SOME SCHEMES FOR FAST SERIAL INPUT MULTIPLIERS

Luigi Dadda

Dipartimento di

Elettronica

Politecnico di Milano

Italy

Index terms: fast digival multipliers, parallel
counters, fast computer arithmetic.

ABSTRACT

The design of fast multipliers for binary numbers
represented in serial form is considered, accord-
ing to a general scheme composed by an array gene=
rator and a summator. The bits of the product are
generated with the least delay with respect to

the operators bits. The array gererator computes the
elements of the multiplier array. The swmator
computes the sum of the array elements in order to
generate the product bits. The array elements can
be generated according to two diyferent general
schemes: the first computes all the new array elew
ments at each step (arranged on o diagonal and on
a row of the multiplier arvay), the second computes
the multiplier array elements coluwm by columm,
Several schemes of array gemerators are given and
compared, and for each c¢f them a suitable summator
using parallel counters is illustrated.

1. Introduction

In a growing number of applicaticns it becomes im~
portant to implement fast digital multipliers: di-
gital signal processors, correlators, image proces=-
sors, etc. represent examples of such applications,
Fast digital multipliers assume different forms,
depending also on how the operands and the product
are represented.Operands represented as binary num-
bers whose bits are simultaneously available, i,e,
as numbers in parallel form, require multipliers of
the type proposed by Wallace /1/ and Dadda /2/ which
produce the product also in parallel form. This
class of multipliers has been extensively studied
/5,9,10/. In some cases, one of the operands is
available as a binary parallel number, while the
other is in serial form, i.e. its bits are available
in succession, usually with the lsast significant
bit as first. Multipliers suitable for such operands
have been proposed by Dadda and Ferrari /4/ and
Swartzlander /6/, In other cases, both operands are
represented as binary serial nmumbers, both bits of
the same weight appearing simultaneously (the least
significant bit first). Fast multipliers for such
cases have been proposed by Dadda and Ferrari /4/
and more recently by Chen and Willoner /12/. Trivedi
and Ercegovac /8/ have developed algorithms for di~
vision and multiplication of number in serial form
with the most significant bit as first. The purpose
of this paper is to present a class of serial multi-
pliers, which includes schemes already proposed and

52
CH1892-9/83/0000/0052501.00 © 1983 IEEE

offers new schemes. Serial multipliers are well
suited for the VLST implementation of complex algo-
rithms (for instance, for signal processing) involv-
ing a large number of interconnected processor per—
forming multiply/add operation. In comparison with a
fully parallel multiplier, a serial multiplier is
slower but it requires less silicon area due to its
simplest structure and to the use of serial rather
then parallel interconnections,

2. General consideration on multipliers with serial

binary inputs

Let us assume that the two operands are represented
as serial binary natural, whole numbers, whose bits
of the same weight appear simultaneously, the least
significant bits being the first, The operation of
the fastest possible multiplier can be represented
as in fig. 1 example (for operands ofn=4 bits).
Operands bits of the same weights appear at the mul-
tipliers inputs in time slots tor tys ty, tz. The

product bit p. (the least significant bit of P) can
be computed “immediately after 29 and bO have been

applied: p, can be computed as soon as a,, b, have
appeared, “etc. Immediately after the apélic%tion of
the most significant bits, a, and b,, all the remain-
ing bits of the products can” be computed, In other
words, the least significant half of P of the fastest
possible multiplier for serial numbers is also a
serial number, while the most significant half of P
can, in principle, be available as a parallel binary
number. In a variation of the ideal, serial inputs
multiplier, also the most significant‘ﬁﬁ??f?ﬂff;Eaﬁld
¢ obtained in serial form, following the least si-
gnificant half of P at the same output.

The schemes which will be illustrated, are based o
a common structure, composed of two cascaded parts

- the array generator, receives the two input numbers
and produces the various terms of the array M as
they become available and in a form suitable for the

following part:
- the summator, whose inputs are the outputs of the
array generator, which produces the product P. The

* It must be noted that the proposed partition of a
multiplier in two cascaded part is helpfull in find-
ing various interesting multipliers, as it will be
shown. An approach in which such a partition is not
used i.e. in which the multiplier is synthesized as
a whole, is given by Atrubin /3/.

