ON-LINE MULTIPLICATIVE NORMALIZATION

A.L. Grnarov
Electrical Engineering Department,
University of Skopje, Yugoslavia

M.D. Ercegovac
UCLA Computer Science Department
University of California, Los Angeles

ABSTRACT

In this article we describe a derivation and an algorithm for
on-line multiplicative normalization of fractions. The algorithm is a
variation of the continued product normalization algorithm and it is
used for on-line evaluation of elementary functions.

1. INTRODUCTION

In several algorithms for evaluation of elementary functions
[1-4] the computation requires an iterative transformation of the ar-
gument into a constant. If the evaluation of a function is embed-
ded in a sequence of arithmetic operations, an additional improve-
ment in speed can be obtained by applying on-line arithmetic [5-8].

In this paper we consider the problem of on-line multiplica-
tive normalization {9,10,11]. The multiplicative normalization of a
given argument |XJ e [1/2, 1) is defined as a sequence of transfor-

m
mations such that XoJ]M, — 1 for sufficiently large m. The mul-

]
tipliers are of the form M, = | + S, r=* | where r is the radix and
Sx is a digit in a redundant radix r number system. The sequence
< 8, Sy ..., S, > is interpreted as a continued product represen-
tation of 1/ X, and it is used to compute results such as guotients
and logarithms in m steps. The form of the multipliers simplifies
the implementation of algorithms for normalization and result
evaluation [1], [4].

The on-line arithmetic algorithms have the following pro-
perties: (a) the results are obtained in a digit-by-digit manner, be-
ginning with the most significant digit, and (b) in order to obtain
the j-th digit of the result it is necessary and sufficient to have G+
8) most significant digits of the arguments. The on-line delay 6 is
usually a small positive integer. The on-line algorithms achieve
speedup by allowing overlap between successive computations at
the digit level {4], [6], [7], [9].

In the following sections we derive an on-line multiplicative
normalization algorithm for general radix with on-line delay 8 = 1.

II. DERIVATION OF THE ALGORITHM

m
When all digits of the argument X, = 3 x; r7' are avail-
i=0
able at the beginning of the operation, the multiplicative normaliza-
tion is performed recursively as

X=X (1+S,_,) j=12.. Q.0

by choosing the values of S digits so that X,, converges to 1 [4].
This procedure is modified as follows for the on-line mode of
operation.

,m

CH1892-9/83/0000/0151$01.00 ® 1983 IEEE

151

Let Z; be the value represented by the first j+ & digits of
the argument X :
it+8

2, =Y xr

i=0

(2.2)

Recursively,
Zy=Z g4 xprmih = (2.3)
where x;45=0 for j>m—38 and
B)
Zo = }_{x,»r_"
i=0

The digits x; are assumed to belong to a symmetric redundant digit
set, i.e.:

x;eD, = {-p,...—1,0,1,....p]
where

< p<r

In on-line normalization, instead of the argument X , its on-line
form Z; is used. In order to obtain the same rate of convergence
as in the conventional normalization, the following must hold for
the partially normalized arguments Y;:

Y,=Z,D; X,=Y, (2.4)

where

D, =TI + Sioyr1) @5

jnml
is the j-th product of the normalizing multipliers and
Sie={~a,.,—101,. .7}

The on-line multiplicative normalization recursion follows from
(2.3-5):

Y/":(Z,;-l + X,'+5I‘A'/‘_S)D,_1(1 + S,--|F_i+l) (2.6)

=(Y‘-] + D,;]X“*,a"iﬂﬁ)(l + S,'_]I'_/-H)

where D=1, and j=1,2,...,m. For implementation reasons, this
recursion is replaced by the scaled remainder recursion:

Ry= (R + Diyxjusr™™ N (+S,r~ ™) + 5, (2.7)
where

R, = ri=\(Y~1) 2.8

The j-th digit of the continued product representation can
be selected in several ways using the scaled remainder recursion.

