AN IEEE FLOATING POINT ARITHMETIC IMPLEMENTATION

by Kari Johnsen

Norwegian Computing Center (NCC)
Oslo, Norway

ABSTRACT

This article describes some of the methods and
algorithms used in an implementation of floating
point arithmetic following (almost) the IEEE stan-
dard defined in (1). The description is more
directly algorithm-oriented than the ‘Implementa-
tion Guide’ for this standard (2), since the lat-
ter does not treat an actual implementation.

The article consists of two parts. One concerns
the problem of getting the “preliminary result’
from each of the arithmetic operations, this re-
sult is the basis for a correct rounding.

The other part treats the multiword arithmetic,
i.e. the routines to perform an m X n bit
operation, using the corresponding n bit operation
supplied by the hardware. Only multiplication and
division are described, since the add/subtract
routines are trivial. For division alsc a method
for getting an n bit inverse is included, since
the hardware in the case had no division
operation.

INTRODUCTION

The project and the hardware

The floating point arithmetic implementation is
part of the Mach-S project at the Norwegian
Computing Center. The aim of this project is to
build a fast work station dedicated to the
execution of SIMULA programs. The prototype hard-
ware is the S-2000 terminal developed by the com-
pany Simulation Excel (SIM-X) A.S in Oslo. It is
designed as a page composer, but is easily adapted
to other purposes both through microprogramming
and through modification of the hardware. It is
reasonably fast (200 ns microcycle) and internally
the machine contains a number of cooperating
processing units, which serve to speed up the
execution. The arithmetic routines are
microprogrammed on the two ‘bottom levels’, called
the P- and M-level. Regarded from the next level
(F) they are single instructions which form part
of the “Slang’ instruction set on this level.
Slang is an expression-stack and data-object
oriented instruction set, which is tailored for
execution of ‘S-code’, which again is the
intermediate language between the analysing part
and the machine specific code generator in a
semi-portable SIMULA system.

CH1892-9/83/0000/0130$01.00 © 1983 IEEE

130

The P- and M-level also contain routines for
format-conversion, integer arithmetic, comparisons
and transport of values to/from the F-level. The
sequencing is done on P-level, while the M-level
does the actual arithmetic work. The M-level
processor contains a 16-bit Am 2901 ALU, an Am
29517 16x16 bit multiplier, two registerfiles, a
RAM that holds the arithmetic value stack and a
16-bit databus to communicate between these
devices. The microinstruction word has separate
bits to control the ALU and the multiplier, so
that these can operate in parallell.

The IEEE standard, and value representation

The implementation does not in every respect
conform to the IEFE standard as this is defined in
(1). The differences all concern what might be
called the “exception cases’. We do not use the
concepts NaN (Not A Number), infinity or
denormalized numbers, and accordingly do not
define operations on these, as IEEE does. However,
in normal calculations where no overflow,
underflow or divide by zero occurs, we produce the
results prescribed by IEEE. When these exceptions
ocecur, they are trapped and handled by a higher
level in the machine.

All the four rounding modes: truncate, round to
nearest, toward +infinity and toward -infinity are
implemented.

Both the single and double basic format are
supported, and also a single and double extended
format. The table below shows the width in bits of
the various fields of these formats.

Sign Exporent Int. part Fraction

() (E) (J) (F)
Single basic & not repr. 23
Double ,, 1 11 . 52
Single ext. 1 15 1 31
Double ,, 1 15 1 63

For the basic formats these widths are defined
in IEEE, for the extended they may be chosen by
the implementor, as long as the extended format is
wider than the corresponding basic format. Our
extended formats are chosen so that the mantissa,
which consists of the J an F fields, is contained
in a whole number of 16-bit words, two for reals
and four for long reals.

e

In all the formats the exponent is biased with
the value 2¥*(w-1) - 1, where w is the width of
the E-field. In the extended formats the sign and
the exponent together occupy one 16-bit word.

The interpretation of the value represented
in these formats will differ slightly from IEEE
since we do not represent NaN’s, infinities and
denormalized numbers. Bit patterns that in IEEE
would represent these quantities will here be
interpreted as normal numbers in the basic
formats, sometimes not used at all in the
extended. Of course IEEE s normal numbers are
interpreted as such.