“

array generator and the summator can be designed
independently, provided the array generator outputs
are in accordance with the input form required by
the summator. The schemes which will be illustrated
can be classified according to two different types
of array generator as already done in./4/.

The first type uses the 'subarray-wise'' generation
of the array M, as illustrated in fig, 2. When a
new pair of operand bits is presented, one '‘row"
and one ''diagonal" are added to the subarray whose
elements have been previously generated, Assume
Sj-l be the value of the (j-1)th subarray generated

by the j-1 least significant bits of A and B, When
a. and b. are presented, let us call R. the new row
génerate by a. and D; the new diagonai generated
by b. (includiﬁg the ferm a.b.). R, and D. can be
expréssed as: I J J
j-1
Rj aj iEOi bi 2

i

D, =b, & 2K
S TN S
The value of Sj of the j-th subarray will then be:
SO = a, bO
S. =5, ., +2] (ijj); (1<j<n-1)

J -1
According to this scheme, the array genmerator will
generate R. and D, in parallel form and the summa-
tor will Compu%es S. and will generate the pro=-
duct P. J

The second type derives from a different way of
obtaining the product: instead of considering P as
the result of adding the new row R, and diagonals
Dj to the value Sj__1 of the precedlng subarray, one

could obtain the product P by adding "columns-wise"
the numbers represented by the n rows. In other
words, the array generator can be assumed to genera
te simultaneously the n bits of the same weight (i}
e. belonging to the same column) of the rows. The
role of the summator will then be to sum the n se-
rial numbers representing the rows, and to generate
the product bits,

In all schemes illustrated in this paper use will be
made of (p;q) parallel counters, i.e. combinational
circuits giving at their g outputs (considered as
representing a binary integer) the number of the
outputs (p<2*) having value '"one'': fig. 3 represents
examples of parallel counters, using a graphic nota-
tion in which the p inputs are separated from the q
outputs by a horizontal line. The counters of fig.
2a,b,c,d have inputs of the same weight (“'simple'
counter). The concept of parallel counter can be ex-
tended to include devices capable of providing the
counting of inputs having different weights: see the
examples of fig. 2e,f. The following schemes will
use network of counters, represented according to
the above rules, For more details on parallel coun-
ters, see /13/,

3. Sub-array multiplier schemes

Multiplier schemes based on the generation of rows
Rj and diagonals D., and on the evaluation of the

sum Sj of the succeeding sub-array shall now be con-

53

sidered. The generation of R. and D. can be obtained

in several forms. The conceptually J simplest form

(o), is obtained as in fig. 4, where for eachcolumn
(i.e. for each weight} two outputs are provided, one
for Rj”s bits, the other for Dj's bits. The circuit

is composed by two registers, for cqntaining the
multiplicand, B, and the multiplier, A, respectively.
These are "'stack'' registers, whose pointer can be
provided by an auxiliary shift register, C, with the
initial content as shown. The outputs, C. identify
the subsequent time slots, and are used ° to store
the bits a.,b. in subsequent positions in registers
A and B. An array of AND gates generates the
various elements of the array M: the outputs of such
gates are ORed in each column, providing at the out-
put pins the subsequent rows R. and diagonals D. as
illustrated in fig, 5, D. and * R, bits are genérat*
ed, at 2n-1 and 2n-3 Joutputs 7 respectively of
the array generator, with two outputs for each co-
lumn of the multiplier array (except for the first
and the last colums, where a single output in D,
needed) . J
A second method (B) of generating R. and D. is im-
plemented as in fig. 6a scheme, whith is cémposed

by two shift registers and two linear arrays of AND
gates, generating D. and R. at n and n-1 outputs,
respectively. J J -

The main difference between this circuit and the
preceding one is that the weights of all outputs
must be multiplied by four at each step (compare
fig, 6b with fig. 5). This can be easily obtained

in the summator, as it will be seen.

