FAST ITERATIVE MULTIPLYING ARRAY

I,. Ciminiera and A. Serra

CENS = Dip. di Automatica e Informatica - Politecnico di Torino

Corso Duca degli Abruzzi, 24

L

Abstract

A high speed multiplying array is presented: It
is based on a new cell, which is able to generate
and add a rectangular block of elementary pro-
ducts. A careful design of the cell allows us to
obtain a small delay for the signals which should
be propagated through the whole array. This fea-
ture leads to a remarkable improvement ingkthe
array speed.

T. Ilgroduction

The design of high speed multiplying cir-
cuits is one of the key points for the imple-
mentation of arithmetic units with high perform-
ances. A class of solutions presented in the
literature uses an array of AND gates generating
all the 1x1 bit elementary products, followed by
a circuit with irregular connections, which per-
forms the addition cf the elementary products.
The implementation of such additive structures,
by using full-adders is discussed in ’7; methods
for minimizing either the delay or the complexity
of the non-iterative mult%pﬁiers have also been
presented in the literature ’

Another approach uses an array composed of
small basic cells almost all of the same type,
interconnected following an iterative pattern.
This solution is more suitable for VLSI implement-
ation of large multipliers. On the other hand,
the time required to compute the final result is
0(log n) for the non-iterative multipliers and
0(n} for the iterative ones, where n is the
number of bits of the factors.

Technological evolution has influenced the
solutions proposed. When only MSI technology was
available, the design of high speed multipliers
was approached by introducing even larger blocks,
called compressors, which, in the context of non-
iterative structures, were able to perform the
addition of large subsets of elementary products,
thus decreasing the number of steps required tg
obtain the final result. Stenzel et al. proposed
an implementation based on m x m bit multipliers
and counters larger than the (3,2) one, both

CH1892-9/83/0000/0060$01.00 © 1983 IEEE

- 10129 Torino - Italy

implemented by means of ROM. Gaijski6 introduces
the use of parallel compressors, whose main
features are: avoidance of carry propagation
until the final sum, high compression capability
ard a small number of I/0 lines; different imple=
mentations using a tree of full-adders, ROM, PLA,
or smaller parallel compressors are shown in that
paper. Another approach to the design of compres-
sors is presented by Lim , where the internal
structure of the block is composed of full-adders
connected according to an ad hoc interconnection
pattern.

In all the cases mentioned above, the irre-
gular interconnections only influence the layout
of a printed circuit board, hence it is not a
crucial problem.

Wwith the advent of VLSI technology, the
nzed for a regular structure has become more
evident. Indeed, a much faster, cheaper and opti-
mized design can be achieved with iterative struc-
tures. This paper presents a new multiplying
array, which may be considered an intermediate
solution between the non-iterative multipliers
and the iterative ones composed of small cells.

Basically, the array is still iterative,
however the cells are more complex than the full-
adder; the increased cell dimensions allow us to
decrease the computation time by carefully design-
ing its internal structure. For this purpose, it
should be realized that the signals in the array
may be subdivided into two classes, the signals
influencing the computations of the other cells
chould go through a subset of blocks in the cell
with a small total delay, while the other signals
can follow slower paths through the cell. Further-
more, the final adder required by the carry-save
structure is implemented by using carry look-
ahead blocks, to obtain an additional speed
enhancement.

In section 2, the internal block structure
and the whole array is introduced. In section 3,
the implementation of each cell is discussed. In
section 4, the speed of the proposed array is
evaluated and compared with that achieved by a
classical iterative structure.

