The Design of Two Easily-Testable
VLSI Array Multipliers

Joel Ferguson and John Paul Shen

Department of Electrical Engineering
Carnegie-Meilon University
Schenley Park, Pittsburgh PA 15213 U.S:A.

ABSTRACT

Array multipliers are well-suited for VLS! implementation because
of the regularity in their iterative structure. However, most VLSI
circuits are very difficult to test. This paper shows that, with
appropriate cell design, array multipliers can be designed to be
very easily-testable. An array multiplier is called C-testable if all its
adder cefls can be exhaustively tested while requiring only a
constant numeber of test patterns. The testability of two well-known
array multiplier structures are studied. The conventional design of
the carry-save array multiplier is shown to be not C-testable.
However, a modified design, using a modified adder cell, is
generated and shown to be C-testable and requires only 16 test
patterns. Similar results are obtained fcr the Baugh-Wooley two's
complement array multiplier. A modified design of the Baugh-
Wooley array muiltipiier is shown to be C-testable and requires 55
test patterns. The implementation of a practical C-testable 16 x 16
array multiplier is also presented.

1. INTRODUCTION

In recent years, it has become feasible to implement an array
multiplier of reasonable size on ane very large scale integrated
(VL.SI) circuit chip [1,2]. In general, VLSI circuits are very difficult to
test for several reasons. The high device to pin ratio severely limits
the controllability and observability of a VLSI circuit chip. There
exisis a large number and types of faults, many of which cannot be
modeled by the traditional stuck-at-0/1 fault model. Test pattern
generation and verification procedures are becoming very costly or
even computationally infeasible to implement [3]. However, this
paper shows that, because of their regular iterative structure, VLS|
array multipliers can be desigried to be very easily-testable.

Previous works have shcwn that some regularly-structured
circuits are very easily testable. An iterative logic array (ILLA) is a
logic circuit consisting of a regular array of identical cells. Kautz
was the first researcher to investigate the testing of one and two
dimensional ILAs [4]. He characterized the necessary and
sufficient conditions for exhaustively testing all cells in a general
ILA. Friedman has shown that certain one-dimensional ILAs can be
fully tested using a constant number of fest patterns, i.e. the
number of test patterns needed is independent of the size of the
array [5]. He called these C-testable ILAs. An example of a C-
testable ILA is the n-bit parallel adder consists of a linear array of n
full adders [5]. The n-bit parallel adder can be fully tested using
only eight test patterns regardiess of the size of the adder. Others
have also investigated the testing of ILAs. Parthasarathy and
Reddy [6] developed the concepts of one-step testability and one-
step C-testabifity. Sridhar and Hayes [7] have applied the concept
of C-testability to the testing of bit-sliced microprocessors. Other
than the original work by Kautz, most studies on easily-testable
ILAs only focus on one-dimensional arrays. In this paper, the

CH1892-9/83/0000/0002501.00 © 1983 IEEE

concept of C-testability is applied to the analysis of the tectability of
practical two-dimensional muitiplier arrays.

Section 2 outlines the fault moda! and testing approach used in
this paper and characterizes the fauity and fault propagation
behavior of the basic cell. Section 3 presents a convenient notation
for describing the structures of array multipliers and introduces the
carry-save array multiplier. It is shown that the conventional design
of the carry-save array multiplier is not C-testable. However, a
moditied design of the carry-save array raultiplier can be obtained
and is shown to be C-testable. Section 4 documents similar results
on the Baugh-Wooley two's complement array multiplier. A C-
testable 16 x 16 carry-save array multiplier has been designed. Its
layout has been generated and can be tmplemented on a NMGS
chip. Details of the design and possible extensions to this research
are discussed in Section 5.

2. TESTING APPROACH

The basic building block, or cell, used in most array multipliers is
a full adder with a 2-input AND gate (for product bit generation)
connected to cne of its three inputs. The diagram and the logic
equations of the basic cell is illustrated in Figure 1. Each celi has
four inputs, labcled a, b, ¢ and d, and two outputs labeled x and y
corresponding to the sum and the carry outputs, respectively, of the
full adder. allb
y

- Full —2
x = (aeb)®cod carry| Adder]
y = (asb)ec + (aeb)ed ous
+ ced sum
vx

Fig. 1. The basic full adder cell used in array multipliers.

