CN BIT SEQUENTIAL MULTIPLIERS

by RAVINDRA V. DONTHI, MOHAMMED SALEEM and HARPREET SINGH

Department of Electrical & Computer Engineering,

Wéyne State

University, Detroit, U.S.A.

Abstract

Recently bit sequential multiplier algorithms
have been found more useful in the area of inter-
connection of multiple processors withia a VLSI st-
ructure [1],{2]. The object of the present paper is
to suggest modified bit sequential algorithms to
achieve more speed and to attain its conformity with
other algorithms such as division, square-rooting
etc. with a view to utilize them in future arithma-
tic arrays. In the present paper the following has
been taken up: a) Bit sequential multiplier using
carry look-ahead technique, b)Bit sequential multdi-
plier using most significant bit first,and c) Nega-
binary bit sequential multiplier

Introduction

Considerable interest has recently been shown
in serial multiplication rather than parellel mult~
iplication in the areas of interconnection of Mult-
iprocessing, Arithmatic arrays involving division,
squaring and square rooting etc. Design of fast
and efficient multipliers is currently an active
area of research. Many scientific and engineering
applications such as Inversion of matrices, solut-
ion of differential equations etc. require large
number of multiplications. The multipliers discu-
ssed in [1],[2] involve bit sequential input and
output. The adders employed use the ripple carry
methods for addition. The object of the present
paper is to modify the existing bit sequential al-
gorithms to achieve faster speed and hopafully con-
form to the other arithmatic operations such as div-
ision, square rooting etc. with a view to utilize
them in future arrays. The paper has been divided
into three parts. Part(a) discusses a Carry look-
ahead bit sequential multiplier to achieve faster
speed, Part(b) modifies the existing algorithm for
taking most significant bit first for multiplication
and Part(c) proposes an algorithm for multiplication
of Nega-binary numbers and is suitable for VLSI
implementation.

Part(a)

Bit sequential multiplier using

Carry Look-ahead technique

Here we modify the C.B.S. multiplier [2] by
using carry-look ahead adders.

The proposed algorithm will be as follows:

CH1892-9/83/0000/0104301.00 © 1983 IEEE

(1) Let a & b be the multiplier and multiplicand.
n

a= Ez:a,. 23_1 = [an, al]
=1
n
b= % b LA (b sevveiene. veeenby]
k=1
(2) The partial product Pi after the ith iteration
[2] becomes:
1 o1 o k-1
P, = % a2l .Zb .2
i —" — k
=1 k=1
At i=k,
-1
= *
9y Pi 2
[qi—l + ai(bi,...,bl) + bi(ai,...,al)]/Z

(3) The three inputs for the ith iteration and jth

module are given as {Table-1):

bi aj for j<1

AL = 0 otherwise
a, b, for j<1
N i3 =
B(1,3) = 0 otherwise

Sj = A(1-1,j+1) @ B(i-1,j+1) @ sj+l ®cC

(4) The Logic expressions for output of the (3,2)
counter modules are

A(1,7) ®B(1,5) @ Sj

j+1

L.
J
G,

[AG,3).B(1,5)) + [A(4,)) @ B(i,j)]-Sj

3
(5) The expression for the generation of the carry
Cj is :

G4y 16y [y 146, LS L

! 5101y

This multiplier requires only K number of iter-
ations to obtain a complete product of 2k bits usi-
ng k bit length operands and is faster than C.B.S.
multiplier{2]. Further in this multiplier, at any
given time during the multiplication the complete
product of 2k bit length is available with respect
to the k bits of multiplier and multiplicand recei-
ved till that time.

