusions

The inclusion of error values in an arithmetic algebra is a simple
extension. It does not unduly complicate numerical analysis,
hardware implementation, or software. It does, however, pay
considerable benefits in error handling; the programmer may choose
to handle errors in a varicty of ways and at a variety of times. Some
algorithms become simpler because potential errors are gracefully
swallowed or reported only when appropriate. Error values also
makes possible programming languages with fewer side effects,
theoretically and practically a desirable end. Naturally, good
language design is necessary to incorporate error values cleanly; in
particular, it may be difficult to add them on top of current languages
in a tidy way. A complete review of the advantages of an error
algebra can be found in Wetherell’s paper(1].

We do note that the error algebra allows graceful handling of the
first error in a computation; normally such an error will generate
cither & or p. The second error, however, will usually result in w or
Q, losing most of the information available in the computation. Some
other arithmetic models attempt to retain more information when a
succession of errors occurs{4); however, we feel they do this at a some
loss in the precision with which the values can be characterized and in
the sharpness with which portability arguments may be made. In
particular, our case by case comparison with the proposed IEEE
standard suggests that our error values are likely to be more
informative except in the one case of addition of very small values.

Bibliography

[11 CS. Wetherell. Error Data Values in the Data-Flow
Language VAL. TOPLAS, 4, 2, pp. 226-238. April, 1982.

(2] W.S. Brown. A Simple but Realistic Model of Floating-Point
Computation. TOMS, 7, 4, pp. 445-480. December, 1981.

(3] J. Ichbiah et al. Reference Manual for the Ada Programming
Language, ANSI/MIL-STD 1815 A. United States
Department of Defense. January, 1983.

[4] IEEE Task P754. A Proposed Standard For Binary Floating
Point Arithmetic, Draft 8.0 JEEE Computer. 1981.

Quotations from reference 2 are reprinted from “A Simple
but Realistic Model of Floating-Point Computation,” which
appeared in the December issue of TOMS. Copyright ©
1981, Association for Computing Machinery, Inc. reprinted
by permision,

91

]

iy

i
n