A third method (y) for generating D, and R. is given
infig. 7a: this circuit is composed with J two stack
registers and two linear arrays of AND gates, gene-
rating D. and R, at n and n-1 outputs respectively.
Note that the J(m-17 stack register for the multi-
plicand B, is preceded by a single stage shift re-
gister in order to single-out the b. lastly intro-
duced. For the same purpose, a single bit register
at the input of the A register is used,

It can be seen from fig. 7b that

the output weights must be multiplied by two at each
step. As in the previous case, this can be obtained
in the summator. For each of the preceding array
generators, various summators can be designed, In
the simplest scheme, the sub-array sum is obtained
in the form of a single binary number, which is sto-
red in a register: a three-input parallel adder ob-
tains the sum S, of D., R. and S. ,, which is fed-
back to the register.’Figl 8 rep}é%ents the three
schemes of summators based on the above principle,
and suitable for the three types of array generators
just described (note that in fig. 8 and following a
small square is used to represent the binary memory
elements of the register S. .). In all the above
schemes, the three numbersJDj, Rj and Sj—l are first

is

transformed into a set of two equivalent numbers, by
means of an array of (3;2) and (2;2) parallel counters.
These two numbers are then added in a two-input pa-
rallel adder (in which use can be made of carry-
look-ahead circuitry, to enhance speed), The same
figure shows for each scheme how the product bits,

p., are generated. Note that the schemes in fig. 8a
ahd b generate the least significant half's bits,p,

to p, in series (at the corresponding time t. to t3),
while the most significant part (t, to t.) i? gene~
rated in parallel (at different ou%put iK fig. 8a;

at the same output pins in fig. 8b). In fig. 8c
scheme, all product bits appear serially at a single
output. Since in all the above schemes a parallel
adder is required, the speed is essentially limited
by the carry propagation.

If a greater speed is desired, one of the following
schemes can be used, where carry propagation is
totally avoided by representing S. with a set of at
least two equivalent binary numbe}s.

For each of the three array generators, fig. 9 and
fig. 10 give schemes where S. is represented by two.
respectively by three, equiv%lent numbers,

The operation of the above circuits can be studied
as shown in fig, 11 example, which refers to fig.
9c, where the significant bits in the succeeding
steps are shown as dots, while points are used to
represent those bits that are not affected (and re-
main at the initial zero value). The following re-
marks that can be made on the operation of such a
circuit, apply also to some of the other circuits:

- from t4 to t7, Dj and R. bits are all zeros, and
S. 1is repeatedly fed-back in order to generate in

sucdession the bits of the most significant half of

the product that could be obtained in parallel by

adding in a parallel adder, S; and Sg (at time tS).

- The bits necessary to represent S! and SV as
shown in the figure, have been fodnd to Jbe the
only ones necessary for the purpose by means of the
following procedure: first an indefinite mmber of
bits have assumed both for S! and S" then the opera-

tion of the circuit has been’ studiéd as done in
fig. 11, determining those bits that are used as
significant.
- The left most half adder of the first reduction
stage is shown as producing only its least signi-
ficant output, since its inputs can never be simul-
taneously "'one': it could be therefore replaced by
a two-input OR gate.

- Fig. 9c shows a scheme for n=4 operand bits. It

can be shown that, for a larger number of bits,the
two left most columns and the right most columns re-
main as in fig. 9c, and the new schemes differ only
in the number of the "central" columns. Therefore,
increasing by one the number of operands bits implies
a circuit using two more full adders.

- The reduction of a set of four numbers to an equi-

valent set of two numbers can be obtained in a
single stage, using (4,4;4) counters: see /13/ for
more details.

- Some of the bits shown as significant in fig. 11

(i.e. represented by a dot) are always zero
(pseudo-significant™) at some steps: this is the con-
sequence of using a redundant representation for S.,
or of the use of non-saturated counters with dont-J
care combinations.

