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ABSTRACT

In this article we describe a derivation and an algorithm for
on-line multiplicative normalization of fractions. The algorithm is a
variation of the continued product normalization algorithm and it is
used for on-line evaluation of elementary functions.

1. INTRODUCTION

In several algorithms for evaluation of elementary functions
[1-4] the computation requires an iterative transformation of the ar-
gument into a constant. If the evaluation of a function is embed-
ded in a sequence of arithmetic operations, an additional improve-
ment in speed can be obtained by applying on-line arithmetic [5-8].

In this paper we consider the problem of on-line multiplica-
tive normalization {9,10,11]. The multiplicative normalization of a
given argument |XJ e [1/2, 1) is defined as a sequence of transfor-

m
mations such that XoJ]M, — 1 for sufficiently large m. The mul-

]
tipliers are of the form M, = | + S, r=* | where r is the radix and
Sx is a digit in a redundant radix r number system. The sequence
< 8, Sy ..., S, > is interpreted as a continued product represen-
tation of 1/ X, and it is used to compute results such as guotients
and logarithms in m steps. The form of the multipliers simplifies
the implementation of algorithms for normalization and result
evaluation [1], [4].

The on-line arithmetic algorithms have the following pro-
perties: (a) the results are obtained in a digit-by-digit manner, be-
ginning with the most significant digit, and (b) in order to obtain
the j-th digit of the result it is necessary and sufficient to have G+
8 ) most significant digits of the arguments. The on-line delay 6 is
usually a small positive integer. The on-line algorithms achieve
speedup by allowing overlap between successive computations at
the digit level {4], [6], [7], [9].

In the following sections we derive an on-line multiplicative
normalization algorithm for general radix with on-line delay 8 = 1.

II. DERIVATION OF THE ALGORITHM

m
When all digits of the argument X, = 3 x; r7' are avail-
i=0
able at the beginning of the operation, the multiplicative normaliza-
tion is performed recursively as

X=X (1+S,_, ) j=12.. Q.0

by choosing the values of S digits so that X,, converges to 1 [4].
This procedure is modified as follows for the on-line mode of
operation.

,m
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Let Z; be the value represented by the first j+ & digits of
the argument X :
it+8

2, =Y xr

i=0

(2.2)

Recursively,
Zy=Z g4 xprmih = (2.3)
where x;45=0 for j>m—38 and
B )
Zo = }_{x,»r_"
i=0

The digits x; are assumed to belong to a symmetric redundant digit
set, i.e.:

x;eD, = {-p,...—1,0,1,....p]
where

< p<r

In on-line normalization, instead of the argument X , its on-line
form Z; is used. In order to obtain the same rate of convergence
as in the conventional normalization, the following must hold for
the partially normalized arguments Y;:

Y,=Z,D; X,=Y, (2.4)

where

D, =TI + Sioyr1) @5

jnml
is the j-th product of the normalizing multipliers and
Sie={~a,.,—101,. .7}

The on-line multiplicative normalization recursion follows from
(2.3-5):

Y/":(Z,;-l + X,'+5I‘A'/‘_S)D,_1(1 + S,--|F_i+l) (2.6)

=(Y‘-] + D,;]X“*,a"iﬂﬁ)(l + S,'_]I'_/-H)

where D=1, and j=1,2,...,m. For implementation reasons, this
recursion is replaced by the scaled remainder recursion:

Ry= (R + Diyxjusr™™ N (+S,r~ ™) + 5, (2.7)
where

R, = ri=\(Y~1) 2.8

The j-th digit of the continued product representation can
be selected in several ways using the scaled remainder recursion.




We pro;;ose to determine the value of S, as a function of
A; = fR,' + D,'Jf,'.p5+]r“5->l (?9)

in such a way that the error ¢; satisfies
lejl = l1=¥;l< £ ot (210)

i.e., the partially normalized argument x; differs by no more than
r~™ from 1. According to (2.8) this implies that

RIS 2 (2.11)
r—1

Now we establish the selection rules. From the remainder
recursion (2.7), the interval boundaries for every digit value S;eD,
are defined by the following expressions

r’(B,H - 5)

B(S) = —= s, (2.12)
and
R ., —
B(s) = R =S )

r'+S,
so that the digit value S; can be selected whenever

B(S) < 4, € B(S) (2.13)
In the expressions (2.12) and (2.13), R;;, and R,,; denote the
smallest and largest possible value of R;4,.