e

& 2. The array structure of the other cells in the array. The addition is
. performed in two steps, as shown in Fig. 1.
Given two unsigned numbers expressed as First, the elementary products are generated and
follows: added; then the results of the first sums are
n-1 i m- i added to the other inputs of the cell.
A = Z a, 2l B = Z b 2J (2.1) It is worth noting that the addition of the
o 3=e] elementary products leads to a result expressed
their product XY is obtained by «¢omputing the by a pair of binary numbers, the sum of which
following double addition: gives the real value of the addition of the
elementary products generated inside the cell.
ol i W:1 3 The internal block structure of the cell is
AB = (2= a, 2) (L b 27y = i i
i=0 i =0 j shown in Fig. 2. The COM block performs the
addition of the elementary products and produces
- rE HE1 a b 2i+j (2.2) a result expressed by two binary numbers; since
1=0 j=0 i j we constrain the sum of these numbers to be
expressed by at most 2k_ bits, at least one of
Thus, in order to compute the product, by the two output numbers produced by COM can be
means of an iterative structure, the basic cell 2k_-1 bit long, while the other may require 2k
of the array should be able to generate a subset bits, as shown in the middle section of the dot
of the elementary products a, b, and to add them diagram in Fig. 1.
with the partial results :oéputed by other sub- The two sets of k. least significant bits
sets of the array. The arithmetic function perfor- produced by COM are added by means of a k_ bit
med by each cell of the array presented is shown carry look-ahead adder (CLA1); while the two sets
in the dot diagram of Fig. 1. The block of dots of most significant bits are added by another k1
enclosed by the solid line represents the set of bit carry look-ahead circuit (CLA2), the result
! the elementary products generated and added by of this addition provides the k1 most significant
i the cell. The dots outside the solid line repre- bits produced by the cell.
; sent the inputs resulting from the computations S3ince we need to express the sum of k2
. factor lines
k.,bils —_— Vv
' — P-1
. i ? ' U U k1bits
{ % [k
: : Dl : | [bits c | K bits
i ool kbits| | K —]
ka U] A | (k-1 bits COM
: P : f bits Ck:
- N : 1
> D S UKy
o ii | [Pt k, bits k,bits
{ oo
y X
s q ~=— CLA 2 xq-1
s ey bits
1 . k Ug-y
L
s kBt | . Yo = CLA 3 Yo
e YL sy k,bits
a e P zq ~——— Zq_1
e . .
e oo i * 00 «io.... .
; .
n : Vb
’z Fig. 1. Arithmetic function performed by each Fig. 2. 1Internal structure of a single cell.

macrocell.macrocell.

-

—
—0
jagt— O
—r—d

—o0
l—o0
let— 0
fet— 0

N
l—o0

N
=

.L
=
N

0000 o000 aaoo 00 aaoo oo
N il ML
S—)
—o0
Lo
—0
=
= :"8
|1
mnpZdl !
_{o R,
:g ab ,—vf\p—:1 xp—1*1
L0 -
—o° H H Zp-1
= 2 S
o §— —2
39 — —
/ t4—] [Ut
000] [
i

LLoLL

LoL

A

Fig. 3. 4x10 bit multiplying array.

numbers of k_ bits by using at mcst 2k, bits, the
following relationship must hold between the
values of k1 and k2:

2k,
2 -1
k24s k1 (2.3)
2 -1

The sum of the kﬂ least significant bits of
the COM blocks is then added to the k_ bits from

the U input, by means of CLA3; the result is

in tu%; added to the k1 bits of the input V 4

by using CLA4. P
The inputs X y and z have the

-1 -1 -1
least significant positioﬁ among tﬁ% bits proc-

essed by the cell, hence they are added by using
the carry-in input of CLA1, CLA3 and CLA4. Analo-

gously, the outputs x , y and z_have a weight
k P P o

2 times greater than x y and =z as

. X p-1’ " p-1 p-1’
required by the dot diagram in Fig. 1.
Despite the complexity of the cell and the

large number of elementary products processed,

62

the delay introduced by one of such cells 1is
relatively small. Indeed, the output Up is comput-

ed after a delay from the beginning of the multi-
plication, which does not depend on the carry
propagation through the array. With the increase
in the number of bits of the operands, the in-
crease of the operation time of the whole array
depends only on the propagation delay of the
signals x, y, z and V through a single cell. From
Fig. 2, it can be seen that the cell has been
designed so that this delay is minimized.