More remarks can be done by examining the operation
of the remaining circuits using the above method.
Schemes using type vy array generators (fig. 8c,9c,
10c) are the only ones producing the product P in se-
rial form from a given output, while in the remain-
ing circuits the succeeding product bits appear at
different outputs. Since a register whose cells are

“

54

comnected to such outputs is filled in a stack-wise
fashion, those outputs have been called "stack-type'.
Using a three numbers for S. implies a number of me-
mory elements larger than fér the two-number solution,
but requires a single stage of (4;3) and (5;3) counters,
while in the two-~number schemes two cascaded stages
of (3;2) counters are needed. The choice between the
two alternatives depends from consideration of speed
and cost, which in turn depends on the technology
actually adopted. Table I summarize the main para-
meters and features of the above circuits.

4, "Column-wise" Multiplier Schemes

A second class of serial input multipliers shall now
be considered, based on the generation of the multi-
plier-array column by column. As already said in.pa-
ragraph 2, the product can then be considered the re
sult of adding n serial binary mumbers, each repre-
sented by a row in the multiplier-array, all bits of
the same weight (i.e, belonging to a colum) appear-
ing simultaneously.

The problem of generating the succeeding rows can be
solved using the scheme of fig, 12: it is composed
by a shift register and a stack register, whose out-
puts feed n AND gates.

The circuit can be derived by the one proposed by
Swartzlander/6/ for a serial-parallel multiplier by
replacing a shift register with a stack register.

The problem of adding the n serial numbers produced
by the preceding scheme can be solved in several
ways, using parallel counters and memory elements.
The problem has been extensively discussed elsewhere
by the author /11/. Fig. 13 shows three kind of
schemes: several more can be found in the article
cited. In fig. 13a a parallel counter with feed-back
carries is used. The least significant bit of the
counter represents the product bit; the second least
significant bit is delayed by a single step before
being counted with the succeeding colum; the third
most significant bit is delayed by two steps and
counted with the second column following the pre-
sent one. It can be easily shown that, if a (r;s)
counter is used, colums of up to (25-1) bits canbe
handled, i.e. factors of up to nmax=(25—1) bits can

=12,

I

be multiplied (e.g. for s=3, nax
etc.).

In fgg- 13b, the first stage consists of a parallel
counter having as inputs the column bits: the binary
number, output of such counter, is added (using a
parallel adder) to a number composed by the values of
the second, third and fourth bits of the sum obtained
in the preceding step; the least significant bit of
this parallel addition represents the product bit p.
for the present step t.. A variation of the same
scheme is shown in figs 13c, which uses a carry saving
technique, in order to increase the speed, A second
scheme for generating the multiplier array columns

is presented in fig. 14: it uses two shift registers
feeding 2n-1 AND gates. As shown in the figure these
gates generate two columns at a time. More precisely,
in the first N Steps (N=(n-1/2) if n is odd, N=n/2-1
if n is even), no colums are generated (all outputs
are zero). At step N+1, the term aob0 is generated
(column 0). At step N+2, the terms

a\b., b.a
(column 1) and terms azb , a.b (Qo}Gmn129 are
generated. At step N+n tge

=5; for s=4,nmaX

b,
1%5% twi %olumns will be
produced. [t can be said that the rows of the multi~
pliers array are generated as serial/parallel binary

Y

numbers. In order to obtain the product, two ap-
proaches can be taken.

With the first approach a single adder for serial
number, of the same types as those illustrated in
the previous case is used: using suitable gates, in
the first half of each step the first colum C' is
applied to the counter,while the second column gene-
rated in the same step is applied to the same

in the second half of the step. In other words, the
two columns C', C'", generared in parallel, are se-
rialized by means of a clock whose frequency is
twice the frequency of the clock applied to the
shift registers in the columns generator.

Using a second approach, the addition of the serial/
parallel rows is performed by a suitable counter,
which must be capable of handling two columns at a
time, taking into account that all bits of the co~
lums C'' are weighted twice the bits of the first
column, C'., Moreover all circuits based on this
principle work at the same clock rate used in the
shift registers of the column generator, Various
schemes for such adder can be designed, by extend—
ing the method given in /11/., One such scheme is
presented in fig.15a for the case n=15: the first
stage is composed by one (15;4) counter and one
(14;4) counters, each counting the number of ones
in C' and C" respectively. The two output numbers
of such counters, (each composed by four bits) are
associated to two three-bits numbers, which repre~
sent the carries of the preceding two columns,

The second stage reduces the above four numbers to
an equivalent set of three numbers, using full ad=-
ders as shown: note that the least significant out~
put bit of the full adder, having as inputs the
three rightmost bits, represents one of the products
bits, p!, i.e. the product bits corresponding to the
C' coluhn at clock time t..