A. Determination of the Remainder Bounds

The values of R, and R, must satisfy the error, contain-
ment and continuity conditions.

Al Error condition (2.10) implies that
IRl ,IRI< —‘D—l

r—

A2. Continuity condition of the remainder range requires that the
selection intervals overlap. Moreover, these interval overlaps
should be as large as possible in order to allow the use of low-
precision comparison constants and an estimate of A ; as the selec-
tion argument. The size of the interval for the selection of S;is

"i D -
= mfs,_(RiH - R
2
According to (2.15)
j
(A/)max = ,-r%(RfH —Ri) (2.18)
r—ao
i _
(A ) min = r'/r+ > (Ris1=Ryupy 2.17)

It can be seen from (2.16) and (2.17) that (A)) max is a decreasing
and (&) mis is an increasing function of j. Also, (Aw)max = (Aee) min
= Ry—Ris1. As an example, Figure 1 illustrates
A/(R;+1 = R;4) for r=16, p=15and o = 10.

Since B(S;4) and B(S)) are monotonically decreasing
functions of S;, the continuity condition becomes

E(S,H)—L?(S,-) 20 2.18)

for ~o < §,<o. From (2.13) and (2.18) it follows that the fel-

lowing condition must be satisfied [10].

— S ri+B,+1

j+l 2 i +s, + R4 2.19)
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Figure 1: Selection Interwml Overlaps

According to (2.19) E;H is a monotonically decreasing function of
S and j.
The monotonicity of the remainder upper bound is illustrat-
ed in Figure 1. For j—oo, (2.19) becomes
EH—] - B/H 21

or, for Rjy=— R,y

7 0~ 1
R : >

A3. Containment Condition

The scaled remainder recursion can be decomposed into
two mappings:

Ai=1rR; + DX, 54 r ! 2.200
Ry =A;(1 + S;r71)+S, (2.21)
For the convergence of the algorithm, the following must hold
(a) Bi(7) < 4, < Bi(a) (2.22)
(6) Riwi < Riwy < Ry (2.23)

According to (2.8) and (2.12)
(R/+|) min = R4 for A= 1_9,(5',), S/E{—{r ..... o)
and

(R;+)) max = E,»H for 4; = [_?.,‘(S,), Siel—a, ... o)

The condition (b) in (2.23) is always satisfied as illustrated in Fig-
ure 2.

rRJ + Djxjidﬂr-&—]
o 1
1 A N
q -3
R gj(q) ) BJ(-G)

(1+er'3)AJ + sJ

Figure 2: A-g Mappings




is now considered in detail. Since

The condition (a)
Xoe[%,l). the first digit Sy is either 0 or 1. In order to simplify the

selection in the initial steps of the algorithm, the selection of Sy is
performed in such a way that

max|R;| = max| (1 + §¢)Z, - 1| (2.24)
is minimal. This happens if S is defined as
0ifZ; > €
S (2.25)

0= |1 otherwise

where C is an estimate of C. The selection constant C=2/3 for
the selection of S, can be determined from the condition

1-C=2C-1 (2.26)
According to (2.25) and (2.20)

(C—Dr — pr1 g A < QC—Dr +20r %1 (227
The containment condition is now defined as

r(Eﬁ-Sf)—*-? > Q2C~ r+20r-! (2.28)

r—=35
and
(0~ Ry A
M A 2U0-C)r+prs—1 (2.29)

r+a

where Sy is the magnitude of the largest negative S digit. It can be

determined from (2.28) and the fact that
(RD min >1/2 and (R3) max < p/(r=1).
B. Determination of R;, R, and o
The containment condition for j>2 becomes:
F(R i + ) —
T > R, + Dpre! (2.31)
rl—a

and

F(R —o)

