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ABSTRACT

A higher-radix division algorithm with simple
selection of quotient digits is described. The proposed
scheme is a combination of the multiplicative normali-
zation used in the continued-product algorithms and the
recursive division algorithm. The scheme consists of two
parts: in the first part, the divisor and the dividend are
transformed into the range which allows the quotient di-
gits to be selected by rounding partial remainders to the
most significant radix-r digit in the second part. Since
the selection requires only the most significant part of
the partial remainder, limited carry-propagation adders
can be used to form the partial remainders. The divisor
and dividend transformations are performed in three
steps using multipliers of the form 1+ 5,r=* as in the
continued product algorithm. The higher radix of the
form r=2% k=248... can be used to reduce the
number of steps while retaining the simple quotient
selection rules.

I. INTRODUCTION

In this article a division scheme characterized by
a simple method for selecting quotient digits is
described. The scheme also has several properties im-
portant for modular implementation. Division algo-
rithms have been of a wide interest [ROBESS, METZ62,
ATKI68, ANDE68, TAYL81] because of the problems:
(i) fast and efficient selection of quotient digits, (ii)
computation of partial remainders, and (iii) compatibili-
ty of implementation with other more frequent arith-
metic operations such as multiplication.

The scheme for division suggested here consists
of two parts. In the first part the divisor X is forced into
a suitable range and the dividend v is adjusted. The
divisor and dividend transformations are performed us-
ing a few initial steps of the iterative multiplicative nor-
malization algorithm [ERCE73, DELU70, ROBE73]. In
the second part the quotient digits are obtained by a re-
cursive algorithm [ERCE75, ERCE77] in which the
selection can be performed by rounding. The proposed
division scheme generates an m-digit quotient in m+3
additive steps which do not require full precision carry
propagation. The scheme also provides the remainder.
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The division schemes based on the range
transformation have been considered before [SVOB63,
KRIS70, ERCE75]. The main contributions of this arti-
cle are implementation-efficient range transformation
and a simple quotient selection method which does not
depend on the radix.

In Section I1 a derivation of the division scheme
is presented. A radix-16 division algorithm is given in
Section III. The implementation aspects are discussed
in [ERCE83].

II. DERIVATION OF THE DIVISION SCHEME

Consider the division problem
Y=X0 +R (1

where
X is the n-bit divisor, | X| € [1/2, 1);
Y is the 2n-bit dividend, I¥| < |x|;
Q is the n-bit quotient and
R is the corresponding remainder.

A binary recursive division algorithm computes
sequentially the partial remainders and the quotient di-
gits using the recursion

Rivi =2R, — q;u X, =012, .n—1 (2)

where
Ry = Y is the initial remainder.

w1 = SELECT(R,,X) is the j+1-th quotient bit,
and

SELECT is a selection function.

In order to reduce the number of steps, the
binary algorithm can be modified so that b bits of the
quotient are obtained per step. That is, the radix of im-
plementation is defined to be r = 2%, However, the use
of a higher radix makes the selection of the quotient di-
gits as well as the computation of the partial remainders




more complex [ROBES8, ATKI68]. The computation
of partial remainders can be simplified by precomputing
necessary multiples of the divisor so that the recursion
step takes about the same time as in the binary case.
However, the selection of higher radix quotient digits
remains difficult. In this paper we describe a higher ra-
dix division algorithm in which (i) the selection can be
performed by a simple rounding and (ii) advantages of
higher radix can be exploited.