The third stage reduces -the above three numbers
to a set of two equivalent numbers: as in the pre-
ceding stage, at least significant bit of the right~
most full adder is the product bit p'' corresponding
to the column C'" at time t.. Besides’p! and p'', the
outputs thus obtained must- be accountéd for be
feeding them back as carries for the addition to the

3 < 1 " 1 1
following columns Cj+1 and Cj+1. As Cj+1 and Cj+1

have weights four times the weights of the respecti-
ve preceding columns Cland C', these carries must be
shifted two places to the riéht, as shown in the
figure. Fig.15b shows a second example of how the
problem of generating the product bits p! and pY can
be solved. The circuit is similar to theJcarry $eed-
back circuit used in fig. 13a which is here extended
to handle two columns at a time. It can be seen from
fig. 15 that, using (15;4) and (14;4) counters, n
can be at most 12. The column C! is associated with
three carries bits and counted-Jin a (15;4) counter,
whose least significant bit represents the product
bit p! corresponding to column C!. The remaining
threejoutputs are fed back and ate placed in the
column corresponding to their respective weights.
Note is particular that the output weighted 2 is as-
sociated to column CY, along with other two carries,
and counted in a (1454) counter. The least signifi-
cant output bit of this counter represents the pro-
duct bit p", while the remaining three outputs are
fed-back a$ carries. The carries from both counters
(five in total) must be delayed by a clock period
before being associated with the subsequent couples

55

of new columns. A variation of fig. 14 scheme for
generating columns is represented in fig, 16: it com-
prises two shift registers, where the operands A and
B are fed serially. While in fig, 14 schemes the ope-
rands bits are synchronous, in this new scheme they
are fed and shifted alternatively, by means of two
clocks, t' and t", t'" being delayed with respect to
t' by half of the common clock period. A single paral
lel counters of the same type of fig. 13a generates
the product bits. In comparison to fig. 14 scheme,
fig. 16 scheme generates the product in serial form,
one bit at a time, with clock frequency which is
twice the clock used for shifting the registers. No
product bit will be generated for the first n/2 clock
times for n even (or (n/2-1) for n odd). The first
column (aobo) will be generated:

-for n even, at the t' clock following the (n/2)th
clock

~-for n odd, at the t' clock following the (n/2-1)th
clock. -

All the (n-1) columns will be generated before the
two factors have been completely shifted out of their
register. More precisely, the last columns will be
generated:

-at the (n+l)-th t' clock time, for n even;
-at the (n+1)-th t" clock time, for n odd.

Note, finally, that the speed of operation of the
single counter used in fig. 16 is twice the speed
for the composite double column counter used in fig.
15 (for the same clock frequency).

The comparison between ''column-wise'' and ''sub-array’
schemes is immediate for what concerns the array ge-
nerators: besides the two input registers, n AND
gates are required for the fig. 12 and 16 schemes
and 2n-1 AND gates for the fig. 14 scheme.

The comparison between the summator can be done only
by specifying first the solution chosen for imple-
menting the parallel counters. If it is assumed, for
example, to use full adders for the purpose, knowing
that (see /7,13/) at most N-1- log, N of them are
needed to implement an N input para%lel counter, it
can be shown that the fig.13a schemes uses less full
adders that any of the "'sub-array'" schemes.

On the other hand, these have larger delays (except
in the cases where pipe-lined counter can be used).