Our interpretation of the value V is the
following:

Basic format:

if E=0 & F=0
then V = (-1)%%S ¥ 0 (signed zero)
else V = (-1)*%S * D¥%(E_bias) ¥ 1.F

Extended format:

if E=0 & J=0 & F=0
then V = (-1)¥*s ¥ 0 (signed zero)
else if J=1

then V = (-1)¥%5 ¥ 2¥%(E_bias) * 1.F
else the combination is not in use

On the internal stack in the arithmetic
processor the values are always represented in the
extended formats. Conversion between single and
double is done by special functions, if a mixed
mode operation is to be performed, the F-level
will first call one of these, so that the
arithmetic function will operate either on two
real or on two long real operands. Thus each
arithmetic function will need one routine for
reals and another for long reals. These are of
course similar with respect to method and
algorithms.

ACCURACY AND ROUNDING

The IEEE standard requires the arithmetic
operations to be performed “as if correct to
infinite precision, then rounded according to the
specifications’. However, to do this rounding, it
is of course not necessary to know every bit of
the infinitely precise result. The "Implementation
Guide” (2) defines a ‘preliminary result’, which
is a compressed form of the infinitely precise
result, containing enough information to round
correctly. Beyond the LSB (the least significant
bit to go into the destination format) the
preliminary result contains three bits: the guard
bit G, the round bit R and the sticky bit S. The
two first are equal to the corresponding bits in
the infinitely precise result, the last is the
‘or” of all the following bits.

To round correctly, in fact only one correct
bit is needed between LSB and S. The guard bit is
supplied since the preliminary result will
sometimes have to be shifted one bit to the left
to be normalized, if s0, we still have the correct
round bit R beyond LSB.

An exact R is needed only in the default
rounding mode, round to nearest, where the result
shall differ from the infinitely precise result by
at most half a unit in the LSB position. The
sticky bit S is then needed to decide whether this
difference is exactly a half, in which case round
to even is required. The three other rounding
modes only need to know if the difference is zero
or not, thus the GRS-bits are sufficient to
round correctly in these modes too.

Though the preliminary result is defined in
terms of the infinitely precise result, it is not
always possible to compute it this way, since it
may be impractical (or impossible) to compute the
latter. The method for getting a correct
preliminary result will differ for each arithmetic
operation, hence we shall look at each operation
separately.

Addition/subtraction.

Vhen the exponents of the two operands are
different, one operand must be unnormalized,
i.e. shifted N bits to the right, where N is the
exponent difference. When N is great, it would at
least take some complicated programming to handle
such very long operands, which may occupy far more
than the available number of registers. Instead,
the following procedure will work:

During the operand shift, put a “barrier’
behind the sticky bit position, which shall
mean that each bit that would have been
shifted beyond this barrier, instead is
‘or’ed into S. In this way however large N
may be, this ‘compressed operand’ Jjust
occupies three bits more than the original
operand, these are contained in one 16-bit
word. The other operand is supplied with
trailing zeroes, then the addition or
subtraction is performed, giving a result of
one word extra length. This is the correct
preliminary result.

To see this, we shall look at the operation
performed in both ways. The asterisk marks the
LSB position, V' is the overflow bit that may be
generated by addition.

With infinite precision:

*
Unshifted operand: XXXXXXXx00000
Shifted operand: yyyyyzzz

Inf. precise result: VrrrrrrrrCRsss

Preliminary result: VrrrrrrrrGRS S=or(sss)
With compressed operand:

*
Unshifted operand: Xxxxxxxx000
Shifted operand: yyyyyZ Zzor(zzz)
Result: rrrrrrrrGRS

In both cases we have the egquivalences:
(zzz <> 0)
<=>
(s =1)
<=>
(borrow from R-position in case of subtraction)

which shows that the last result is equal to
the preliminary result.

This preliminary result may then have to be
normalized. In case of addition, if V=1, the
result must be shifted one bit to the right.
Ideally the R-bit should be “or’ed into S.
Actually, since the GRS-bits are contained in a
16-bit word, S will not be shifted out by a
one-bit shift. This is sufficient for the rounding
routine, which is only interested in the leftmost
bit of this word, and whether the remaining 15
bits are all zero or not.