The C.B.S. multiplier[2} employs ripple carry
techniques. Here k number of excess iterations are
spent just for the first and second order carries

)

&0 ripple from least significant bits.
precious time is saved in the present
generating the necessary carry in the same counter
module. The number of counter modules required to
perform multiplication for k bits operand is (k+1)
modules. (Where k is the maximum number of bits in
the multiplier or multiplicand). The construction
of the multiplier is as shown in Fig.l. It consists
of 6 counter modules suitable for multiplication of
operands of n-bits length. However, the same set of
modules can be extended to cperands of n-bits len-
gth. Each counter module consists of a full adder,
a carry generator and an 'Exclusive-OR' gate to
form the sum bit.

Thus the
multiplier by

The partial products are formed by adding toge-
ther the previous partial products and two correct-
ive terms A and B based on the currently known bits
of a and b.

Table - 1.

A and B inputs for 5 bit operands.

Tteration Module(j) <
6 5 4 3 2 1
1 A 0 0 0 0 0 0
B 0 0 0 0 0 albl
2 A 0 0 0 0 0 bZal
B 0 [0} 0 0 azb2 a2b1
3 A 0 0 0 0 b3a2 b3a1
B 0 0 0 a3b3 a3b2 a3bl
4 A 0 0 0 bAa3 b4a2 bAal
B 0 0 aAb4 al‘b3 a[‘b2 al‘b1
5 A 0 0 bsa4 bsa3 bsa2 b531
B 0 asb5 aSbA a5b3 asb2 asb1

As an 1llustration of the working of the bit
sequential multiplier having carry look-ahead tec-
hniques, Table 1 and 2 give the step by step gene-
ration of 'A' and 'B' inputs and product during

So

105

a(i) -J.FULL ADDER -1,
*’ b(i) _| + : L]_
L LOOK AHEAD :
E s (In) - CARRY -G,
rood GENERATOR E
|3 Reset — LL Gj
E + |
B Clock —| EXCLUSIVE-OR — Sj(out)
B | GATE
E SEL(In) A SEL(out)
i S
1
B FIG. 2 CELL

B)
LSWN
s|

each iteration. As an example, the generation of
carry generator is given below;

C o , G1=1 N

2

= C3=G2
+G2L3+ 61L2L3= 0+14+0 =1

G

3
s = +14+0=
G4+G3L4+G2L3L4+G112L3 4 H+0+1+0=1

= G5+G4L5+G3L4L5+GZL3L4L5+G1L2L3Lz‘L5

0+0+0+1+0=1

+ GL,=1+0=1 ,

1
€
€5
%6

Table - 2.

Inputs and output bits for 5 bit multiplicand
and 5 bit multiplier are given in the format as
shown:

Let a=10101 Input
L4
b=11011 ¥ ;
l S A |B
a*b=1000110111 1L
S
Output*‘l
Iteration(i) Module (j) <
¢ 6 5 4 3 2 1
01
000 a0 000 000 000 o
k 00 00 00 00 00 01
0 4 o 1] o 11
2 000 000 000 000 000 010
00 00 00 00 00 01
[0) 0 o 0 11
001
000 000 000 000 001
} 0o 00 00 00 01 01
[0 0 0 1 1+1
00 110
4 000 000 000 010 o]
00 00 00 01 00 10
0 0 0 1 1 0-+0
S 060 001 001 010 101 111
00 01 01 01 10 1
1 o] [+] 1 1+
+ + + + + N
1] 0 o 1

Part (b)

Input and output bits for 4 bit multiplier and multiplicand are given

in the Format as shown:

