SOME TRICKS OF THE (FLOATING-POINT) TRADE

J.B. Gosling

Dept. of Computer Science, University of Manchester
Manchester, M13 9PL England

Abstract.

In designing a floating-point arithmetic unit
there are a number of places where the

characteristics of the operations and the operands
permit simplifications in the 1logical design.
These have not been well documented, with the

result that each new generation of designers has
made the same mistakes as their predecessors. This
paper describes some of these simplifications as
they affect the mantissa section of a
floating-point addition and subtraction unit. The
areas covered include normalisation and rounding.

1.Introduction.
When designing any system, one c¢omes across
places where things seem to be working to ones
advantage. This paper discusses some of these

areas. None of them individually is very
startling, and they are probably not criginal. So
much S0 that most of them have never been
published, certainly not in one place. As a
result, each new generation of floating-point
hardware designers has to re-invent the wheel. The
purpose of this contribution is to reduce :he
effort, and, more importantly, ensure as many as

possible of the helpful effects may be used in new
designs. It does not claim to be complete. In a
recent perind of three months the author

'discovered' many of the points made, inspite of 17
years in the 'business'. Any contributions that
can be made by others will be gladly added to the
list.

The discussion will be restricted to addition
and subtraction. It will also be 1limited to
numbers represented in the sign and modulus
notation, because the proposed floating-point
standard says so. And it will be 1limited to the
mantissa area for reasons of space. Within these
limitations, subtraction can be regarded as a
special case of addition. If a subtraction is
encountered, the sign of the 'second' operand is

changed, and an addition is performed. Using
similar rules

POINT 1: It 1is posible to include within the
discusion all four of the operations A + B, A - B,
-A + B and -A - B, where A and B are two gigned
numbers.

This is one of the advantages of the sign and
modulus representation as compared to tuwos
complement, since in twos complement the last of

CH1892-9/83/0000/0218$01.00 © 1983 IEEE

the four operations cannot be implemented easily.

2.Basic_addition.

The basic
addition is [1]
If the signs of the operands are the
goto end.

Else invert one of the operands and add.

If the carry from the most significant bit is a
one, result := sum, sign := sign of the
non-inverted operand.

Else (if the carry from the most
significant bit is zero), result := inverse of
the sum, sign := sign of the inverted operand.

algorithm for sign and modulus

same, add;

End.

The carry from the most significant bit must be
added to the least significant bit, and is known as
the End Around Carry (EAC).

When considering floating-point arithmetic,
one of the operands will be shifted right relative
to the other. 1In general, the bits 'spilt' will
not take part in arithmetic. However, the EAC must
be added at the correct point relative to this
spill. Further, if the EAC = O the spill bits must
be inverted before calculating whether to round or

not. Things Dbegin to 1look bad! But do not
despair.

3.G, R and S bits.
POINT 2: It can be shown quite easily [1,2] that

if the prearithmetic alignment shift is greater
than one place, then the maximum normalisation that
can be required is one place. If the alignment
shift 1is zero or one place, then a large
normalisation shift may be necessary, but

POINT 3: A maximum of one non-zero digit can be
brought into the required result.

This digit is called the Guard digit, G. Its size
is dependent on the exponent base, being 4 bits on
ICL or IBM machines with their exponent base of 16.

For binary exponents it is one bit. Thus,
arithmetic should include this guard digit.
The next bit below G is known as the Round

bit, R. If G is normalised into the result, then R
indicates that the remaining bits of the
pre-rounded result are greater than or equal to
half the 1least significant bit. To determine
whether this is exactly one half, the OR of all
remaining bits of the spill is used to form the
Spill bit, S. As indicated earlier,

POINT 4: R and S must be calculated taking into

account any inversions that may be performed on the
operand, or the sum, or both.

As G is included in the arithmetic, consider,
first of all, R and S alone. Addition of
like-signed numbers is straight forward, 380
consider only the case of numbers with opposite
signs. Suppose that the number which is inverted
is the one which is NOT shifted. All bits beyond

the "real" adder must be ones (zeros inverted), and
hence the EAC is added into the least significant
bit of the adder. It would seem that R and S could
be formed from the spill, NOT TRUE.

1.0110
1.1101 1.1101
Invert 1st 0.1001 111.. 0.1001 111..