“ﬁr" :§ ’B, - D / }3 ’_5_1 (2‘3’2)
From (2.31) and (2.32), it follows that

Ry 2 (1~ fj.—)(rﬁ,. +Dipr ) — & (2.33)
and

R <+ f})(rg/ —Dipr Y + o (2.34)
For j — oo

Re> —(o-Dpr Y (2.35)
and

Re > ——L(o=Dpr1) (2.36)

r—1
From the expressions (2.33) to (2.36) it follows that both R, and
R; are decreasing functions of j. Since

R, ~Riyy >0 (2.37)
and

Ri—= Ry >0

we obtain that Rj and R, must satisfy

(2.38)
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aoa—-z+ ~
R < - — (2.39)
r—1--Z-
,l~l
and
PP L.
R/ > - . (2.40)
r—1+ -
,/—l
D,
where z = alg
,
According to (2.19) the continuity condition becomes
(I‘ - Sl.) E; —r
R, € ——npte (2.41)
=2 = r— Sl +1
where S| is a function of r and 7 only.
From (2.31) and (2.32)
_ (R, e
R, < l('—’Lﬂ - D,pr-*-'l (2.42)
r r—a
and
(R 41—
R, > llL(*”‘—T) +D,pra—1l (2.43)
r'+ao

r
Assuming that R;/+1=R.. , R,/+1=R.. and D, = 2. the boundary
values of R;,j=273..,j can be obtained applying recursions
{2.42) and (2.43). Determination of R; and R; in such a way has
the following advantages: (i) The containment condition is always
satisfied, and (ii) The continuity of selection intervals is maximal.

C. Selection Precision

The selection interval overlap A oy, is given by

(2.44)

(Rivi=Ris)) (r' +8) =Ry — 1/

It can be seen that Ay, is an increasing function of j and that
2o—z)—r+l]

p (2.45)

AOV, = Ru—Roo~1 =
For selection of Sy, § + 1 digits of the argument should be known
Acording to [10]

Dp

r6+l

Ay =rR +

i.e., for selection of S, at most & + 2 digits are necessary. Since
Aoy is an increasing function of j, the smallest overlap for the
remaining steps occurs for j=1.

Assuming that 4; is in a redundant form, S; can be deter-
mined from an estimate 4; of 4; such that the following holds

A=A+ Y dr (2.46)
l-k,-+l
and
m .
E pr" S 2—!/
i=k;+1

/

Consequently, k; should satisfy ™% — ,~m < 27"




Since |4l ma < o+, the total number of bits necessary for deter-
mination of S; is given by

b, = ”logzsl -H' + k,[log2r+1] (2.47)
D. Selection of S, by Rounding

In the case when
-8, — B(S) 2 1/2 (2.48)
and
B(S) + 5, 21/2 (2.49)

determination of S, can be performed by rounding. The condition
(2.48) is satisfied if j >

iz |l—— (2.50)
‘while condition (2.49) is always satisfied.

The number of necessary bits for determination of S;, for j 2j,
can be obtained as b; = (Tlogza]+l)+2

E. Simplification of the Recursion

The exponential term 4,5,/ is of a diminishing influence
on R;4 as j increases. Since A;is in the redundant form, at the j-th
step the digits of R, (j’=j+1,j+2,...,2j-3) necessary for selecting
of Syare all known. For a precision of m digits, all remaining S-
digits are actually available when

J = g and ji=[(m+3)/2] (2.51)

After this step the recursion can be simplified
Ri=rR;_| +Di_yxjp5r™ ' 4+ 5,4 (2.52)

The effect of the term D; on the remainder computation is deter-
mined in a similar manner. By using D,-==D,-2 forj 2 j, an error is
introduced:

Al € 2n'pr_*3_'(r-_j2 —r~mly (2.53)

Assuming that the impact of this error on the result should be less
than pr~""! we find

i fm+l _ o log2o ,,
12 5 8 log (2.54)

For different radices, the values of dmin » corresponding
o (o min ) and values of (o)) for 8=1 are given in Table 1.