Bit sequential multiplier using

INPUT
most significant bit first
tet a =101 l“l" G4 (s
The multiplier algorithm proposed in [1],[2] b= 101 6l |5
utilise left shift in multiplication. However, rig-
ht shift method of multiplication is preferred some @0 b= 000N ouTPUT
times to left shift in division, squaring and squa-
re rooting algorithms. This right shift method has ITERATTON(1) MODULE (i) <
also been used by the various pipelined arithmatic 1
arrays discussed recently [5]. 1In view of this it 8 7 6 5 4 3 z k
will be worthwhile extending the Bit sequential 1 00000 01000 00000 00000 00000 00000 00000 00000
multiplication algorithms described in [1] to right 000 001 000 000 000 900 000 000
shift algorithms. Here we propose a bit sequential 2. 00000 00007 10000 00000 00000 00000 00000 00000
multiplier algorithm using right shift multiplica- 000 001 001 000 000 000 000 000
tion. It may be noted that in such an algorithm we 5 00800 &;] mm& 01000 01000 00000 00000 00000
come across most significant bit first as compared 000 001 001 001 0ol 000 000 000
to the other methods in which least siznificant bit
is taken first. 1. 00000 00001 00001 00001 11001 01000 10000 01000
000 001 001 001 on 001 001 001
The proposed algorithm, which is a modification 5 00000 0000F 00001 00031 00001 00061 00OOT 0000
of the algorithm by [1], will consist 5f the follo- 000 001 00} 010 0ol 001 001 001
wing: 6. 00000 00001 ©000IT 00000 0000} 00001 00001 00001
000 001 010 000 001 001 00 001
The module used by [1] can be used for right ; 00000 00011 00000 00000 (0001 00001 00001 0000}
shift multiplication (Fig.4a and b). dowever, the) 000 00 000 000 001 001 a0 o0
selection of modules for the five inputs will be | 0000l 00001 0000
given by the modified algorithm. The aumber of 8. 00010 00000 00000 00000 0000 X ool
inputs to this module are 5 and 3 respactively as ool 000 000 900 oot ool 0
shown in Fig.4.The five inputs for the ith itera- 1 1 1 | } | l !
tion and jth module are generated as follows; 1 0 0 0 } } } !
b, . for 2(k-i)+1l < j< 2k-1
AL, §y=| kot ok 1€k Fig.3
0 otherwise ,
a, .,..b for 2(k-1 j 2%-1 S(i-1,j T) o
Bi,gy= | Kot Tk o8 LD << ¢, (-1,5-0 _ Jwopure —0¢0 X
0 otherwise (1~1,35-2) [N — 1 L3
c (i’j)jo for i=j=1 B i,j) P J r_~—>C2(i,j)
1 S, 3[A(-1,3-1),B(i-1,3-1),C, (i-1,3-1), A(L,) — .
C(1lJl) S(i-1 Jl)] .
FIG. 4 (a) MODULE
for i=j=1,2
3%, [aG-1,3-2),B(1-1,3-2) ¢, (1-1,5-2)
Cz(l“l,J_z),S(]_l,j‘z)] -
S(1,j)= 0 for i=1 []EE<
s (a(i-1,3),B(i-1,3),C, (i-1,5),
1,3,5

C,(i-1,3),8(i-1, J)]

Here A and B are the modified inputs computed
on the basis of a and b operand bits raceived for
the ith module and are obtained as per the Table-3,
where it is utilised for a &4 bit operand and can be
extended for n bit operands.

'Cl' is the first order carry genecated during

(i-1)th iteration and is carried from (j-1)the mod-

ule to jth module for the ith iteration. 'C2' is
the second order carry generated during (i-1)th
iteration and is carried from (j-2)nd module to

jth module for the ith iteration. 'S' is the sum
bit computed during the (i-1)th iteration for the
five inputs in the jth module and is preserved in
the same module for computation during the ith ite-

tion. For ' ' whe
ration or 81’3’5[A ,B, C1 C ,S1', whenever the

106

Table - 3.
A & B inputs for 4 bit multiplicand & multiplier.

ITERATION (i) MODULE (j) —=-
8 7 3 5 4 3 z

1. A 00 00 00 00 00 00 00]
8 00 ab, 00 00 00 0n 00 00
2. A 00 00 bja, 00 00 co 00 00
B 00 00 agby azby 00 00 00]
304 00 00 00 ba, b, 00 00 00
8 [l 00 00 a0y by azb, 00 00
. A 00 00 00 00 bia, byay bya, 00
B 00 00 00 00 aby by b, agby

sum of the arguments[A,B,C ,CQ,S] equals 1 or 3 or
5, then the sum bit S will“be“a logic c¢ne otherwise
will be a logic zero.