The array for the 4 x 10 bit multiplication
is shown in Fig. 3, the cells used have k = 2
and k = 5. it is easy to recognize that the
array is the superposition of two well-known in-
terconnection patterns used for multiplying
arrays. Indeed, the U outputs and inputs are
connected in a ripple-carry like structure; since
U does not depend on U , the excessive propag-
agion delay of this inéggconnection pattern does
not influence the speed of the array. On the
other hand, the most critical signals for the
array speed are connected in carry-save-like

® 0O Q) O D

structure, which is the fastest method to propaga-
te the carries in a multiplying structure; how~
ever, in this case, the result produced must be
reduced to a single number,
adder.

by using a final

The adder required by the array is composed
of cells performing the arithmetic function des-
cribed by the dot diagram cf Fig. 4.

It is easy to verify that the result of
each additive cell requires only k1 + 1 bits, pro-
vided that k1; 2.

The additive cells may be connected in a
ripple-carry structure, or it is possible to ob-
tain a multilevel carry look-ahead structure, by
using conventional look-ahead carry generators.

3. Macrocell implementation

The complexity of the cell mainly depends
on the values of k_ and k. and on tlre implement-
ation of the COM block. The latter may be imple-
mented by means of ROM circuits. In this case,
the address signals are the factor bits which
generate the elementary products added by the
cell. If a result expressed by a single number is
required, 2k_ + k, - 1 bits are needed to address
the 2k_ bit ROM cell storing the result. Hence,
the COM block and CLA1 and CLA2 could be implemen-

o2k -1+ k,
ted by means of a 2 x 2k_ bit ROM.

The addition of two k_ bit carry look-ahead
adders and the possibility to express the result
of the COM block by using two numbers lead to a
remarkable decrease in the ROM capacity. If the
rectangle of elementary products is broken down
into two smaller rectangles, with dimension k1 x

L}

®

L]

[]

PY @ e .. e @ »
/.

™Y @ creraenaa. teeres. @ .

) e ® . cices i @ 'Y
N— ,

—
k, bits

Arithmetic function performed by each

additive cell.

Fig. 4.

k' and k1 x k"

as shown in Fig. 1, the COM

block may be implemented by using two ROMs con-

nected as in Fig. 5.

In this case the total number of bits re-

quired by the two ROMs is given by:

2k! + ko~ 1
2 1
2 x 2k + 2

2k" + k-1
2 1
X (2}(1 - 1)

(3.1)

where k! = [k2/5] and k7 = Lk2/j.

The advantage of this implementation may
shown by means of an example. Let k1 = 2 and k

be

5; the implementation using a single ROM requires

10 + 1

2 x 4 = 8k bits, while the imglementation
+ + 2

using 2 ROMs requires 2 x 4 + 2 x 3

=578 bits plus two 2 bit carry look-ahead cir-
cuits. In this case, by using two more 2 bit fast
adders, the whole capacity of the ROM is reduced
by one order of magnitude. Larger reduction fac-

tors are obtained for larger values of k .

The other basic component of a céll is the

k., bit carry look-ahead adder. Since integration

technologies,
traints on the fan-in, this parameter should

such as MOS, impose severe cons-

be

taken into account in order to obtain realistic
estimations of the circuit complexity. In our

case, the implementation shown in

Qa+kgekieki2 2qek!
b

ROM | bpyy

k, bits

aq+k2+k;-2 a(’J

is adopted.

P

—
(k1) bits

ROM

p+k;

b
Pkt

K,bits K, bits

Fig. 5. 1Internal structure of COM block.