We pro;;ose to determine the value of S, as a function of
A; = fR,' + D,'Jf,'.p5+]r“5->l (?9)

in such a way that the error ¢; satisfies
lejl = l1=¥;l< £ ot (210)

i.e., the partially normalized argument x; differs by no more than
r~™ from 1. According to (2.8) this implies that

RIS 2 (2.11)
r—1

Now we establish the selection rules. From the remainder
recursion (2.7), the interval boundaries for every digit value S;eD,
are defined by the following expressions

r’(B,H - 5)

B(S) = —= s, (2.12)
and
R ., —
B(s) = R =S)

r'+S,
so that the digit value S; can be selected whenever

B(S) < 4, € B(S) (2.13)
In the expressions (2.12) and (2.13), R;;, and R,,; denote the
smallest and largest possible value of R;4,.

A. Determination of the Remainder Bounds

The values of R, and R, must satisfy the error, contain-
ment and continuity conditions.

Al Error condition (2.10) implies that
IRl ,IRI< —‘D—l

r—

A2. Continuity condition of the remainder range requires that the
selection intervals overlap. Moreover, these interval overlaps
should be as large as possible in order to allow the use of low-
precision comparison constants and an estimate of A ; as the selec-
tion argument. The size of the interval for the selection of S;is

"i D -
= mfs,_(RiH - R
2
According to (2.15)
j
(A/)max = ,-r%(RfH —Ri) (2.18)
r—ao
i _
(A) min = r'/r+ > (Ris1=Ryupy 2.17)

It can be seen from (2.16) and (2.17) that (A)) max is a decreasing
and (&) mis is an increasing function of j. Also, (Aw)max = (Aee) min
= Ry—Ris1. As an example, Figure 1 illustrates
A/(R;+1 = R;4) for r=16, p=15and o = 10.

Since B(S;4) and B(S)) are monotonically decreasing
functions of S;, the continuity condition becomes

E(S,H)—L?(S,-) 20 2.18)

for ~o < §,<o. From (2.13) and (2.18) it follows that the fel-

lowing condition must be satisfied [10].

— S ri+B,+1

j+l 2 i +s, + R4 2.19)

b
Jol-!pl
3=
= oo 1
34 M
S R W OO N VO TN IS0 NS N WY SO (NN U TR WO R Y N

-0 -9 8 7 6 5 403 2 a4 g 2 3 4 & & 7 8 % 10

Figure 1: Selection Interwml Overlaps

According to (2.19) E;H is a monotonically decreasing function of
S and j.
The monotonicity of the remainder upper bound is illustrat-
ed in Figure 1. For j—oo, (2.19) becomes
EH—] - B/H 21

or, for Rjy=— R,y

7 0~ 1
R : >

A3. Containment Condition

The scaled remainder recursion can be decomposed into
two mappings:

Ai=1rR; + DX, 54 r ! 2.200
Ry =A;(1 + S;r71)+S, (2.21)
For the convergence of the algorithm, the following must hold
(a) Bi(7) < 4, < Bi(a) (2.22)
(6) Riwi < Riwy < Ry (2.23)

According to (2.8) and (2.12)
(R/+|) min = R4 for A= 1_9,(5',), S/E{—{r o)
and

(R;+)) max = E,»H for 4; = [_?.,‘(S,), Siel—a, ... o)

The condition (b) in (2.23) is always satisfied as illustrated in Fig-
ure 2.

rRJ + Djxjidﬂr-&—]
o 1
1 A N
q -3
R gj(q)) BJ(-G)

(1+er'3)AJ + sJ

Figure 2: A-g Mappings

is now considered in detail. Since

The condition (a)
Xoe[%,l). the first digit Sy is either 0 or 1. In order to simplify the

selection in the initial steps of the algorithm, the selection of Sy is
performed in such a way that

max|R;| = max| (1 + §¢)Z, - 1| (2.24)
is minimal. This happens if S is defined as
0ifZ; > €
S (2.25)