The number of counter modules required for
right shift multiplication for a k bits operand is
2k and the number of iterations required to obtain
the complete product will be less than or equal to
2k clock periods, assuming one clock period for
each iteration. The only restriction to be obser-
ved in using this right shift multiplier is that
both the operands a and b must be of equal bit len-
gth. for example a=0011 and b=1010. The 'A' and
'B' modified inputs are computed only for the first
k number of iterations and for the next k iterati=
ons they assume logic zero's as given :in Table-3.
At the end of the 2k number of iterations the com-—
plete product will be available in the 'S' bits of
the modules. An example as illustrated in Fig.3,
gives the step by step computations for 4 bit ope-
rands.

Part (c)

Nega-binary bit sequential multip.ier

Here we propose a Nega-binary bit sequential
multipler. The nega-binary numbers have attracted
the attention of several research workers because
both negative and positive numbers can be represen—
ted without the use of seperate sign bit [10].

Let the ak a1 and bk bl are the two
k bit numbers. Their product is given by
P =la,.......a]J[b
2k Pr=lay 3,10ty b,

1

[(-2)k‘1ak+<ak_l...al)][bk.....b |

[(—Z)k—lak(bk.....bl)] +

(ay_y--+-ap [ED o 4, Lot b))
kel k-1
= (-2) Ty (b b 42 T (2 e
(ak~1 al)(bk—l bl)

11 10 9 8 7 [5 4 3 Z 1

AlB 00 1
B 9
cip 0
s ° 00 10 00

00 00 00 2
o 0 0

00 00 o0 00 00 00
ah

01 0o 11 01 10 00 00 00 00
00 03 00 00 0V 00 00 oL 00 5

01 11 00 11 01 10 uO 00 00 00 OO0
00 00 00 1U 00 10 00 00 00 L 00 6

00 00 00 00 VO 00U VO 00 00 0Q 00 7
10 00 00 00 V0 VO U 00 00 00 0v

00U V0 VO VU VO 00 00 00 00 0U 00
00 V0 V0 Vo VLU 00 VO U0 00 VO 00 8

Result = o 0 1 101 10 1 i1 0
a = 110101 = 11
b = 110110 = ~14
p = 111101110 = ~+154

FIG. 6.
k-1 \
=(-2) " la, (b, evsne.)+b. (a, ;..... a +
(-2) [ak(bk by b (a4 1)]

P2k—2"""pl

The first term is the sum of produﬁgi of the
bits and the weight of this sum is (-2) .

For this multiplier, each module has five in-
puts and three outputs. The inputs are A,B,C,D
and S where the outputs.are S$,C and D. C and D
are the carries and the use of these carries can
be fully understood by the table given below:

Input Output

¢ by A& B 5 G DPip

FHMRPHHEHEHFEFOOOOOO
FREFRFOODOFMHOOO
HFROOHHOOHKHORHKHO
HOROFRPOROFROOROH
B MR EEOORHEOR MR
M X MM OOOORHOHOO
N XN OOOROOOOOO

The input equations for A,B,C and D are given as:

A(i,j) = biaj—i+l if §3<2i-1
0 if 32 2i-1
B(i,j) = aibj—i+1 if j<2i
0 if 321

k.

N

-

TR

Cli, D, 4[A(1-1,3-1),B(4-1,3-1),
$(i-1,3-1),D(i-1,3-1)]

SA[A(i-l,j),B(i~l,j),D(i-l,j);S(i-l,j)]

D(1,3)41 1f A(i-1,3-1)=B(i-1,j-1)=5(:-1,j-1)=0 &C=1

SQ[A(i-l,j),B(i-l,j),D(i—l,j).S(i—l,j)]

1 1f C(i-1,3-1)=1

The interconnected modules are as shown in Fig.
5 and the example describing multipl:ication is giv-
en in Fig.6.

