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AbstraqE

A numeration system is a set of integers (basis
elements) such that every integer can be represented
uniquely over the set using integer digits of kound-
ed size. Such systems are scattered in many fields
in mathematics anc computer science. Many of the
known ones and new ones are unified and derived from
a basic result on recursively defined basis elements.
Applications are indicated.

1. Introduction

There are many ways of representing an integer
uniquely! The best known method is the decimal sys-—
tem. Whereas the Maya Indians used base 20 (using
the fingers on hands and feet), some of the human
race became recently more primitive using the binary
system instead, being influenced by the computer race
which, for electronic reasons, is zealously addicted
to the binary system. It may be of interest to com-
puters to know that there are actually infinitely
many binary systems!

Somewhat less known systems of numeration include
mixed radix, factorial representation, and exotic
systems based on recurrence relations, a special case
of which is the Fibonacci system of numeration. So
there are many ways of representing an integer unique-
ly; many ways, that is, in each of which an integer
can be represented uniquely.

These and other systems of numeration normally
hide in various unexpected places, where they are
applied for varied purposes. Typically, when tae
need for a numeration system arises, it is defined
and an ad hoc proof of its capability to represent
integers uniquely is given. The purpose of this
article is to unify these results and show how they
can be derived simply and uniformly.

A very simple yet general system of numeration
is presented in Theorem 1. It may be used to derive
all the numeration systems we intend to present, but
some repetitive argumentation is involved. We prefer
instead to use Theorem 1 to derive a general numera-
tion system based on recursively defined basis ele-
ments. This is done in Theorem 2, which sheds rore
light on the nature of numeration systems than Theo-
rem 1. Our numeration systems are then derived from
Theorem 2. All but one. The exceptional system is
based on a recurrence relation with a negative coef-
ficient, whereas the recurrence relations of Theorem
2 contain only pos:.tive coefficients. The exceptional
system is therefore derived directly from Theorem 1.
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Theorems 1 and 2 are given in Section 2. The
derivation of the numeration systems from Theorem 2
is carried out in Section 3 in a rather slicker way
than Theorem 1 would permit. The exceptional system
is derived in the final Section 4. Applications and
uses of the numeration systems are briefly indicated.
These include the ranking of permutations, of permu-
tations with repetitions and of Cayley-permutations;
polyphase sorting and merging of large data files,
irregularities of distribution of sequences, the
Chinese Remainder Theorem, various games and a class
of binary search trees called cedar trees.

It should be pointed out that not all the known
numeration systems can be derived from Theorem 1.

An example is the combinatorial numeration system

a a

N = (I?> + (iﬁ:ﬂ) +-‘~+< 5} + (éﬁ) (0 ta <a, <"'<an)
12 . ,

(see e,g. Lehmer ). There is a way of generaliz-

ing Theorem 1 (from numbers to infinite sets) so as

to include also the combinatorial representation,

but we prefer at this stage to keep our results as

simple as possible.

To keep the discussion simple, we state and
prove our results for nonnegative integers only. At
the end we indicate the slight modifications neces-
sary to extend the results to any integer.

2. Two Basic Numeration Systems

lLet l=u,<u, <u,<... be a finite or infinite
sequence of integers. "Let N be any nonnegative in-
teger, and suppose that u, is the largest number in

the sequence not exceeding N (except that we let

n=0 if N=0). Dividing N by u, and iterating
gives
N=du +r , O0<r <u
nn n n n
=d u 0« <
n n-1 n-1 n-1 "' Tn-1 Y-l
= + 0
Tnel T %ne2%ne2 T Tpopr OFT 5 %,
= d <
r1+l “u + L 0 srl ul
r2 = dlul + rl B 0 srl <ul
1 = d9Y




Collecting terms we get

N

du +d .u + - +d
nn

.. d, 20, i20).
n-1'n-1 0% ( i '

This is the representation of N in the numeration
system S = {uo,ul,u ,...}. Any N represented in
this form is also’ said to be representable by S.

The above process shows that every nonnegative in-

teger is representable by S. Note that
= +ree+d u_ <u, (120).
Tial T 48 g o “fin1
We show that conversely, any number N = .Z diui
satisfying i=0
v 1< i20) (1)
48y Tl T gy Sy ’
is the unique representation of N by S. 1In fact,
Theorem 1. Let 1 =u]‘<ul <u2 <... be any fi-

Any nonnega-

..}

nite or infinite sequence of integers.
tive integer N is representable by S=u{u0,u
n

d.u, .

lluzl .

in the form N = I This representation is

i=0 11
unique if and only if (1) holds.