5. Timing Considerations

All multiplier schemes considered consist of an ar-
ray generator feeding a summator. Assuming that all
registers are clocked in synchronism, the minimum
clock interval Tcl must be: Tcl < Td + Tsett where:
Tsett is the setting time of the registers;

Td is the longest delay in the combinatorial parts,
comprising two parts: Td = Tag + Tsu

where: Tag is the delay of the output gates in the
array generator (AND-OR in fig.4 AND in fig. 6,7,12,
14,16) Tsu is the delay of the combinatorial part of
the summator,

In conclusion:
Tcl< Tsett+ Tag + Tsu

The various schemes illustrated so far differmainly
in Tsu, which can be determined in relation to the
structure chosen for the summator. The following
remarks can be made with reference to the various

schemes.
. In fig. 8 schemes

Tsu = Tfa + Tad(n)

where: Tfa is the full adder delay

Tad(n) is the delay in the adder (a carry-
look-ahead will of course be used for minimum Tad(n)
which is a function of n, the number of stages.

. For fig. 9 schemes: Tsu = 2Tfa
. For fig. 10 schemes: Tsu = T(5;3)

where: T(5;3) is the delay of a (5;3) counter.

It can be shown that a (5;3) counter can be composed
by 3 full adder, with a delay of 3Tfa, It can also
be obtained by means of a 2 level AND-OR network.
The use of multiplier based on column generation can
be treated similarly.

In fig. 12 and 13 schemes:

Tcl<Tag + Tco

where: Tco is the delay of the parallel counter in
fig. 13a; or: the sum of the parallel counter delay
and of a full adder delay in fig. 13b or of two
full adder delays in fig. 13c.

In order to increase the speed of operation, pipe-
line techniques can be used. It seems not possible
to apply them at cases where partial sums (as in
the case of sub-array multipliers) or carries (as
in fig. 13a) are fed back. A pipe-line parallel
counter can be used in fig. 13b scheme. A pipe-
line parallel counter can be easily obtained by
composition of smaller (elementary) parallel coun-
ters by inserting memory elements between the ca-
scaded stages. If full adders are assumed as ele-
mentary counters, then it will be:

Tcl < Tsett + Tfa

which is the minimum achievable with a given tech-
nology. A pipe-line introduces also a latency time
Tl that is Tcl times the number of the stages of
the parallel counter. The reader is referred to
/13/ for more details.

6. Conclusion

It has been shown how binary digital multipliers for
factors represented in serial form can be designed,
according to different principles. Two main classes
of serial multipliers have been considered. The first
is based on the fact that, whenever a new bit for
both factors is presented, a new row and a new dia-
gonal of the multiplier-array becomes available. The
product is obtained by accumulating these rows and
diagonals in the subsequent steps. The second class
considers the product as the result of adding n se-
rial binary numbers, corresponding to the rows of
the multiplier-array. At each step, all bits belong-
ing to a column of the multiplier-array are deter-
mined and then swmed to obtained the products. It
has also been shown that the various schemes thus
obtained are based on the use of shift registers and
stack registers, and that the product can be obtained

56

serially bit by bit from a single output or from
different outputs. In some of the circuits shown,
the most significant half of product can be obtained
also in parallel form. In all circuits parallel coun
ters as basic building blocks are used. A comparison
between the various schemes shows that some of them
offer definite advantages as far as the number of
gates and registers needed is concerned. A fully
significant comparison could be made by considering
the various ways of implementing parallel counters,
the technology adopted with the related problem of
routing and of silicon area evaluation. This requires
further investigation for the selection of the opti-
mum miltiplier for a given application., The schemes
described refer to the case of operands having the
same lenght: they can be easily extended to the case
of operands with unequal lenght which for sake of
brevity has not been treated explicitely.

REFERENCES

/1/ (C.S.Wallace: A suggestion for a fast multi-
plier, IEEE Trans. Electronic Computer, vol.
EC-13, pn, 14-17, Feb. 1964,

/2/ L.Dadda: Some schemes for parallel multipliers,
Alta Frequenza, vol. 34, n. 5, pp. 349-356,
May 1965.

/3/ A.J.Atrubin: A one-dimensional real-time iter-
ative multiplier, IEEE Trans. Electrconic Com-
puters, vol. EC-14, pp. 394-399, June 1965.