It may be noted that Nega-binary adders require
two carries as compared to one carry required in
binary adders. The binary multipliers proposed by
Chen and Willoner and Strader & Rhyne require two
carries C, and C, for bit sequential multiplier.
The negabinary multiplier proposed here performs
multiplication by generating only two carries Ci &

D.. ©Normally, one may think that a regabinary mul-
tiplier should generate four carries. However in
the negabinary multiplier used here, the object is
achieved by using only two carries ard not more.
This development is based on utilisirg the carries
Ci and D,. In normal addition both cannot be 1 at
afly one %ime. So whenever an extra carry (as C, in
Chen Willoner mulriplier) is needed, both Ci an Di

are made 1.
Conclusion

The algorithm given by [2] has been modified by
using carry look-ahead adders instead of ripple ca-
rry adders to achieve faster speed and to conform
them to other operations such as division, square
rooting etc. A cell suitable for VLSI implementa-
tion is also given in Fig.2. Neddless to say the
cell will be more complex as more logic gates will
be required. However, the proposed procedure is
faster as the number of iteratioms required by the
algorithm is exactly only half of the iterations
required in C.B.S. algorithm.

A bit sequential algorithm using right shift
method and by taking the most significant bit first
is also proposed. The proposed algorithm is the
modification of the algorithm proposed by [1],[2].
Such an algorithm will be more useful in future
arithmatic arrays in view of the conformity of rig-
ht shift multiplication with the division and squ-
are rooting algorithms. It may be noted that in
the proposed algorithm only the input bits are gi-
ven in the sequential order, while th2 output bits
will be obtained in parallel (Fig.3). This may app-
ear to be a disadvantage. However it is hoped that
such an algorithm will result in a simpler overall
VLST structure in the implementation of Arithmatic
arrays involving division, squaring and square-roo-
ting etec.

Finally an algorithm for the mul:iplication of
negabinary numbers is proposed. The proposed multi-
plier is a bit sequential cne and is also suitable
for VLSI implementation.

108

References

[1] I-ngo Chen and Recbert Willowner, An 0(n) para-
llel multiplier with bit sequential input and
output, IEEE Transactions on Computers,oct.
1979,

[2] Noel R. Strader and V. Thomas Rhyne, A canoni-
cal bit sequential multiplier, IEEE Transacti-
ons on Computers, Aug.1982.

[3] K.Hwang, 'Computer Arithmatic', John Wiley,
1979, P 387.

[4] Peter M. Kogge, 'Architecture of pipeline com-
puters', Macgraw Hill book co. 1981.

[5] A.K.Kamal, Harpreet Singh and D.P.Agarwal,

'A Generalized pipeline array', IEEE Transac-—
tions on Computers, May, 1974.

[6] J.C.Majithia and R.Kitai, 'An arry for multi-
plication of signed binary numbers.' IEEE
Transactions on Computers, Vol C-20,pp 214-216
Feb. 1971.

[7] 5.Singh and R.Waxman, 'Multiple operand addi-
tion and multiplication', IEEE Transactions on
Computers, Vol C-22, pp 113-120, Feb.1973.

[8] 5.Bandyopadhyay, S.Basu and A.K.Choudhary,

'An iterative array for multiplication of
signed binary numbers', TEEE Transactions on
Computers, Vol C-21, pp 921-922, Aug.1972.

[9] A.Habibi and P.A.Wintz, 'Fast Multipliers',
[EEE Transactions on Computers,Vol C-19, pp
153-157, Feb. 1970.

[10] G.F.Songster, 'Negative base number represen-
tation systems', IEEE Transactions on Compute-
rs, Vol EC~12, pp 274-277, June 1963.