Proof. It remains only to establish uniqueness.
Suppose that N has two representations:

+d u

N=cu +--- 0%

+tcu. =du +...
nn 00 nn

where the digits c; and d. are nonnegative and

satisfy (1). Let i be the largest integer such
that ci+l # di+l' say Ci+l >di+l . Then
< - ) = - - -
a1 S0 T T @ meug b s d 0’ Yy
sdu. +---4+4d ,
AR ] co

contradicting (1).
Conversely suppose that: (1) does not hold, that

is,
+ 0+ ]
diu iy do%o 2 Uy
e 1320. Let N=d u, +d, . +oees +
for som i Jul 1—lu1—l douo,

and let u, be the largest-number in S not exceed-
ing N. Then n3i+1. As was shown by the sequence
of divisions preceding (1), there is a representa-

n
X c.u, <, # 0.

N j=0 ,
N has two distinct representations. [ ]

tion of the form N = with Thus

The existence of the representation has been

shown in Yaglom and Yaglom18 [Ch. 8], where also the
sufficiency part of the uniqueness is stated.
Incidentally, note that (1) implies

u,
0 ¢4, < irl

i u,

i

Now sometimes (2) implies (1) and somet.imes it does
not. When the u, are defined recursively, the sit-
uation depends on~:he length of the recurrence rela-

tion! If the recurrence relation contains only one
term (un==b(n)un_1), then () does imgply (1).

fore for the more conventional numeration systems

such as decimal, binary, mixed radix and factorial
systems, (2) is a necessary and sufficient condition
for uniqueness. But for systems in which the recur-

(1z0). (2)

There-

rence relation contains more than one term, (2) is
only a necessary but not a sufficient condition. This

will become clear from Theorem 2 below.
For mzl, let b =b{n),b2,...,bm be inte-
gers satisfying

(n)
l1sb €...5b,sh)
nx1.
(n)
1

,...,u_l are fixed nonnegative 1ntegers,1

_ _ . (n)
=1, un-ti u

for ail are constants,

b, =D
but )l

Note that b_,...,b
2 m
may depend on n. Suppose that

u u
-m+l’' -m+2

+b_u +++-4+b u (nz1). j

Yo n-1 "2 'n-2 m n-m

If m=1, we have by (2), di <u. _/u, =b . If

m>1l, then

(i+1)
e+
di < (bl ui+b2ui—l + b

(i+1) (i)
$hy7 by Ty g tbou,

(4)

When is an integer uniquely representable by the sys-
tem uo,ul,...} thus defined? Here is the answer.

Theorem_g, Let S = {ui} be a sequence of the

form (3). &Any nognegative integer can be expressed
in the form N = 5 d

.a.
j=0 1 i’
isfy (4). The representation is unique over § if

and only if the following two-fold condition holds:

where the digits di sat-

(1) For any j satisfying 1 <j<m-2, if
_ (k+1)
(dk,dk_l,...,dk_j+l) = (b, ,b2,...,bj), (5)
then 4 ., < b, i and if (5) holds with j=m-1,
k-3 j+1
then dk—m+l < bm (k2 m-1).
(ii) If (5) holds for any j satisfying 1 gjgk-1,
then 4 . < b, _; and if (5) holds with j =k, then
k-3 j+1
m
[SURERS (Lsk<m=-1).

0 jokin Pike1od

We point out that subconditions (i) and (ii)
are both concerned with blocks of consecutive digits.
They differ only in the location of these blocks: in
(1) the right-hand digit of a blcok of maximal length
m coincides with d. for some j 20; whereas in
(ii), the right-handjdigit of a block of smaller size
k+1 <m already coincides with d_.

Further note that if m=1, then subcondition
0sas b 50y wnich is

1
part of (4), and (ii) is empty. We also remark that

Theorem 2 does not consider the most general case

(i) merely restates




(for example, some negative coefficients could be
permitted in the recurrence relation), but it suf=-
fices for deriving in a simple manner all but one of
the numeration systems of interest to us.

Proof. The existence of the representation
T
N =‘ZO diui follows as in the proof of Thecrem 1
i=

with the digit bounds of (4).
ness, assume that (i) does not hold.