The principal aim of the testing approacii proposed in this paper
is lo exhaustively test each cell in the array without exhaustively
testing the entire array. The exhaustive testing of the entire array.
as has been the practice to date, is becoming impractical. It is
believed that by taking advantage of the iterative structure in an
array multiplier, all the cells can be si multaneously tested. The fauit
model used in this paper is similar to that used by previous
researchers [4,57]. The fault model assumes: (1) In an array
multiplier, at most one basic cell is faulty at a ime. (2) The fauit is a

permanent fault. (3) The fault may alter the cell’s output functicns
in any arbitrary way, as long as the fauity cell remains a
combinational circuit. With the above assumptions, the testing of
an array multiplier must involve the exhaustive testing of avery cell
by applying aill possible input patterns and observing all output
patterns. In effect, the truth table of every cell must be verified.

Definition 1: An array multiplier is testable if tre foliowing two
conditions are met:

1. For each cell in the array, all possible (24) cell input
vectors can be applied to tha cell.

2. For each cell input vector applied to a cell under test
any faulty signal produced at the outputs of the cell can
be propagated to a primary output of the array.

Condition 1 is necessary for the exhaustive testing of every cell.
Conditicn 2 ensures that as each cell is baing exhaustively tested
any fauity signal at the cell output(s) is observable at the array
oulputs. The concept of C-testability can be extended to the testing
of array multipliers.

the number of array input vectors, or teot ;pauerns, reqmred is a
consiant and independent of the size of the array multiplier.

Since each basic cell has four inputs, a cell input vectcr can be
represented by a binary 4-tuple <a,b,c,d>. v, can be used to denote
the input vector whose binary 4-tuple is the binary representation of
k. For example the cell input vector <a,b,c,d> = €0,1,0,1> is denoted
as v,. In order to satisfy condition 1 of Definition 1, Vo Yy , v
must be applied to every cell in the array.

15

Based on the fault model defined eariier the effects of a fault in a
cell on its cutput signals can be easily characterized. Let <a,b,c,d>
be an input vactor to a celt that produces the output vecter <x,y>. if
the cell is faulty, then the possibte faulty output vectors are: <x',y>,
<x,y'> and <x'.y">, where x” and y’ are the complements of x and y
respectively. Hence, given a faulty cell and 2 cell input vector that
produces faully outputs, then either one of the two output signals is
inverted or both are inverted.

Lemma 1: Given a cell input vector <a,b,c,d> that produces the
autput vector <x,y>. The cell input vectors <a,b,c’,d> and <a,b,c,d”>
will both produce output vectors of the form <x',y*>, where x' is the
complement cf x and y* is either y or y'.

Proof: The x output of a cell is defined as the exclusive-OR of three
terms, namelya b,candd,ie. x = (asb) ® ¢ & d. Clearly, xis
the parity of the three terms and if either the ¢ or the d input is
inverted then the output x will also be inverted. A

The above lemma implies that if & faulty signal appears at orly
the ¢ or the d input of a fault-free cell then the faulty behavior will be
propagated to the x output of the cell. This lemma will be used in
the following sections to prove the C-testability of two array
multipliers.

3. THE CARRY-SAVE ARRAY MULTIPLIER

The 3 x 3 carry-save (CS) array multiptier is illustrated in Figure 2.
The array receives two 3-bit operands and produces a 6-bit
product. The ¢ and d inputs in the top row and the ¢ inputs of the
celis in the left most diagonal are connected to logical 0 during

multiplication. However, it is assumed that during testing these
inputs are available as primary inputs to the array.

The structure of the CS array multiplier is now formally defined.
The n x n CS array multiplier consisis of n? cells arranged as a
shifted cascade of n rows of n cells each. There are n diagonals
and 2n-1 columns. The rows are numbtered 0, 1,. .., n-1 from top
to bottom, while the diagonals are numbered 0, 1, ., n-1 frem
right to left. A cell is denoted (i,j) if it is in the i™ row and j'h
diagonal. The sum bit from cell (i,j) has pcsitional weight of 2' *!

a, a a,

ql,? d Dt do.u
Co2 Cos Coo

12 5
/ 0, 0,1 y 0

[4

\N

o

:

:
N
o

5
BN

s i
/ Al L7 ,
¥ ¥y v YY ¥
J
2,2 2,1 2,

—]
-—
- ©

Fig. 2. The 3 x 3 carry-save array multiplier.