Shift R 2nd 0,0011 1010, No shift R .1101_000, .
1 0.0111 0000.

(a) (b)
Fig.1. Subtraction - non shifted operand inverted.
(a) Align shift of 3; (b) No align shift.

1.0110

Consider two normalised operands, one of which
is to be shifted right, introducing zeros at the
more significant end, Fig.1(a). The other opsrand
is then inverted. The two most significant bits in
the addition are zero, and there can be no EAC. To
get an EAC there must be no zlignment shift, and
hence there can be no spill, Fig.1(b). When both
operands are denormalised, the EAC may be 1 or 0,
but the exponents are equal, and hence R = S = O.
POINT 5:If the non-shifted operand is inverted, and
EAC = 1, then R and S are both zero.

By a similar set of arguments it is found possible
to derive

POINT 6:If the shifted operand is inverted, and the
EAC = 0, then R and S are both zero, Fig.2.

1.0110 1.0110
1.1101 1.1101
Shift 2nd and invert Invert 2nd
1,1100_0101,, Les
1 1.0010 0110.. 0 1.1000
Invert eeewes 000..,

(a) (b)
Fig.2. Subtraction - shifted operand inverted,
(a)Align shift of 3; (b)No align shift.

R S bits "S" R' S' bits R, S’ Cin
0 0....0 0 1 T....1 0 0 0

0 d 1 0 d 1 1 i

0 0...01 1 0 0....0 1 1 i

1 0....0 0 0 T....1 1 0 ‘

1 d 1 1 0 1

1 0...01 1 1 0....0 0 1

Table 1. Generation of R and 8S: non-shifted

operand inverted and EAC =_ 0.
d implies at least one 1 and at least one 0.

Table 1 shows what happens when the EAC = 0.
A string of ones must be added to the spill. This
spill may be zero, so there may be no carry to the
adder. In this case R' = S' = 1 (the string of 1's
from the inverted operand). In Table 1, "s"

219

represents the S bit from the original operand, and

R' and S' are the result of adding a string of 1's
to R and S bits, The final Rpand Sgare derived
from the inverse of R' and S', since the sum must
be inverted when EAC = 0. From Table 1 it is seen
that S will be 0 only when the original spill is
zero, and the carry to the adder, Cin, is always
one except when the original R and S are both zero.

When the shifted operand is inverted, R = S =
0 if EAC = 0. Table 2 shows what happens when EAC

= 1. The EAC must be added at the bottom of the
spill. The condition for EAC to reach the 'real'
adder is shown. Again, S is =zero only when the
initial spill is all zeros.

R S bits "S" R' S' bits R’ S, Cin

0 0....0 0 1 1....1 0 O0 1

0 d 11 d 1 1 0

0o 1....1 t 1t 0....0 1 1 0

1t 0....0 0 O 1....1 1 6 0

1 d 10 d 0 1 0

1 1....1t 1 0 0....0 0 1 0
Table 2. R and S generation; shifted operand
inverted and EAC =1.

4.Generation of S.

So far it has been shown how R and S might be

calculated. The question arises as to what happens
if the exponent difference is very large, so that
the alignment shift 1is very large. A 1ot of
hardware is needed to collect the spill. Software

impleméntations can cope, as can very slow hardware
using shift registers, since it is possible to look
at the spill as it goes past. For fast hardware,
where semi-infinite 1logical shifters are too
expensive, the following technique, due to Zurawski
{31, is useful,

Suppnse that the mantissa is p bits long, and

the exponent difference is d. The mantissa of the
smaller operand is shifted rjght by d places for
the addition. To obtain the S bit
POINT 7: the smaller mantissa is shifted Jleft by p
+ 2 - d places.
A shift of p - d places would place the total spill
on the shifter output. The extra 2 places is to
remove the G and R bits. Fig.3 illustrates this.
If d is greater than p + 2 (i.e. a negative shift
is demanded) then the shift becomes a circular
shift. All mantissa bits are in the S area of the
spill, and must be retained.