63

The maximum fan-in required is only k + 1; from
the equation (Zz.3) it can be seen that k_ can be
increased faster than k_, leading to a cell ad-
ding a large number of elementary products. For
example, with a fan-in 5 we car have k., = 4,
which leads to a maximum value of k_ = 17. The
delay of the implementation adopted for the fast
adders is equal to 6 times the single gate delay
to produce the sum, and it is equal to 3 times
the single gate delay tc produce the most signi-
ficant carry. Zach k_ bit carry look-ahead requi-
res 10k + 0.5 k (kW + 1) gates. Hence the

implementation of a cell with k1 = 2 and k2 =5
requires 92 gates and 578 bits of ROM.

The additive cells placed at the end of the
array cannot be implemented by using only two
levels of gates, if we need to have a small
fan-in. This problem can be solved by using the
implementation shown in Fig. 6. The signals x, ¥
and z produced by the cells in the last row are
added, by means of a full-adder circuit. It is
easy to verify that in this way the arithmetic
function required to add the full-adder outputs,
the V signals and the carry-in is a subset of the
k bit adder. This adder is implemented in Fig. 6
by using once again the same k bit carry look-
ahead circuit as in the other cells.

4. Speed evaluation

The carry-save macrocellular array (CSMA)
presented 1is composed of two basic blocks: a
k -bit carry-look-ahea¢ adder, and the COM com—
pressor block shown in Fig. 2.

For our speed analysis, it will be assumed

that tCOM is the delay introduced by the COM

block, t and t are the time needed by the CLA
to prodﬁ%e the scarry-out and the sum signals,
Let 0 be the starting time of the

after a delay t =t + t the

COM
U output of every cell in the arxay assumes thelr

respectively.
multiplication,

steady+~state values.

The speed analysis begins by examining the
first row of cells; since there is no carry
propagation through the cells within each row,
all the outputs of the cells on the same row
assume their steady-state values at the same time.

For the first row the following expression
may be derived, taking account of the cell struc-

ture:
t =t + t (4.1)
X COM c
1
t = +t +t =t +t =t +t
y1 COM 5] c x1 S u c
(4.2)

G| 2%

N,

2’ r—~ch

Fig. 6. Internal structure of a single additive
cell.
t =t + 2t +t =t + t (4.3)
z COM S c y s
1 1
t = t + 3t (4.4)
v COM s
1
where ¢t , t , t and t are the instants at
X v

1 1 1
which the x1, y z1 and V1 outputs become valid.

1)
For any row P (P 1) of the array, the time
required to obtain valid outputs may be expressed

as follows:

t =t + t (4.5)
X X c
p p-1
t =t +max{(t +t), t }=t+
y c X E y c
P p-1 p-1
+ t =t + t
y X s (4.6)
p-1 P
t =t + max {t , t , f(t +t) b=
z z s
P p-1 p-1 p-1
=t + t (4.7)
v c
p-1
t =t + t (4.8)
v v s
P p—1

The max functions appearing in the expres-

sions of t and t are evaluated assuming t«¢t
z c s

and conside%&ng thepskewing among the propagation
signals introduced by the first row.

The previous equations show that the V out-
puts of a cell are those requiring the maximum
of the
carry-save array, excluding the finalcgum, cor-

delay; hence the computation time T

responds to tv , where R is the number of rows in

R
the structure. T can be computed recursively by

. cs
using the equations (4.4) (4.8), in this way the

200t Lo =6t csa

150t

/ ks2,k,s5
100t -/? Ke3,k;=9

8 1% 24 32 40 48 n

Fig. 7.
used for the factors.