0= |1 otherwise

where C is an estimate of C. The selection constant C=2/3 for
the selection of S, can be determined from the condition

1-C=2C-1 (2.26)
According to (2.25) and (2.20)

(C—Dr — pr1 g A < QC—Dr +20r %1 (227
The containment condition is now defined as

r(Eﬁ-Sf)—*-? > Q2C~ r+20r-! (2.28)

r—=35
and
(0~ Ry A
M A 2U0-C)r+prs—1 (2.29)

r+a

where Sy is the magnitude of the largest negative S digit. It can be

determined from (2.28) and the fact that
(RD min >1/2 and (R3) max < p/(r=1).
B. Determination of R;, R, and o
The containment condition for j>2 becomes:
F(R i +) —
T > R, + Dpre! (2.31)
rl—a

and

F(R —o)

“ﬁr" :§ ’B, - D / }3 ’_5_1 (2‘3’2)
From (2.31) and (2.32), it follows that

Ry 2 (1~ fj.—)(rﬁ,. +Dipr) — & (2.33)
and

R <+ f})(rg/ —Dipr Y + o (2.34)
For j — oo

Re> —(o-Dpr Y (2.35)
and

Re > ——L(o=Dpr1) (2.36)

r—1
From the expressions (2.33) to (2.36) it follows that both R, and
R; are decreasing functions of j. Since

R, ~Riyy >0 (2.37)
and

Ri—= Ry >0

we obtain that Rj and R, must satisfy

(2.38)

153

aoa—-z+ ~
R < - — (2.39)
r—1--Z-
,l~l
and
PP L.
R/ > - . (2.40)
r—1+ -
,/—l
D,
where z = alg
,
According to (2.19) the continuity condition becomes
(I‘ - Sl.) E; —r
R, € ——npte (2.41)
=2 = r— Sl +1
where S| is a function of r and 7 only.
From (2.31) and (2.32)
_ (R, e
R, < l('—’Lﬂ - D,pr-*-'l (2.42)
r r—a
and
(R 41—
R, > llL(*”‘—T) +D,pra—1l (2.43)
r'+ao

r
Assuming that R;/+1=R.. , R,/+1=R.. and D, = 2. the boundary
values of R;,j=273..,j can be obtained applying recursions
{2.42) and (2.43). Determination of R; and R; in such a way has
the following advantages: (i) The containment condition is always
satisfied, and (ii) The continuity of selection intervals is maximal.

C. Selection Precision

The selection interval overlap A oy, is given by

(2.44)

(Rivi=Ris)) (r' +8) =Ry — 1/

It can be seen that Ay, is an increasing function of j and that
2o—z)—r+l]

p (2.45)

AOV, = Ru—Roo~1 =
For selection of Sy, § + 1 digits of the argument should be known
Acording to [10]

Dp

r6+l

Ay =rR +

i.e., for selection of S, at most & + 2 digits are necessary. Since
Aoy is an increasing function of j, the smallest overlap for the
remaining steps occurs for j=1.

Assuming that 4; is in a redundant form, S; can be deter-
mined from an estimate 4; of 4; such that the following holds

A=A+ Y dr (2.46)
l-k,-+l
and
m .
E pr" S 2—!/
i=k;+1

/

Consequently, k; should satisfy ™% — ,~m < 27"

Since |4l ma < o+, the total number of bits necessary for deter-
mination of S; is given by

b, = ”logzsl -H' + k,[log2r+1] (2.47)
D. Selection of S, by Rounding

In the case when
-8, — B(S) 2 1/2 (2.48)
and
B(S) + 5, 21/2 (2.49)

determination of S, can be performed by rounding. The condition
(2.48) is satisfied if j >

iz |l—— (2.50)
‘while condition (2.49) is always satisfied.