1
|
[}

'° d ’ QR
! "

r W. . P
,5-{1'012

Fig.3. Derivation of S in a fast unit.

d
8
]

of a second shifter is still
and it 1is often difficult and/or

The cost
prohibitive,

expensive to provide shared access or control. To
reduce the cost, first perform an OR on groups of
four bits in the mantissa to be shifted (four input
gates are easily available). Now perform the left
shift of p/4 bits by (p + 2 - d)/4 places.
Unfortunately this figure is not an integer. Fig.l
shows how the end effects can be handled using
specific numbers of bits. The required shift is
calculated as

1+ p/4 - 0.5 + d/4)

Fig.4 shows the original shifting, where the above
number is multiplied by 4. Three extra bits must
be saved and OR-ed into the S generated from the
shifter alnne as will be seen underlined,
Sometimes some of the bits are ORed in twice, which
is acceptable.

Bit position

01 2 3 4 5 6 7 8 31011 G R 1415 6
shift 8 0 1 2 3 4 5 6 1 8
left 8

8 910 11
shift 9 01 2 3 4 5 6 7
left 8

8 910 "
shift 10 01 2 3 4 5 6
left U4

b 5 6 7 8 910 Mn
shift 11 0 1 2 3 4 5

left U
b 5 6 7 8 910 11

Fig.4. Cheaper derivation of S.

An interesting aside to this is that where a
unit must handle several formats, as required by
the proposed floating-point standard [4],

POINT 8: changing the value of p is sufficient
give the correct value of S in all cases.

5.Rounding.

To complete the discussion of rounding, the G,
R and S bits must be modified by the normalisation

to

requirements. In this process G disappears, and
only R and S remain. When normalisation is not
required, S := RV S, and R := G. If Rand S are
non-zero, then the biggest possible normalisation
is one place (see para 3). For this one place
shift, G is taken into the result, and R and S are
unaltered. Finally, when the mantissa goes

'supernormal' it is shifted right by one place, anc
hence S := S VR VG, and R := LSBA, where LSBA is
the least significant bit at the ADDER output.

of R
are straight forward.
to plus infinity, add one to the
sum if R V S, If the sum is negative,
truncate. The reverse is true for round to minus
infinity. For round to zero truncation is used
regardless of sign.

Given the new values
roundings
and round
normalised

and S, directed
For positive sums

220

Round to nearest even (RNE) is more difficult.
Clearly a one must be added if R & S is true, and
zero if R is false. If R & &, then the sum must

increase by 0.5 LSB if LSB is a one, or the error
will be 1.5 LSBs. If the LSB is zero, however, the
sum must be left alone. Hence the condition for

adding one to the sum is R(S V LSBN), where LSBN is

the least significant bit after normalisation.
Note the difference between LSBA and LSBN.

Should this rounding add cause the mantissa to

become too large, a further right shift will be
necessary. However, the only case where this can
occur 1s when the mantissa is cleared to zero

except for the most significant bit.
POINT 9: Thus the new 'R' and 'S' must be zero.
6.Detection of ro.
Consider how a result of zero can be obtained.
For the usual case of twn normal numbers, zero can
be obtained only if there is complete cancellation.
This can only occur if there is no alignment shift.
If one operand is denormalised, cancellation cannot
oceur, ir both are denormalised, then the
exponents are again equal. Hence
POINT 10: Detection of a zero
sufficient to detect a zero result.
Further, this can be done after the
than after normalisation (though
matter) .

mantissa is
adder, vrather
it does nnt

T.Underflow.

Underflow is defined to occur when a result is
denormalised and inexact [4]. Cancellation of
mantissae requires that the alignment shift should
be zero or one. In either case the normalisation
process would cause the result to be exact, and,
therefore, not underflowed. This is also the case
when both operands are denormalised. The limiting
case 1is when the exponents are -125 and -126 (IEEE
single). It is easily shown that this also gives
an exact result. Hence
POINT 11:Addition and subtraction cannot underflow.
covered a number of

This paper has topics

usually left out of published work as being 'not
worth publishing'. This writer (obviously)
disagrees. It would be a service to arithmetic
unit designers if this were to be extended ton the
many areas deliberately omitted. Perhaps one
day.....

References.
[1] Gosling, J.B. 'Design of Arithmetic Units for
Digital Computers' Macmillan, 1980.
[2] sSterbenz, P. 'Floating point Computation'
Prentice-Hall, 1974,
[3] Zurawski, J.H.P. ‘'High performance evaluation

of division and other elementary functions' PhD
Thesis, University of Manchester, 1980,

[4] 'A proposed standard for binary floating point
arithmetic' Draft 10.0 Dec 1982