For proving unique-
Suppose first

that there is some Jj satisfying 1l<js<m-2 for
which (5) holds but d, . >b. .. Then
k~3J j+1
k k ) 3+l
L d.u, x2 I d.ui > bik+l) uy + X biuk+l—i tu
i=0 * Y i=k-g i=2 J
j+l
L (k+1)
byt T obiu
i=2
(k-3) o
+b “tay . + X b.u |
1 k-j-1 j=p 1 k-9-1
(k+1) oo _
2Ry *'ile)i“k+1-i = Y1
violating (1). Hence the representation is not

unique by Theorem 1. Secondly suppose that (5) holds

with j=m-~1 but dk—m+l 2 bm Then
k k m
(k+1)
L du 3 Z d.u, zb u + ¥ b.u . =u ,
;=0 + 1 i=kilem L 1 1 k je2 * k+1l-i  “k+l

again violating (1). If we assume that (ii) does
not hold, then the same arguments show again that
(1) is violated.

Write n+1l =gm+r, O0<r<m. Then

n+l)

b .. -
Nz un+b2un-l * +bm—lun+24-m+(bm l)un+l—m

n+l-m)
u
n-m

(
1
( +-.-+b

+b
un-—l—m

+ bl 5

m-1"n+2-2m

* (bm—l)un+l—2m

+

(n+1-(g~1)m) .
by Ya-(g-1)a 2% -1-(q-1)m

+(b -1)u
m

+ b

m—lun+2—qm n+l-gm

(n+1~gm)
+ bl un—qm b2un—l—qm-+ + br-lun+2—r—qm

+ douo,

d

where, by o -1 (if x=0);

m~r

(i} and (ii), b
m

u . -1 (if r >0).
. r+i -1
i=0

Adding

0= )+ ( ) e

un+l—m.—un+1—m un+l—2m_un+l—-2m

(b 1oqm ™ Yne1-gm’ * (5 T Y)

to the right-hand-side, we get

So suppose that the condition holds.
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N s (un+l'-un+l—m) * (un+l-m'_un+l—2m

1) =u

n+l - L

* (un+l—(q—l)m B un+l-qm) (un+l-qm -

so condition (1) is satisfied. The result now fol-

lows from Theorem 1. s

3. A Spectrum of Numeration Systems

We shall now use Theorem 2 to derive several
families of useful numeration systems. Existence of
these families is evident by the procedure just pre-
ceding Theorem 1. It will therefore suffice to demon-
strate the digit bounds and uniqueness. Recall that

g =1 for all systems.
Polynomial systems. Let b >1 be a fixed inte-
ger and let u =bn, that is, Wit =bu (n20). Let

N be any nonnegative integer. Since the recurrence

for the u, has length 1, Theorem 2 implies that
n .

the representation N = X dibl is unique if and
i=0

only if O sdi <b (i30). This gives the most com-

monly used numeration systems, such as the decimal

(b=10) and the binary (b =2) system.
Mixed radix. Let l:=a0,al,a2,... be any se-

quence of integers with a, >l (iz21), and let

= at i = 20).
u, aoal...an, that is, un+l an+lun (n ;0) By
the above argument, the representation N= Id.a. ...a.

ij=01 0 i

is unique if and only if O sdi <ai+l (i 20). The

mixed radix representation has been used for a con-
structive proof of the generalized Chinese Remainder
Theorem (see Fraenkel~, Knuthl0 [Sect. 4.3.2}); and
in conjunction with other numeration systems, for
ranking permutations with repetitions and Cayley~-
permutations™®. The latter method has been applied
for compressing and partitioning large dictionaries
in order to enable the storage of their "information
bearing" parts in high-speed memory’.

This is the special
=n+l

Factorial representation.
case of the mixed radix representation where a

n
(n20). Thus the representation N = X dii! is

unique if and only if di <i(izl). The factorial
representation has been used for ranking permutations;

see Lehmer'? and Even? {Ch. 1].

Reflected factorial representation. To repre-
sent a nonnegative integer N, select h with h! >N,

and let u =h!/(h-n)!, that is, u =u (h-n) (n >0).
n n+l n

Since again the recurrence has length 1 only, the re-

presentation N = 'ZO d;ht/(h-i)! is unique if and
i=

only if O sdi <h-i (0<ig<h-2). The reflected fac-

torial representation has also been used for ranking
permutations? [Ch. 1].