An array multiplier receives two n-bit operands, namely the
multiplicand and the multiplier. The fanout of these input bits in the
array results in the following constraints on the a and b inputs to ait
the cells,

aod. = a”. =...= an_” forj =0,1,...,n-1

bi'0 = bi'1 =...= bi'n_1 fori =0,1,...,n-1
Hence, the notations for the a and b cell inpute can be simplified by
using a, to denote all a, fori = 0,1, , n-1, and using bi to denote
allb,. forj = 0,1, , -1, The pnmary inputs to the CS array
consust of the followmg hve n-bit vectors.

a= <an_1,an PITRE: I >

b= <bn-1’ n-2'" b >
%o = Con1- 0,n-2’“"c0,0>
do = g ny0 Ggni2idop”
=<c

1€ >

Cn1 n-1,n-1 Cn2,n-1Con.1

Consequently, each input pattern to the CS array can be denoted:

= [a, b, Cor dgs €, 1] The intercell conneclions in the array
can be dehned by equatlons of the form P = Gy dencting the
connection from the q output of cell (k1) to t‘\e p input of cell (i.j).
The intercell connections in the CS array multiplier can be divided
into the following two groups:

Diagonal: dij =Yy

,fOFI 1,2,...,n1andj=0,1,...,n-1

Vertical:cij L= fori=1,2,...,n-1andj=0,1,...,n2

1A1,]+1

In order for an array multiplier to be C-testable, it must be
testable and the number of test patterns required must be a
constant. [t can be shown that the carry-save array multiplier is

testable but the number of test patterns required is a function of the
size of the array,

Assume that the cell input vector <a,b,c,d> = <0001> = v, is to
be applied to every cell in the array. Let v, be the input vector to
cell (i,j), i.e.<a,b.c,d> . = <OROT>. We now examlne th(’ implications
on the input vectors 01‘ the other celis in the same] " diagonal of the
array. Since the a input is fanned out to alf the cells in the j;”"
diagonal, the a input to every cell in the diagonal must be 0; see
Figure 3. Since the carry output of cell (i,j) is Vi = Q and d

the input vector to cell (i + 1,j) must be <a,b,c, d> = <0--07,
wrlere denotes either 0 or 1. With an input vector of the form
<0--0>, the carry output of cell (i+ 1,j) must be 0. Hence the input
vector to cell (i+2,)) must also be <0--0>. Continuing the same
arqument it can be concludead that all calls below the cell (ij) in the
c‘xagona! must have input vectors of the form <0--0>.

st
/// /.‘ .
/’Hv /g& /

YAV T4V
f_iv YV ¥

Ny

+11

b
PR

N

T |

Fig. 3. The i diagonal with <abed,; = <0001>,

The cell input vector <a b,v,d> T = <0001> implies that the carry
input o cell (i,j) and the carry output from cell (i-1,j) must be equal
fo 1. Since a, i = 0, in order to produce a carry output of 1 the
input vector to cell Gi-1,j) must be <a,b,c, d) e <0-11>. Following
the same line of reasoning, the input ven,tor to cell (i-2,j) must also
be a <a b,c, d) 2j = <0-11>. Infact, all the cells above the cell (i,j) in

the | d|agonal must have input vectors of the form <0-11).

It can be concluded from the above arguments that no two cells
in the same diagonal can simultaneously receive the input vector
<0001>. Hence, n test patterns are needed in order to apply the
<CO01> input vector to each of the n cells in the same diagonal.
Clearly, the number of test patterns required to fully test the array
will depend on the size of the array. The foregoing arguments lead
to the following theorem.

Theorem 1: The carry-save array multiplier is not C-testable.

A modified design of the CS array multiplier is now presented.
The modified carry-save (MCS) array multiplier has the exact same
structure as the unmodified CS array multiplier, only the function of
the basic cell is changed. The basic cell is modified so that for
input vectors <0001> and <0101> the y output has the value 1,
There is no other modification to the basic cell. The Karnaugh
maps for the original and the modified y cutput functions are shown
in Figure 4.

The modification to the hasic cell does not affect the
multiplication function of the array. When the array is performing g
multiplication, the primary inputs Coj and d Jforj =0, 1, , N1,
are set to logical 0. Consequently, the mput vectors <OOO1> and
<0101> can never appear at the inputs to any cell in the array. Thus

/111,

by changing the y output values for the input conditions <0001> and
<0101> the multiplication function of the array is not affected. We
now show that the MCS array multiplier is C-testable.

* modified minterms

cd cd
Yy |00 O1 11 10 Y |00 01 11 10
0|0 0 1 o] c}lo 11* 1 ¢}
onlfo o0 1 0O ot|lo 1* 1 O
ab ab
11lo 1 1 1 1m]o 1 1A
w0 0 1 O |0 0 1 0

standard carry-out modified carry-out

Fig. 4. The truth table of the moditied basic eli of the MCS array.

In order to show that the MCS array multiplier is C-testable, we
must show that: (1) using a constant number of test patterns, ail 16
input vectors Vge V v, can be applied to every cell; and (?) if a
faulty cell exists the faulty output signal from this cell can be
detected at the primary outputs.