/4/ L.Dadda, D.Ferrari: Digital multipliers a uni-
fied approach, Alta Frequenza, vol, 37, n. 11,
pp. 1079-1089, Nov. 1968.

/5/ A.Habibi, P.A.Wintz: Fast multipliers, IEEE
Trans. Comput., vol. C-19, pp. 153-157, Feb.
1970.

/6/ E,E.Swartzlander, Jr.: The quasi serial multi-
plier, IEEE Trans. Comput., vol. C-22, pp.317-
321, April 1973.

/7/ E.E.Swartzlander, Jr,: Parallel counters, IEEE
Trans. Comput., vol, C-22, pp. 1021-1024, Nov.
1973.

/8/ K,Trivedi, M,Ercegovac: On-line algorithms for
division and multiplication, IEEE Trans. Comput.
vol, C-26, pp. 681-687, July 1977.

/9/ A.Stenzel, B,Kubitz, C,Garcia, A compact high-
speed parallel multiplication scheme, IEEE
Trans. Comput., vol. C-26, pp. 948-957, Oct.
1977.

/10/ L.Dadda: On parallel digital multipliers, Alta
Frequenza, vol, 40, pp. 574-580, Oct, 1978,

/11/ L.Dadda: Multiple addition of binary serial
numbers, IEEE 4th Symp, Computer Arithmetics,
pp. 140-148, Santa Monica, Oct. 1978,

/12/ [.N.Chen, R.Willoner: An O(n) parallel multi-
plier with bit sequential input and output,
{EEE Trans. Computers, vol. C-28, n. 10, pp.
721-727, Oct. 1979,

/13/ L.Dadda: Composite parallel counters, IEEE
Trans. Comput., vol, C-29, n, 10, pp. 942-946,
Oct, 1980.

TABLE T :

* Parallel, with additional circuits

Characteristics of multipliers based on array generators by diagonals and rows

types: ol array generator outputs B: array generator outputs| y:array generator outputs
with fixed weights to be multiplied by 4 to be multiplied by 2
~~— at each step at each step
input registers: stack shift stack, modified
array generator outputs: 4n-4 2n-1 2n-1
array gen., AND gates: n2 2n-1 2n-1
OR gates: 2(n-2) -- -
input to AND gates: 3n2 - 2n+l 4n-2 4n-2
array gen. fig. n.: ’ 6 7
summator fig. n.: 8a Sa 10a 8b 9 10b 8c 9c 10c
rows for S. 1 2 3 1 2 3 1 2 3
(2;2) counters 2 4 1 -- 3 n+l -- 1 -
(3;3) counters Zn-3 { 4n-7 1 n-2 2n-3 - n-1 2n-3 --
(4;3) counters - -- 3 -- -- -- -- -- 1
(5;3) counters -- -- 2n-6 -— - n-2 -- -- n-2
parallel adders stages Zn-1 -- - n-1 -- - n-1 - -
carries pj spilled 2n 4n-3 6n-7 n-1 2n+2 4n-4 n-1 Zn-3 3n-4
pj stored 2n 4n-3 6n-7 2(n-1) | 3n+1 6n-5 - - -
outputs: stack sing.half stack | stack | stack stack | stack | stack serial |serial |serial
most sign.half parallel stack” | stack® parallel stack”™ stack” serial/ | serial” | serial®
par,
——— time
]
. III[:‘ -
- tnputs B b3 bz by Be
o: [lw]wls] —_—— e
B ts ta |ty ft, I A:
e[TP P }'k:frs,t;igina‘{icanr @ @ S B) o] G t°,‘ a° _]"
Py Y (o] agbyf aybylayby| ayby| O t ! ay
. __”'L {}most significant O Jaz byl azbyjazbyfazh,| O O |t i ay
: Py (half | paratle! N . N l
| 23b3)agba| a3byfazby| © | O | O |, a,
) L 3
P {lj,]p.,lpzlpslp,‘[pslpslp,l P PrdPe| P | P P | p | b | b,