Up to this point all systems used only a one-
term recurrence relation for the wu, (the case m=1
in Theorem 2). This produced the béetter known numera-
tion systems. The more exotic systems are obtained
for m>1. In these cases requirement (4) does not
suffice to insure uniqueness, and the condition of
Theorem 2 is needed to guarantee it. We start with




an example illustrating the case m=2.

Continued fraction representation. Let o be
an irrational number satisfying 1 <o <2. Then a
has a unique simple continued fraction expansion of
the form

a =1+ @, .01,

(1.a)sa,.a,

where the a. are positive integers.

Its convergents

i . -
pn/qn = [l,al,az,...,an] satisfy the recursion
= = = >
Pa~liPp=lip =ap ,+p , (3l

= = = > .
Ly =% G = b =aq ) g, (2D
See e.g. Hardy and Wright8 [Ch. 10], Olds15 or
Perroan. We prove,

Theorem 3. Every nonnegative integer can be
represented uniquely in the form

k
= [o} < ; S, =
N iEosipi' SSi“ai+l i+l a1+2 }(6)
=s.=0 (iz0),
and also in the form
2
= < < < ;
M= 2t Ostyca), Ostoca, ot TSI I
i=0 j(/)
= = >
ti—l 0 (iz1).
Proof. Let ui:=Pi or qi (i>-1). The re-

quirements (4) imply the bounds on the digits s,

and t;: and the condition of Theorem 2 implies

that if one of these digits attains its maximal value
then its right-hand-side neighbor must vanish. L]

If a;=1(iz1), then a=[i]=1+/5) /2 is

the golden ratio (where % denctes the infinite ccn-
catenation of x with itself). In this case the
system (6) becomes the Fibonacci numeration system
which is a binary system (digits 0 and 1 only), with
the proviso that twc adjacent 1's never occur. See
Zeckendorfl?9, This system lies behind the Fibonacci
search (see Knuthll [Sect. 6.2.11); it has also been
used by Wnhinihanl”’ [Sect. 1.2.8] for giving the
Strateqgy of a game on a pile of tokens.

Numeration systems of the form (6) and (7) can
also be defined for rational q . An interesting re-
lationship exists between n expressed in the syszem
(7) and [naJ and LnBJ in the system (6), where

a-l-+8~l = 1. This relationship is particularly :in-
teresting for the special case a=[1,3] where a is
any positive integer®. It can be utilized for giv-
ing a winning strategy for generalized Wythoff games
both in normal play4 and in misére play®. The class
of cedar trees consolidates the winning strategies
of those games. The case a=] gives a strategy for

the classical Wythofs gamel8,
We consider next an example of an arbitrary
length recurrence relation.

mth order Fibonacci system.

mth order Fibonacci
numbers (m 22) are defined by '

=u =...=u_=0,u.=u =1,

u--m+l ~m+2 ) -2

u =u +u _+...+u (n > 1).
n n-1 n-z
This definition gives the ordinary Fibonacci numbers
for m=2.
It follows directly from Theorem 2 that the bi-
nary system

n

N = X 4d u, . <1, 0<ig<n)
i=0 1+ 1 1

is a unique numeration system if and only if it con-
tains no run of m consecutive 1's. Since such a
system exists for every m 32, there are infinitely
many binary systems as claimed at the beginning of
the paper.

mth order Fibonacc¢i numbers have been used by
knuthll [Sect. 5.4.2] for polyphase merge of data
runs stored on magnetic tape transports. The same
numeration system but with different values for
Uil u_m+2,...,u_l has been applied by Lynch13

to polyphase sorting.

4. Another Continued Fraction System

Let o =[l,al,a,a3,a,..

where a is any positive integer. Further, let y
stand for either b, or gq_, the understanding
being that in each formula involving u either all
ui stand for p. or all stand for q;- We shall

develop two numeration systems based on the numera-
tors and denominators of the even convergents of a.
Let us start with two auxiliary results on the even

.}, that is a2n=a,

n

convergents. Throughout we let
0 if u, =q.
€= {1 if ui==§; (i3z-1)
Lemma 1. The even convergents of o satisfy
u_2 =1l-ca, Y =1, u,. =(aa2n_l +2)u2n_2 _u2n—4 (n>1)
Proof. For n21 we have,
fon T Maney lanp TR Uy oty ) b,
T on-1Yan-2 t Mgy Ty ) Huy
=(aa2n__l +2)u2n_2 Uyt ]
Lemma 2. ILet 0O<k<%. Then
Y2g42 =a(a2£+lu2£+62£-lu22~2+"'+a2k+3u2k+2+a2k+lu2k)

+tu, +u. -y

28 2k 2k-2 °

Progg. By Lemma 1,

( + 2)u2 -u

Yoge2 T (B30

¢~ Yapo2
= + 2 -
og T (@B R Lt
Y2ge2 T (33,0 o+ Duy - Y24-6




Uakes - (3axas T W4 T Yoo

Uogaa = (38pp 4 * 200y o = Uy

Upgaz T (3300 F 2y U o
Adding we get the claimed result. L]

We are now ready to present our last family of
numeration systems.