Part (1) can be shown by a constructive procedure. As stated
earlier, a test pattern for the CS, hence the MCS, array multiplier is
denoted: T = [a, b, Cor dos €41 . Let T, denote the test pattern
which simultanieously applles the v, input vebtor to every cell in the
array. It can be shown that the following group of six test patterns
applies the six input vectors, v Vg Vg Vg,V and Vi tO every cell

in the array. v ¢

T = [<00...00> <00...00> <00...09> <00...00> <00...00>]
T‘ = [€00...00> <CO.. 00> <11...11><00...00> <11...11>]
T, = [<00...00> <11...11><00...00> <00...00> <00...000]
T = [€00...00> <11...11> <11...11> <00...00> <11..113]
T = [<11..11><00...00> <11...11) <00...00> <11..110]
T = [<11.. 11)(11...11)(11‘..1’0<I11...11><11A..11>]

Figure 3 illustrates how the test pattern T 10 produces the input
= <1010> at every cell.

vector v

\\

//
(, 3 {3 N

¥
\121311c NLO O

Fig. 5. Test pattern T, for the MCS array.

A second gro.up of test patterns can Le constructed. Each test
pattern in this group, denoted T , applies one input vector, namely
Vir to one half of the cells in the array and applies another input
veotor namely v, to the other half of the cells. Each test pattern T,
has a corapanion test pattern, denoted T. ., which applies vJ (v) to
those cells having the input vector v, (v.) under T . Hence, by usmg
the pair of test patterns \F and T.. the gnput vec?orb v, and v, can be
applied to every cell in the array. The test patterns in thls group are
listed below.

T, 5 = [<00..00> €00..00> <11..11> <11...11> <01...013]
Ty4 = [€00..00> <00...00> €00...00> <11...11> <10...10>]
Ty = [€00..00> <11...11> €00...00> <11...11> <10...105]
T, ¢ = [€00..00> <11..11> <11..11><11...11><01..01]
Ty 14 = [€11..31>€10...10> €00...00> <00...00> <10...10>]
Tigg = [<11..115<01..01><11...117 €00...00> <01...01)]

Similar to T. T] ki denctes a test pattern which applies each of the
four input vectors ViV Vi and v, o exactly 1/4 of the celils in the
array. T. ki T.< L and l' can be similarly defined, and together
with T, can be used to apoly the four input vectors v, Vv , and

v, to alf the cells in the MCS array. The third and last group owf test

panerns for the MCS array is listed below with 18 111213 illustrated
in Figure 6. ST
I’811 1213 7 = [K11...11> <01...01><00...00> <01...01> <00...00>]
T11 12188 = = [K11..11> 10...10><01...01> <01...01> <00...00>}
T12,13,8‘11 = [<11..11> €31...01><00...00> <10...10> <10...10>}
T13,3,11.12 = [€11..11><10...10> <10...10><10...10> <01...01>]
0
c/ do. / /
0,2 33
c” ' (C/
g y v} IE X
¢ OJ O
0,2 0,1 X

(v Z //
/ o1

Loz
/ S
1,2 1,0
. / /l
! 33
A 1 vy (
2,2 2,1 2,0

|

Fig. 6. Test Pattern T8,11, 1213 for the MCS array.

It can be chserved that all 16 input vectors can be produced at
the inputs of every cell in the MCS array by applying the 16 test
patterns from the above three groups. Furthermore, the number of
test patterns is clearly independent of the array size. The above
construction procedure leads to the following lemma.

Lemma 2: Given a n x n modified carry-save array multiptier, only
16 test patterns are needed to apply all 16 cell input vectors, Vg

c Vg to each of the n? cells in the array. "

doy

bCI

It remains to be shown that for each of the 16 test patierns the
faulty signa! produced by a faulty cell can always be propagated to
the primary outputs. We use A to denote the value of a signal line
which has been inverted due to a faulty cell. Hence, if cell (i) is
faulty, then the three possible faulty output conditions are: <A B2
<X, A) or <A A>l Consequently, Lemma 1 can be restated as
given a fautt-free cell (k,1), if only the ¢ or the d input has the value A
then the x output will have the value A. Clearly, if a A is propagated
to a primary output then the fault is detectable.

Lemma 3: Any faulty signal produced by a faulty cell (i,j) in a MCS
array muitiplier can be propagated to a primary output.

Proof: Since all signals fiow from top to bottom a signal originating
from cell (i,j) cannot propagate to cell (k1) for any k and | such that
k+i<i+jork<{iorl>j.