weights: 2 1

a) a(3;2)counter
or full adder

weights 4.2 1

-5

—5

d) a(5;3)counter

b)a(2;2)counter
or half adder

18 42 1

e e

—————

e} a(2,2,2,3,5) counter

or a 4 bt adder

o7

oo

c)a(7;3)
counter

&

f)a{5,5;4) counter

57

X X

array qtncrabri x

output pins:
0o
RO
Dy
Ry
D2
R2
D3
Ra

aj A ™ 8 xxxx 0
R\C o A b 8 (stack? (stack} xxx R
o (o aj i
- XXXX D0 ——
R i L e = e Xxx R — RS
1 \b —_— L a: X‘T —
) °§§§§ R &% Tl te o: BN
K &I B L)), — LB OO 800 ———
0: 00 ‘0 e @ v ¢ . 0 00 R: -
x x x x X : R: PUDE < cee 2
X x X X X m.. mm-. ————. m ————'—'—". .
o0 o000 -}! 0: N om R0 }'1 R ty iElD!:D-‘z‘ﬂ:]; -R:EDQ DI
L] h e
°© 009" EEED BEED), —
OO0 O e » O D: 22 12 02 Ri 2120 }‘z R N & (P B IE
t ee 3 D 2z 202 RN ™
00 OO ¢ b)
. R EREE),
o+ s 0O} aBRAWR R NI 3 b) &=
oo o t’{ pim 2313 03 R 3231 0
e o s O O ©
t a)
R & a)
XX X X XXX Dj X;‘(::((gl
X X X XX Rj -2 i
+REED O EEEE Sy —E)GE!EEE! Sj-1 X X X X o
- X X X Ri
. v A i
a . b) C eEa S;.
) SIS A s) @ i
1 — .Sy v P;
Si e S A e
hr‘&_" '3 & P, Pn pmp‘ pz ?ﬂ sefies
ab: by Eabybybs b2 b &, p BB PP I paratlet —— Sj
X X X X Dj
XXX R
.2 [ajojalal }S"
XX XXXXX Dj epPpoBEEsE)7
X X X X X Rj)
. XxXXx D
(cRclolclol S lS“ t X X X R,!
[ofofoJolafoNoRoRCTRY ~ NN -1 aAB | o
a . b) SONNX L o) 500 o4
cee N TR I e
. Py Py PsPa P3P Py Po —Patl
O \) Sj isi Py Py P, Py Py Py Py X/ 5y
TS i S —FP at lahibatatatsts
XX XXXXX D)
X X X X X R}
PEREEGEEE
a) pEEEEE 15i.1 b)

F

58

: Ron from ’ g‘"-g
. J s 'K-{.::_"_}_si :
e e
ZBE A s
‘\‘{' cee Dy Dg#0
ey Ry Rg=0
.. } So L“ :: M } Sa
Y tg
e LASPPs

ey R

oty

A //g?*

always zero

M

!

cc d

115

. & 4

\

¢t o 1

———a—e ot .12 '

e N f:<: (i%:)
L=) b) \Vr’hp-'

F1q. 1 The oneration of the fastest serial innut multinlier
Fig. 2-To show how the product array elements become available as
operands bits are applied
Fig. 3-The graphical representation of various types of parallel
counters
F1g 4 A first scherme for the generation of the array elements EEQQBE§_QAEI£Q§§
g >-To show how the new array elements generated at each sten
avpear at the outputs of fig. 4
Fig. 6-A second scheme for an array generator: the outputs weights
must be multiplied by four at each step

Fig. 7 A third scheme for an array generator: the output weights must be multinlied by two at each step
Fig. 8-Schemes of summators with S. represented by a single binary number

Fig. 9-Schemes of summators with Sj represented by two binary numbers
Fig. 10-Schemes of summators with Si represented by three binary numbers

Fig. 11-To show the operation of fig. 9b summator

Fig. 12-A first scheme for the generation of the array by columns
Fig. 13-Schemes of summators for fig. 12 array generator

Fig. 14-A second scheme for the generation of the array by columns
Fig. 15-Schemes of summators for fig. 13 array generator

Fig. 16-A third scheme for the generation of the array by columns

59