TABLE 1
i 8=1

RADIX C Smin | Tmin | S*1
o | SY

2 3/4 2 1 -1

4 3/4 1 3 -2
8 5/8 0 7 -3 5 -2
16 10/16 0 12 -4 10 -3
32 21/32 0 24 -9 21 -8
64 42/66 0 44 -16 || 41 | -15
128 85/128 0 88 -33 4| 85 | -32
256 170/256 0 172 | -64 |t 169 | -63

II1. Radix-16 On-Line Multiplicative Normalization

As an illustration, we discuss the case of radix-16 algorithm

withp=15,8=1, C = —i%, (S min = =3, and o = 10
The selection intervals for

S1=/1(164)) and S; = f3(164,) are computed using (2.12) and
shown in Tables 2 and 3. It can be seen that the intervals for
selecting S| € (—4,...,10} overlap.

According to (2.50) for j2; = 3, the selection can be performed
by rounding.

S1 a b
10 -104.70  -91.71
9 -98.65  -85.13
8 -92.09 -78.02
7 -8497  -70.28
6 27719 -61.84
5 -68.68  -52.59
4 -59.31 -42.42
3 -48.96  -31.18
2 -3746  -18.69
1 -24.60 -4.73
0 -10.14 10.98
-1 6.25 28.78

-2 24.98 49.12
-3 46.60 72.59
-4 71.81 99.97
-5 101.62 13233

TABLE 2: S, Selection Intervals

S2 a b
10 -164.11 -143.81
9 -149.27 -128.90
8 -13432 -113.87
7 -119.25 -98.73
6 -104.08 -83.48
S -88.78 -68.10
4 -73.37 -52.61
3 -57.84 -37.00
2 -42.19 -21.27
1 -26.41 -5.41
0 -10.52 10.57
-1 5.51 26.67

-2 21.65 42.90
-3 37.93 59.26
-4 54.33 15.75
-5 70.87 92.37
-6 87.54  109.13
-7 104.34  126.01
-8 121.27 143.04
-9 13835 160.20
<10 15556  177.50

TABLE 3: S, Selection Intervals




Algorithm NORM-16

STEP 1 {Initialization}

2
Z,=3 X116
i=0
1 10
So‘—llf5<21<R
.. 10
So"—OIf’lE< 7y <1
Dy — (14S,)

Ry — ((145,) Z,~1)
STEP 2 {Recursion}

for j= 1,2,..., m-1 do:

210 A; — 16R,+D;X; 451672

2.2: 8, f(A})

23 Ry — (148,167 4,+8, ifj < j,
R/-+| — A/ + S,‘ lf/ 2 r’ll
Dy — D(148,167)) ifj < j

Disyv—D; ifj 2

end

where f(/i,) is the selection function, implemented as a set of

m+3 m+l

switching functions, j' =3, j, = ——23— and j, = 3

An example of the on-line normalization algorithm is given
in Figure 3.

x = 0.5079589839,, = 0.820999785

i Aj Sj Rj Dj Yj

0 0.0000000000 | 0.0156250000  2.0000000000  1.0156250000
102500000000 0  0.2500000000  2.0000000000 1.0156250000
2 40703125000 -4 0.0067138672  1.9687500000  1.0000262260
3 01766357422 0 0.1766357422  1.9687500000  1.0000431240
4 28953857422 .3 -0.1047467981  1.9686598778  0.9999984017
S 16067380700 2 03932588654  1.9686636327  1.0000003750
6 63459724920 -6 0.3459702225  1.9686629286 10000000206
7 55970442771 -6  -0.4029558480  1.9686628846  0.9999999985
8  -64088431205 6 -0.4088431294  1.9686628874  0.9999999999
9 -6.5107297128 7 0.4892702865  1.9686628876  1.0000000000

Figure 3: On-line Normalization Example
IV. SUMMARY

We have presented an on-line algorithm for multiplicative
normalization of fractions |x|e[1/2,1) to one. The algorithm has
the on-line delay of one. A radix 16 version has been illustrated. A
modular implementation suitable for VLSI technology is discussed
in (9,10]. As expected, the implementation is relatively complex
with respect to the internal module structure but it has simple
overall organization. The normalization algorithms are of potential
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use in techniques for evaluation of functions. The on-line property
allows additional speed-up by overlapping successive operations.
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