Theorem 4. Every nonnegative integer can be

n
represented in the form N = I d2iu2i , where the
digits d.. satisfy 1=0
2i
ostisaa2i+l+]. (iz21), Osdosal‘al+e). (8)

The representation of N is unique if and only if
the following condition holds: If for some

Ock<fgn, d2‘ and dzy attain their maximal

values, then there exists j satisfying k<j <&

(so actually 2~k 32) such that 4., <aa.. .
23 23+1

Proof. The existence of the representation
follows again by the algorithm just prior to Theo—

rem 1. That method (see (2)) requires
R 5 B i Y S T T R
2 uyy Y25
2i-2
aa, ot 2 - o (iz0),
2i

which implies the bounds (8). For proving unique-—
ness assume first that the condition does not hold.
If k>0, then

L L

X4, .u,. 2 u, . zala

4.,
i=0 2i 23 jox 24 21

+ ...
22+1%2¢ * 3k 2k

+u + u

24 + u

2k~ Y2g42 T Uak-2 T Y22
by Lemma 2. Since (1) is violated, Theorem 1 implies
that the representation is not unique. If k=0,
then

2

a >
2iu2i 2 af( +a_u,+a

Byge1Uag v oo YA, vaguy)

z
i=0

+ u + Eau

) 0 = +u _ + (ga-1)u

Yoge2 -2 o = Yag42’

again violating (1). Now suppose that the condition
n
Eo2i%i
2n " n4 * 1.
<
23 aa2j+l for some
u,. 21

2i 230 1200,
for all k<j<g,

mal value of d2k

is fulfilled. Then N = is maximal for

L£=n, that is, 4 Now d

2k
k <j<f. Since

maximal
implies 4
N increases if we let d2j =aa2j+l

put k=0 and decrease the maxi~
=dO by 1. fThus

41

+a.u_ +a

Nsatay ;1%n Y31 on2 v At ey

uO)

+ (€a-1l)u_~1l=u -1

+
u +2

ml=us e YU 0 2n

+u 0 2n

+ €au
2n
by Lemma 2. Thus condition (1) is satisfied and so
the result follows by Theorem 1. [ ]

In the "Fibonacci case", that is the special
case where a={l], the p,-system of Theorem 4 be-

comes a rather curious ternary numeration system
since (8) now implies O SdZi <2 (i20). 1In this

case the condition of Theorem 4 states that between

any two digits 2 there must be a digit_ 0. This spe-
cial case was used by Chung and Graham~ to investi-

gate irregularities of distribution of sequences.

We finally remark that for representing a nega-
tive integer N in any of the above numeration sys-
tems, represent [N| and then reverse the signs of
all the digits. 1In general for representing any N,
the digits are either all nonnegative or all nonposi-
tive. The changes needed in the proofs are essen-
tially to replace conditions on digits by the same
conditions on their absolute values. Specifically,
(1) and (2) have to be replaced by

| <u,

+
dgu i+l

00
(4) by

idiui+--- (i20) and Idil<u /ui(i 20)

i+l
respectively,

m
+ X
j=2

b(l)

(iz1), |4 ] <by

b.u

(i+1)
b ey @D

la, | <

(m=1),
and (5) by

(k+1)

Aadoa lreeerda b = e b, b ).

3

In Theorem 2, the two inequalities on the digits in
i < < b ;

(i) become Idk—j! <b, and ldk-m+l‘ - those

j+1
m
< I b,u i e
j=k41 T k+1-i
In (6), two of the conditions are replaced by

|si| < ai+l and |si+1| = ai+2 and in (7) three con-

ditions are replaced by |t0| <a, Iti' fa;

of (ii) become and |d

Idk-j | $Pin ol

+1 and

Iti] =a . Finally (8) becomes

i+l

aa, +1 (iz21),

lay; 1 <aa,, ENELICRTE

+1
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