The number of necessary bits for determination of S;, for j 2j,
can be obtained as b; = (Tlogza]+l)+2

E. Simplification of the Recursion

The exponential term 4,5,/ is of a diminishing influence
on R;4 as j increases. Since A;is in the redundant form, at the j-th
step the digits of R, (j’=j+1,j+2,...,2j-3) necessary for selecting
of Syare all known. For a precision of m digits, all remaining S-
digits are actually available when

J = g and ji=[(m+3)/2] (2.51)

After this step the recursion can be simplified
Ri=rR;_| +Di_yxjp5r™ ' 4+ 5,4 (2.52)

The effect of the term D; on the remainder computation is deter-
mined in a similar manner. By using D,-==D,-2 forj 2 j, an error is
introduced:

Al € 2n'pr_*3_'(r-_j2 —r~mly (2.53)

Assuming that the impact of this error on the result should be less
than pr~""! we find

i fm+l _ o log2o ,,
12 5 8 log (2.54)

For different radices, the values of dmin » corresponding
o (o min) and values of (o)) for 8=1 are given in Table 1.

TABLE 1
i 8=1

RADIX C Smin | Tmin | S*1
o | SY

2 3/4 2 1 -1

4 3/4 1 3 -2
8 5/8 0 7 -3 5 -2
16 10/16 0 12 -4 10 -3
32 21/32 0 24 -9 21 -8
64 42/66 0 44 -16 || 41 | -15
128 85/128 0 88 -33 4| 85 | -32
256 170/256 0 172 | -64 |t 169 | -63

II1. Radix-16 On-Line Multiplicative Normalization

As an illustration, we discuss the case of radix-16 algorithm

withp=15,8=1, C = —i%, (S min = =3, and o = 10
The selection intervals for

S1=/1(164)) and S; = f3(164,) are computed using (2.12) and
shown in Tables 2 and 3. It can be seen that the intervals for
selecting S| € (—4,...,10} overlap.

According to (2.50) for j2; = 3, the selection can be performed
by rounding.

S1 a b
10 -104.70 -91.71
9 -98.65 -85.13
8 -92.09 -78.02
7 -8497 -70.28
6 27719 -61.84
5 -68.68 -52.59
4 -59.31 -42.42
3 -48.96 -31.18
2 -3746 -18.69
1 -24.60 -4.73
0 -10.14 10.98
-1 6.25 28.78

-2 24.98 49.12
-3 46.60 72.59
-4 71.81 99.97
-5 101.62 13233

TABLE 2: S, Selection Intervals

S2 a b
10 -164.11 -143.81
9 -149.27 -128.90
8 -13432 -113.87
7 -119.25 -98.73
6 -104.08 -83.48
S -88.78 -68.10
4 -73.37 -52.61
3 -57.84 -37.00
2 -42.19 -21.27
1 -26.41 -5.41
0 -10.52 10.57
-1 5.51 26.67

-2 21.65 42.90
-3 37.93 59.26
-4 54.33 15.75
-5 70.87 92.37
-6 87.54 109.13
-7 104.34 126.01
-8 121.27 143.04
-9 13835 160.20
<10 15556 177.50

TABLE 3: S, Selection Intervals

Algorithm NORM-16

STEP 1 {Initialization}

2
Z,=3 X116
i=0
1 10
So‘—llf5<21<R
.. 10
So"—OIf’lE< 7y <1
Dy — (14S,)

Ry — ((145,) Z,~1)
STEP 2 {Recursion}

for j= 1,2,..., m-1 do:

210 A; — 16R,+D;X; 451672

2.2: 8, f(A})

23 Ry — (148,167 4,+8, ifj < j,
R/-+| — A/ + S,‘ lf/ 2 r’ll
Dy — D(148,167)) ifj < j

Disyv—D; ifj 2

end

where f(/i,) is the selection function, implemented as a set of

m+3 m+l

switching functions, j' =3, j, = ——23— and j, = 3

An example of the on-line normalization algorithm is given
in Figure 3.