Case 1: if the fault in cell (i,j) produces a faulty signal A on the
sum output x; then a A will be propagated to the ¢ input of cell
(i+1,j-1) which is directly below cell (i,j). Since any faulty signal
must originate from cell (i,j) the d input of cell (i + 1,j-1) cannot have
the value A because d.+1 yi= , and i+j-1<i+j. Hence, based
on Lemma 1, the x ou{put of ceII (i+1,j-1) must also be A.
Continuing this line of argument it can be shown that all x outputs
in the same column as X must have the value A. In effect, the
faulty signal A is propagated down the column until it reaches a
primary output x 1k where k = (i+j)-(n-1) and i+§{ > n-1, or x
where k = i +1and|+;<n 1.

k.0

Case 2: If the fault in celi (i,j) produces a faulty signal A only on
the carry outputy, ; then the d input to cell (i + 1.j) wilt have the value
A. The ¢ input of cell (i+ 1,j) cannot have the value A because it
originates from cell (i,j+ 1) and j+ 1 > j. Hence, using Lemma 1, the
sum output of cell (i+1,j) must have the value A. The same
argument used in case 1 can now be applied. Hence the faulty
signal X, 15 = A will be propagated down the column to a primary
output x where K (i+j+1)-(n-1) and i+j+1 > n-1, or x

n-1,k
wherek = t+j+1andi+j+1<n-1.

k.0
A
Combining Lemmas 2 and 3, the following Theorem is obtained.

Theorem 2: The n x n modilied carry-save array muitiptier is C-
testable. The number of test patterns required is 16.

We have modified an array multiplier which is not C-testable to
one which can be fully tested using a constant number of test

patterns. During normal operation, the n ¢ inputs, {c oy
o 1 and the n d inputs, {d; oo 1} are connected to
logical 0. During test mode, control of these signal lines are

needed. However, ali the ¢ (d) inputs with odd subscripts j always
have the same value and all the even subscripted inputs always
have the same value. Hence, only two additional primary inputs are
needed to control the ¢ inputs, and two more for the d inputs.
Similarly, two additional primary inputs are needed to control the n
¢ inputs, {c 5 Cogn }. A total of six additional primary
inputs are needed in the MC S array muiltiplier for control during
testing. This number is independent of the array size. It is worth
noting that the 16 test patterns required is optimal in the sense that
each cell has four inputs and 1o exhaustively test each cell at least
16 test patterns to the array are required.

in designing a practical carry-save array multiplier a finai row of
carry-propagate adders are needed to produce the higher order
product bits. We denote the MCS array multiplier with a final row of
carry-propagate adders as the MCS/CP array multiplier. The 3x 3
MCS/CP array multiplier is depicted in Figure 7.

The testing of the MCS/CP array multiplier must include the
testing of the last row of full adders. Eight input vectors must be
applied to each of the full adders in the fast row. Fortunately, it can
be shown that in the process of applying the 16 test patterns to the
MCS portion of the array, all 8 input vectors are appiied to avery full
adder in the last row. The only requirement is that the carry-in input
to the last row must be controlled. It is also easy to show that the
last row of full adders does not hinder faulty signal propagation to
primary outputs. The least significant erroneous sum bit from the
MCS subarray will produce an erroneous bit at the sum output of
the corresponding carry-propajate full adder. Hence, the n x n
MCS/CP array multiplier is also C-testable and requires one
additional primary input than the MCS array multiplier.

Theorem 3: The n x n modified carry-save array multiplier with a
final row of carry-propagate adders is C-testable and requires 16
test patterns.

4. THE BAUGH-WOOLEY ARRAY MULTIPLIER

Theorem 4: The Baugh-Wooley array multiplier is not C-testable.

Theorem 4 can be proved by showing that no more than one celi
in any diagonal in the subarray of type 3 cells may have the input
vector <abcd> = <0100>. To make the BW array multiplier C-
testable it is sufficent to make each subarray in it C-testable while
meeting the constraints imposed by the signal flow between
adjacent subarrays. For instance, the a and b inputs to subarrav of
type 3 cells are the outputs of the type 1 cells and are not directly
accessable to the tester. Hereafter a subarray of type N cells is
called a type N subarray for N & {1 ,2.3,4,7}.