Operation delay vs. the number of bits

following closed form expression is obtained:

T = (R + 2)t + t (4.9)
cs s COM

Since the number of rows in the array is
given by the following formula:

i

it follows that
T —+ 2t +t oo t
cs k, s coM™ k, i

With the CLA implementation considered in section
3, we obtain t = 6t and t = 3t, where t is the
single gate def%y. ¢

In order to obtain the total operation time

(1.10)

(for large n)

(4.11)

T, it is necessary to evaluate the time needed
to compute the final sum, T . For this purpose,

it should be noted that t =t + t -t ;
v z s c

. R . R R
since t o t gt , the delay required to obtain
X z

R R
valid outputs values for =the full-adders of the

additive cell is t + t_, where t is the
z FA FA

R
delay of a full adder. This circuit may be easily
implemented so that t = 3t; moreover, t =~ t

. F s [of
is also equal to 3t, hence t =t +t -t =
v z s c

R
= t + t__. Thus, both the VR outputs and the

z FA

outpé%s of the full-adder used in the additive
cells assume their valid cstate at the same time
T . It follows that T is the time required to
pgiform the addition of two numbers expressed by
Ck bits, by means of k bit carry look-ahead
blocks; C represents the number of cells in each
row and is given by the following expression for
a n x n multiplier:

c = r(n tk,m)/ k"-l (4.12)

Thus the value of TA may be computed as

65

follows:
T =C(t =-t) +t -+t (4.13)
A o] S

Since T = T + T_, the total operation
time may be obtaiggd by adding the results of
equations (4.13) and (4.11).

It is interesting to compare the speed of
the array proposed with that of the classical
carry-save array with a final adder based on k
bit carry look-ahead blocks. In this case the
time required by the final addition, for a n x n
bit multiplier, is as follows:

T'={n—‘\-‘l)t ~t+t -t
A k1 c s

While the delay of the carry-save array

(4.14)

itself is given by

T' = nt = 3nt (4.15)

cs FA

Fig. 7 shows the plot of the operation time
for d:fferent values of n. It may be noted that
the macrocellular structure is faster than the
classical one and the speed improvement increases

for large values of n.

5. Conclusions

A high speed multiplication array has been
described in this paper. It is based on a new
cell, which is able to generate and add a rectan-
gular block of elementary products.

Despite of the complexity of the arithmetic
function performed, a careful design of the in-
ternal structure of the cell allows us to obtain
small delays for the signals which should propaga-
te through the whole array. The same distinction
between propagating and non-propagating signals
is used to interconnect the cells. Indeed, propa-
gating signals are connected following a carry-
save-like pattern, to obtain a small delay, while
the ncn-propagating outputs follow a ripple car-
ry-like pattern, in order to simplify the final
addition required by the carry-save structures.

The final result is that the time required
for the final addition is roughly equal both for
the «classical and the macrocellular arrays,
while, in the latter case, a speed up factor of 2
or more may be achieved for the carry-save array
itself.

References
1. L. Dadda, "Some schemes for parallel multi-
pliers”, Alta Frequenza, vol. 19, PpP.

349-356, May 1965.

2. C.s. Wallace, "A suggestion for a fast multi-
pliexr", IEEE Trans. Electronic Computers,
vol. EC~13, n. 2, pp. 14-17, Feb. 1964.

A.R. Meo, "Arithmetic Networks and Their Mini-
mization Using a New DLine of Elementary
Units", IEEE Trans. Computers, vol. c-24,
n. 3, pp. 281-290, March 1975.

R. De Mori, M. Elia and A. Serra, "Minimiz-
ation method for macrocellular arithmetic
networks", Proc. 3rd Symp. Computer Arith-
metic, pp. 232-240, November 1975.

W.J. Stenzel, W.J. Kubitz and G.H. Garcia, "A
compact high spead parallel multiplication
scheme”, IEEE Trans. Comput., vol. C-26, n.
10, pp. 948-957, October 1977,

D.D. Gaijski, "Parallel compressors”, IEEE
Trans. Computers, vol. c-29, n. 5, pp.
393-398, May 1980.

R.S. Lim, "High Speed Multiplication and
Multiple Summand pddition", Proc. 4th Sym-
posium on Computer Arithmetic, pp. 149-153,
October 1978.

D.E. Atkins, S.C. Ong, "A Comparison of Two
Approaches to Multi- Operand Binary Addi-
tion", Proc. 4th Symposium cn Computer Arith-
metic, pp. 125-139, October 1978.

66