A. Recursion and Selection

The recursive algorithm for division in which the
quotient digits are obtained by rounding partial
remainders to the integer part and taking the integer
part as the quotient digit requires the divisor to be in
the range

3)
where « is a constant between 0 and 1, to be deter-
mined later. It also requires the use of a redundant

representation of the quotient digits. A symmetric
redundant digit set (signed-digit set [AVIZ61]) is used:

[M—a, 14 a]

D,={~p,.~1,0,1,...p) (4)

where for radix r
2 < p <y

The recursion is

Ri=r(R 1~ g X" (5)
and

q; = SELECT(R;) (6)

sign R; I[R,l + l,/I!] it 1R, < p
= sign R [IR |J otherwise

where

R, is the j—th remainder,

X" is the scaled divisor such that

I—a <X 44,
and

qi € D, is the j—th quotient digit.
Initially,

Ro = Y.
is the scaled dividend Y such that

[Rol <p+Band1/2 < B8 < 7{7 @)

The validity of the recursion and the selection function
is established by proving the following two claims.
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Claim I:

If the bound « is

- Bglr=1)
p

0<a<% (8)

and ¢, is the j-th quotient digit from a signed-digit set
D, ={-p,...=1,0,1,..0], /2 < p < r, selected according to
the function SELECT, then the partial remainder R;

satisfies
'R/'| <p+8 (9)

for all j.

Proof:
To show that the partial remainders are bounded
we proceed by induction. By definition (7):
[Rol < p+
Assume
(Rl <p+p
Let 4 =1- X" so that [4]| =«. Then

IR < rIR -y = gl + rlAllg,] (10)

Krlp+8-p)+rap

1 (1 — m_—ﬂ)]p

r p

g+ r(

ppB

because, by definition of the selection function SELECT,
the choice of digit ¢; can always be made such that

IR, ~ gl <8 (1n

]

Claim 2:

Let 9" = jﬁq,r“’ be the computed quotient. Then
i==(}

Lo (12)
Also, R = r=""'R,,...
Proof:
By substitution
Y = XY g 4 R (13)

i=0




TR IR TR Y TR ATE TR ape s e

and
Y’ [ |Rm+||max
L 0 Rl (14)
X 'X ‘I’TIII’]
- ,'__,,,7| P T E
11—«
=r"" forp=r—1

<r™ forp < r—|

From (13, 14), R = /~n-1R

m1-

a

According to the analysis of the rounding selec-
tion method [ERCE75] the bounds a, 8., p and the selec-
tion interval overlap A are related as follows. First, in
order to have efficient implementation of single-digit
multipliers, required by the division recursion, the max-
imum digit value should be [ATKI70]:

o< l"—3‘l5'- (15)

Therefore, from (7):
1/2 <B8<2/3

On the other hand, 8 = %(1 +4), where A is the overlap

between the selection intervals [ERCE75]. Therefore,
the upper bound on « can be written as:

a < %[1——';23]

-1
_r“ 4

For A = 1/+,

a

=3 (16)

N

This bound will be used to define the range of the
transformed divisor.

To transform the divisor into this range and ad-
just the dividend Y, we adopt the multiplicative normal-
ization technique [DELU70, ERCE73].

B. Range Transformation

The multiplicative normalization of a given argu-

ment
[ Xol € [1/2,1)
is performed as a sequence of transformations such that
—1 N
1—a < XfIM | < 1+a (17
=0

for a given constant 0 < a < 1 and the number of steps
p. The multipliers are of the form M, = 1 + s, r* |
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where r is the radix and S, is a digit in a redundant ra-
dix r number system. The form of the multipliers
simplifies the implementation since the full-precision
multiplication is replaced by an addition, a single radix-r
digit multiplication and a k-position shift.

The multiplicative normalization is performed re-
cursively:

Xerr = X1+ Sr %), 0<h<p (18)

The digit value of S, is chosen such that the error I
after step k is

|(’k+|' = Il - Xk(l - S/,vr”k)l < T%F_k (19)
The number of the transformation steps p can now be

obtained from the following condition, implied by (16)
and (19):

le,] < a (20)

Assuming that the overlap A=~1r~ and r>8, it follows

that p>3. That is, three steps are sufficient to transform
given divisor X and dividend Y into the required range.