In this section, the same testing methodology i.s gpplied to t.her cell type 1 cell type 2
Baugh-Wooley (BW) two’s complemant array muiltiplier {1]. Unlike
the CS array muitiplier the BW array multiplier is not an iterative b a b
array because it contains seven, slightly different, types of cells. Alf
seven cell types are based cn the full adder. Figure 8 illustrates c c
eachrof the seven cell types and defines their logical functions and d d
input and output notations. As Figure 9 shows, the BW array
multiplier consists of a two dimensional subarray of type 3 cells and - %
four one-dimensional subarrays (one subarray of type 1 cells, one J ' y
cell type 3 cell type L
a,
a
¢ b
/
d d
e
Cz,z . y x
/{ / *‘ b| céll type 5 cell type 6
/ 1,2 / 1,0
Vi
a
e : = v
4 v<
< (=l
2,2 2,1 2,0 c
full adder AND gate inverter
a y X
F.A. F.A. F.A. fa———- cell type 7
I l l 4 Fig. 8. The seven cell types of the BW array multiplier.
P [P P, N -
R 0 R 3 ? ! ° Two types of modifications to the BW array multiplier are
Fig. 7. The 3 x 3 MCS/CP array multiplier. necessary. The first modffication is to add an input to the array
of type 2 cells, one of type 4 cells and one of type 7 cells). There multiplier, called e, and n-2 exclusive-OR (XOR) gates. The input ¢
are three sets of inputs to the BW array multiplier a = <@ ;8 , ... Iisconnected to one of the inputs ¢f each XOR gate. The other

a> b = <pn_1,bn_2, -+, bgd, an_d d= <dn.2.dn_3, -+ dy>. Theinput
vector d is connected to logical O during multiplication but is
available as primary inputs during testing.

The type 3 celi is the unmodified basic cell used in the carry-save
array multiplier. These cells are connected in the same way as in
the carry-save array muttiplier. Hence, like the unmodified carry-
save array multiplier, the two-dimensional subarray of type 3 cells is
not C-testable. This leads to the following theorem.

input to the XOR gate is b'.. wherei = 0,1,...,n-1, and the outputs
of the XOR gates are connected to the b inputs of type 2 and type 5§
cells. Notice that the b input of a type 2 cell is the same as the d
input of the type 2 cell above it. The XOR gates allow the tester to
invert the signal values to these inputs. The second type of
madification is to modify the truth tables of cell types 1,2, 3and 5.

e e T

Type 2B: <00100> Q10> <11

-]

Fig. 9. The5x5 Baugh-Wooley array multiplier,

The type 1 cells are modified to increase the controllability of the
inputs to the type 3 subarray so as to make it C-testable. The truth
table entries for <abcded =<--1--> may be changed because when
the array is multiplying these inputs to type 1 cells can never occur.
The type 2 cells are modified for two reasons. The first is to
increase the controllability of the inputs in the type 3 subarray. Two
modified designs, type 2A and type 28, of type 2 cells are needed.
The type 2A and type 2B cells are arranged in the type 2 subarray
such that no two cells of type 2A are adjacent and no two cells of
type 2B are adjacent and the upper leftmost cell is type 2A. The
second reason to modify type 2 cells is because the type 2 subarray
is not C-testable without modification. An input vector to a type 2
cell which causes the subarray to be not C-testable is
<abcede> = <00100>. Only the truth table entries for
<abcde>=<0-1--> and <--1-0> may be changed because when the
array is multiplying these cell input vectors do not occur. Since the
type 3 subarray is a carry-save multiplier design it is modified as in
the modified carry-save array. Only truth table entries
<abcd> = <0-01> may be changed since all other input vectors may
occur during multiplication. The type 5 cell is modified to provide
controllability to the second feftmost type 7 cell. Below is a list of
the modifications to the cells of the BW array multiplier in order to
make it C-testable. The outputs of the input vectors that are not
shown are not changed.

<abcde> unmodified modified

or<abcd> {xy> <xy>
Type 1: <10101> <10 01>
<01111> <012 A1
<00100> <10> <1
<01100> <10> 01>
<01110> 10> <1
<00110> 10> 01>
Type 2A: <10100> 01> <11
<00100> <10 01>
<01110> <10> 01>
<11110> 10> an

b a
‘// ° b, <01110> <10 <
b <1110 A0 <01
Type 2A & 2B: <00110> <10 <01
<01100> a0 <01>
<00101> Aao> 0N
<01101> <10 on
<11100> Ao <an
B Type 5: <00100> a0 an
<01110> 10> an
Type 3: <0100> Ao A
o <0110> <10> an

L]

The set of test patterns for the BW array multiplier is now
presented. The table below is organized into four columns. The
first column identifies the test patterns to the BW array multiplier.
There are 55 tests, tytot,,. The second, third and fourth columns
show the input vectors a,b and d. In these fast three columns, all
individual bits not separated by a comma are repeated according to
the patterns indicated. For example a = <1,1,01...01> means that
a , and a_, have the value 1 while the remaining bits alternate
their values so that all bits with even subscripts have the value 1
and all bits with odd subscripts have the value 0.