x = 0.5079589839,, = 0.820999785

i Aj Sj Rj Dj Yj

0 0.0000000000 | 0.0156250000 2.0000000000 1.0156250000
102500000000 0 0.2500000000 2.0000000000 1.0156250000
2 40703125000 -4 0.0067138672 1.9687500000 1.0000262260
3 01766357422 0 0.1766357422 1.9687500000 1.0000431240
4 28953857422 .3 -0.1047467981 1.9686598778 0.9999984017
S 16067380700 2 03932588654 1.9686636327 1.0000003750
6 63459724920 -6 0.3459702225 1.9686629286 10000000206
7 55970442771 -6 -0.4029558480 1.9686628846 0.9999999985
8 -64088431205 6 -0.4088431294 1.9686628874 0.9999999999
9 -6.5107297128 7 0.4892702865 1.9686628876 1.0000000000

Figure 3: On-line Normalization Example
IV. SUMMARY

We have presented an on-line algorithm for multiplicative
normalization of fractions |x|e[1/2,1) to one. The algorithm has
the on-line delay of one. A radix 16 version has been illustrated. A
modular implementation suitable for VLSI technology is discussed
in (9,10]. As expected, the implementation is relatively complex
with respect to the internal module structure but it has simple
overall organization. The normalization algorithms are of potential

155

use in techniques for evaluation of functions. The on-line property
allows additional speed-up by overlapping successive operations.

Acknowledgements: This work has been supported in part by a
research grant from the Batelle Memorial Institute and by the ONR
contract N0O0O014-79-C-0866 (Research in Distributed Processing).
REFERENCES
1 B. G. DeLugish, "A class of algorithms for automatic
evaluation of certain elementary functions in a binary
computer”, Ph.D. dissertation, Dep. Comput. Sci., Univ.
of Ilinois, Urbana -Champaign, June 1970.
{2] W. H. Specker, "A class of algorithms for In x, exp x,
sin x, cos x, tan~! x, and cor~! x", IEEE Trans. Electron.
Comput., vol. EC-14, pp.85-86, Feb. 1965.
[3] T. C. Chen, "Automatic computation of exponentials,
logarithms, ratios and square roots,” IBM J. Res.
Develop., vol. 16, pp.380-388, July 1972.
[4] M. D. Ercegovac, "Radix-16 evaluation of certain ele-
mentary functions", IEEE Trans. Comput. vol. C-22,
pp. 561-566, June 1973.
[5] M. D. Ercegovac, "A general hardware-oriented method
for evaluation of functions and computations in a digital
computer”, IEEE Trans. Comput. vol. C-26, pp. 667-
680, July 1977.
(6] K. S. Trivedi and M. D. Ercegovac, "On-line algorithms
for division and multiplication", 1IEEE Trans. Comput.,
Vol. C-26, pp. 681-687, July 1977.
[7] M. J. Irwin, "An arithmetic unit for on-line computa-
tion", Ph.D. dissertation, Report No. 873, Dept. Com-
put. Science, Univ. Illinois, Urbana-Champaign, May
1977.

M. D. Ercegovac, "An on-line square rooting algorithm",
Proc. 4th IEEE Symp. Comput. Arithmetic, pp.183-189,
October 1978.

{9] A. L. Grnarov and M. D. Ercegovac, "An Algorithm for
On-Line Normalization", UCLA Computer Science
Department Quarterly, Vol.7, No.3, July 1979, pp.81-94.
[10] A.L. Grnarov and M.D. Ercegovac, "On-Line Multiplica-
tive Normalization®, UCLA Computer Science Depart-
ment, Technical Report,1983.

[11] R.M. Owens, "Compound Algorithms for Digit Online
Arithmetic", Department of Computer Science, The
Pennsylvania State University, Technical Report, CS-
81-1, January 1981.