The multiplicative normalization is conveniently
performed using a recursion on scaled differences
(remainders). Let

Dy =r*"YX, = 1), 0<k<p (22)

From (18) and (22), the scaled difference recursion fol-
lows:

Divy = rDy + Si + Sy Dr™*, 0<k<p (23)

For p=3, the normalization procedure requires determi-
nation of Sy, §,and $,. A complete derivation procedure
for the selection rules is discussed in [ERCE72]. For the
sake of brevity, we only show the radix-16 rules in the
next section.

III. RADIX-16 ALGORITHM

In this section the division scheme is illustrated
for r=16. The algorithm is as follows:

begin
/* Part 1 - Range Transformation
/* Inputs: Divisor X, e [1/2,1)

/* Dividend v, | v,l < | Xol
/* Outputs: Transformed divisor X"
/* Transformed dividend v*

I: if 1/2< X,<5/8
then
Dy ~—2X,— 1
Y] "‘2)’0
else
Dl -— X()"' 1
Yi— Y




2 S, — sT;gT,D,\[ls(D, + uo]
3. Dy— 16D, + S, + $,D,
Yy — V(1 + $,167)
L5, - 5—112702116(02 ¥ Ul)]
50 X — (16D, + S, + §,D,1671 4+ D167?
Y e V(1 + S,167D)
g, =0

/* Part 2 - Division Recursion
/* Inputs: Divisor X~

/* Dividend v’

/* Outputs: Quotient Q* - fq,lé"’

i=0

/* Remainder & = 16"""'R,, .,
7. forj=0,1,2,..., mdo

710 R, —16(R_; — X g,

7.2: g, — SELECT(R))
end

The selection function SELECT, defined in (6), is

performed on an estimate R. of the partial remainder

such that IR, — R,| € Tl?{ The terms U, and U, are six-
bit rounding constants defined as functions of the seven
leading bits of the truncated scaled difference D;,
j=0,1,2.

U, = iu,?’ (24)

i=1
where the switching expressions for u,, are

Uy =ty =0,

Uy = Kldo;iz,

Ug = Kldo;h(az 3 (73),
us = K1(dy + dydy) + K2ldy + d\{dy + dy) + dg]

ug = Kldsds + K2do(dh + dady)

and K1 and K2 denote steps 1 and 2, respectively. The
derivation of these step-dependent rounding constants is
based on the selection intervals given in the Appendix.
A more detailed discussion can be found in [ERCE72].
An example of the division algorithm is given in Figure
1,

IV. CONCLUSION

A scheme for higher radix division has been
presented. It consists of a 3-step transformation of the
divisor and the dividend into a range which allows use
of a recursive higher radix division algorithm with a
simple quotient selection method. A detailed derivation
of the range transformation requirements and the pro-
cedure has been described and an algorithm for r=16
has been given. The implementation details and the per-
formance are discussed elsewhere [ERCES3].
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Divisor Xo = 0.8107509300,
Dividend Yy = 0.5990471500,
Quotient Q = 0.7388793868

Part 1:

After Siep 11 Dy = -0.1892490700, Y, =
After Step 2: Dy = 0.2150186000, Y,

0.5990471500, Sy = 4
0.7488089375, S, = -3

Transformed divisor and dividend:

X" =10015624282. Y = 0.7400338328

Part 2:

i Remainder q Quotient Error

1 -4.1844575266 1 1.0000000000 -0.2611206132
2 -2.8513250219 -4 0.7500000000 -0.0111206132
3 24537962023 -3 0.7382812500  0.0005981368
4 7.2107415359 2 0.7387695313  0.0001098555
S 3.1968726195 7 0.7388763428  0.0000030440
6 3.0749653602 3 0.7388792038  0.0000001830
7 1.1244492114 3 0.7388793826  0.0000000042
8 1.9661885316 1 0.7388793863  0.0000000005

(All numbers are represented in decimal)

Figure 1: Example of Division
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