test <@ .8 b ..bpd <d ..dpd <e>
t, <0,000..00> <00..00,0,0> <0,00..00> 0>
t, <0,000.00> <11..11,1,1> <0,00..00> <0
‘t2 <0,1,11..11> <10...10,1,0> <0,10..10> <>
t, €0011..11> (10.10,1,00 <001..01 <0>
t, <00,11..1D <01..0100> <001.01> 0>
t, <©1,11.11> ©1.0100> <0,0..10> o>
tG <1,0,00...00> <00...00,0,0> <1111 <>
t, <0000..00> <00..000,1> <1,11.11> <0>
tB <1,1,11...11> <10...10,1,0> <0,11..11> <0>
ty, <1,1,11.11> ©01.010,1> <1,00..00> o>
t, <1,000.00> <IN <LITAD 0>
t,, <0000..00> <11.11,1,00 111> 0>
t, <1,010.10> <00..00,00> <0,11..11> <>
ty <1L1,01.01 €00..0000> <0,11..11> o
ta <1,1,01..01> <t 111,10 <0,01..01> <>
t15 <1,1,10..10> Q11..11,1,1D <0,10...10> <0>
te <1,010.10> <00..00,0,0> <0,00..00> o>
t,, <0,1,01..01> <00..000,0> <0,00..00> 0>
ty <00,10.10> <11..11,1,0> <0,00..00> o>
t19 <1,0,01...01> <11..11,1,00 <0,00...00> <0>
ty <1,010.10> <00..00,1,0> <1,11.11> <0>
t,, <0,1,01..01> <00..00,1,0> <1,11..11> <0>

1y <0,0,00...00> <00...00,0,1> <0,00...00> <>
tys <0,1,01...01> <£G0...00,0,1> <0,00...00> <0>
thy <1,0,10..10> <00...00,0,1> <0,00...00> <>
e <0,1,01..01> 41,1111 <0,00...c0> <0>
g <1,0,10..10> <11..11,4,D <0.00...60> 0>
ty, <0,1,01..01> <£0...00,0,1> <1,11..11> <>
tyg <1,0,10..10> <090...00,0,1> <0,11...11> <>
tg 1,0,10...10> 111141, <1111 <0>
ty <0,1,01...01> <1t..11,1,1> <H1tat <0>
ta <H1,11..11> 0 €00...00,0.00 <0,00...00> ()2
t L1111 1.11,1,00 <0,00...00> <0>
ty A1 1,1, <0,00...00> <0>
ty, 1111 A1..11,0,1) 1110 <
tas 1111 a1, <111 <>
Lo <O0,1,11..11> €01..01,0,> <0,00...06> <>
ty 0,1,11..11> 10...10,1,0> <0,00...00> <>
tag <0,0,11..11> <00...00,0,0> <1,00...00> <0>
tag <0,1,11..11> <560...00,0,0> <KL <0>
Ly €0,0,00...00> <10..10,1,0> <1110 <O
ty, <0,0,00...00> <01..01,0,1> <1,11..11 <>
t, <0,1,11..11> <01..01,0,> 1111 <
t <0,1,11..11> <10..10,1,0> 1L, <>
tys <0,0,00..00> <11..11,1,> <HIL 11D <
tis <1,0,00..00> <10..10,1,0> <0,00...00> <0>
ts <1,G,00...00> <01...01,0,1> <0,00...00> <
t,, <1,1,11..11> <00...00,0,0> <1111 <O
tg <1,0,00..00> <01...01,0,1> <t <>
L <1,0,00...00> <10...10,1,0> <KLt <
to 1,111 G110 <111 <1
ts <1,1,11..11> <00..00,0,1> <0,00...00> <
te, <1,0,00..00> <1,0,00...00> <1,00...00> <>
tes <1,0,00..00> <1,0,00...00> <0,00...00> <0>
ts, <0,011...11> <o, 1,11..11 <1111 <

It can be verified that the application of the above set of 55 test
paiterns will exhaustively exercise every cell in the modified BW
array multiplier. The details of this verification is rather lengthy and
is documented in [9]. The set of 55 test patterns is shown to be
sufficient but not necessarily minimal. It is conjectured that a
minimal test set consisting of less than 55 test patterns exists.

To show C-testability it is sufficient to show that all cells are
exhaustively exercised and that any error is propagated to an
output of the array. The first condition is met by the application of
the test set consisting of tyte t;,. The second condition is proven

by showing that the faulty-signal propagation property described
earlier for CS array multipliers is also true for all calls in the
modified BW array multiplier. That is, the x output will change in
response to a change in one of its inputs that are x or y outputs of
other cells. It is easy to verify that all cells in the unmodified BW
array multiplier have this property. The interconnections between
cells in the BW array multipier are similar to those in the CS array

multiplier which allow faulty signal to propagate down a column, via
the x outputs, in the array. While making the modifications to the
original BW array multiplier design, this property is preserved with
the exception of the type 1 and type 2 cells. Since type 1 cells do
not have inputs generated by other cells, its ability to propagate
faulty signals is unimportant. it is assumed that inputs to the array
are error free. The only faulty signals that a type 2 cell is required to
propagate are errors on its ¢ input. From the description of the cell
itis obvious that an error on the ¢ input will cause a change in the x
ory output. If the x output is faulty then the error will propagate to
an output of the array as in the CS array. If the error manifests itself
on the y output it will appear as an error on the ¢ input of the type 2
cell below it. Since there can be no other faulty signals on the
inputs of that type 2 cell, any faulty signal can be propagated to an
array output. The foregoing arguments lead to the following
theorem.

Theorem 7: The modified Baugh-Wooley array multiplier is C-
testable and can be fully tested using oniy 55 test patterns.

5. IMPLEMENTATION AND EXTENSIONS

A C-testable 16 x 16 array multiplier, implementing the MCS/CP
structure, is designed using the Mead and Conway {8] design
approach. It is assumed that a 40-pin DIP package will be used to
hcuse the array multiplier chip. Hence, 32 1/0 pins are multiplexed
to be able to receive the two 16-bit operands and to output the
32-bit product. To accomplish this multiplexing, memory elements
and associated control circuitry are added at the periphery of the
array. The array portion consists of 256 modified basic cells and
occupies an area of 99 x 55 A2, A is the elementary length unit and
is equal to three microns in this design. Hence, the total area of the
multiplier array is 4.752 mm x 2.64 mm. Thea actual size of the chip,
containing over 10,000 devices, is some what larger because of the
additional control circuitry and bonding pads. A layout has been
generated and is ready to be implemented on an NMOS chip.

It can be shown that an unmodified basic full adder cell requires
approximately 86 A2 units of area. The total area required by the
modified basic cell is 87 A2 units. Hance, it can be concluded that
no significant increase of chip area is needed for the moditied
carry-save design. Furthermore the modification to the basic cell
for testability does not incur any additional delay. Figure 10
illustrates the layout of the modified basic cell. We have designed a
16 x 16 array multiplier which is C-tastable. Only 186 test palterns
need be applied to the array to fully test the array multiplier. The
same number of test patterns is required regardiess of the size of
the array multiplier. Furthermore, there is no increase of delay nor
chip area.

The research presented in this paper can be extended in several
directions. In this work, it has been assumed that only one basic
cell can fail at a time. A less restrictive fault model can be
developed and the C-testability can be generalized. The
application of the above approach to other array multipliers can be
studied. The development of algorithmic modification procedures
for any given multiplier structure to generate C-testable designs
seems feasible. Some of these efforts are underway at CMU. it is
anticipated that the above-mentioned research will result in the
development of general procedures for the design of very easily-
testable array-structured VLS| circuits and systems.

buried &

overglass
implant
cuts
metal
diffusion

polysilicon

Fig. 10. The layout of the MCS array basic cell.

6. REFERENCES

[1] Hwang, K., Computer Arithmetic, Principles, Archiiecture,
and Design, John Wiley & Sons, 1979.

'[g] Waser, S., "High speed monolithic multiptiers for real-time
digital signal processing,” Computer, pp. 19--28, October 1978.

[3] wiltiams, T. and K. Parker, "Dasign for testability -- a survey,"
IEEE Trans. on Computers, vol. C-31, January 1982.

[4] Kautz, W.H., "Testing for faults in cellular logic arrays " Proc.
of 8th Symp. on Switching Automata Thecry, pp. 161--174, 1967.

[8] Friedman, A.D., "Easily testable iterative systems,” /EEE
Trans. on Computers, vol C-22, pp. 1061--1064, December 1973.

[6] Parthasarathy, R.and S.M. Reddy, "A testable design of
iterative logic arrays," IEEE Trans. on Circuits and Systems, vol.
CAS-28, November 1981.

[7] Sridhar, T. and J.P. Hayes, "A functional approach to testing
bit-sliced microprocessors,” IEEE Trans. on Computers, vel. C-30,
August 1981.

[8] Mead, C.and L.Conway, Introduction to VLSI Systems,
Addison-Wesley Publishing Company, inc., 1980.

{9] Ferguson, J.and J.P. Shen, "Design of Easily-Testable VLSI
Array Multipliers,” Dept. of E.E., CMU, Res. Rep. No.
CMUCAD-83-8, February 1983.

[10] Shen, J.P. and J.Ferguson, "Easily-Testable Array
Multipliers," Proc. of 13th Int. Symp. on Fault-Tolerant Computing,
June 1983.

Acknowledgement: The authors would like to thank Ms. Lori Rosen
for her help in the preparation of this paper.