After a subtraction, more than one of the
leftmost bits may become zero, and the result must
then be shifted a number of bits to the left to
become normalized. One might ask: What if the
sticky bit, which is inexact, is shifted into the
significant part of the result? We shall see that
if so, the sticky bit is not inexact, in fact it
will be zero and no bits have been “or’ed into it.

Let the mantissas be A and B, and let B be
shifted K bits to the right before the
subtraction. The result is then A - 2¥¥(_K)¥B.
Since A and B are normalized mantissas, with the
binary point to the right of the leftmost bit, we
have 1 <= A,B < 2. Let us assume K >z 2. This
implies:

|
|
i
!
i
|
|
i

A - 2¥¥(K)¥B > 1 - 2¥X(.2)¥2 = 1/2,

So if the sticky bit is really inexact, which
means that K >= 4, then the result will have to be
shifted at most one bit to the left. The guard

bit G will move into the significant part of the
result, while the R and S bits stay beyond. This
is sufficient to perform the rounding correctly.

Multiplication

As for the construction of a preliminary
result, multiplication is the most straightforward
operation, since the infinitely precise result
can be constructed in this case. The product of
the two mantissas has a length which is the double
of the mantissa length, it is computed accurately,
the upper half is the significant part, and the
lower half is compressed into the GRS-bits. The
result may have to be shifted one bit to the left,
s0 the guard bit G must be present.

132

Division

The division algorithm, which will be described
later, contains a procedure DIGIT that takes a
‘remainder’ as input, and delivers 16 correct bits
of the quotient as output, together with a new
remainder. Called twice for reals, four times for
long reals, DIGIT supplies enough bits for the
significant part of the quotient mantissa.

The quotient may have an infinite number of
bits, so that the infinitely precise result is
impossible to construct. However, after each
DIGIT-call the remainder is zero if and only if
the quotient bits not yet computed are all zero,
50 that the “or’ of the remaining bits is equal to
the “or’ of the bits in the remainder. Thus we can
easily get a sticky bit when we have G and R, the
question is if we have £o execute DIGIT one time
extra to get these two bits. We shall see that
this is not necessary.

The dividend U and the divisor V are both
normalized mantissas, thus, as described under
subtraction, we have 1 <= U,V < 2, and
therefore: 1/2 < U/V < 2, so that U/V will have
one of the forms:

(for U >= V)

usv 1. XXXXXXXX

U/V = 0. TXXXXXXX (for U < V)

The division algorithm regards U and V as
integers, hence in the result the bit left of the
binary point will be the least significant bit of
a machine word.

We note that the quotient 2U/V differs from U/V
only in the exponent. This suggests the following
approach:
Set U’ U if U >=
20 if U <

imon

Then U’/V will always have the form: T4 XXXXXXXX

and U/V -1 = (U" - V)/V will be: 0.XXXXXXXX

We therefore start the division with a
remainder R = U” - V, compute the “xxxxxxxx to
the length of a normal mantissa, then shift this
value one bit right with a "1’ shifted in from the
left. This gives the normalized mantissa of U/V
with one extra correct bit beyond the LSB, thus we
have got the R-bit. Since this mantissa will not
be left-shifted, we do not need the G-bit. Finally
we get S from the remainder, as described above,
and we have the normalized preliminary result,
ready for rounding.

It may be mentioned that the code to set the
initial remainder is rather simple:

Vo

R : - ;
i 0 then R := R + U, decrement exponent;

U
f <

o 11

The division algorithm requires the initial
remainder to be less than the divisor, R fulfills
this condition, since R/V = O.xxxxxxxx < 1.

THE MULTIWCRD MANTISSA OPERATIONS

We shall study the algorithms for multiword
arithmetic only for multiplication and division,
for addition and subtraction the method with
carry transfer is well-known. The long real case
with 64-bit mantissas in four 16-bit registers is
used as example in both cases.

Multiplication

The figure below may help to vizualize the
word-by-word mantissa multiplication:

MSwW SSW TSW LSW
RO 7/ / / /
MSW” / / / /
/ R1 |/ / /
/ | R2 / / /
SSW” / / / /
/ / R3 |/ /
/ /| R4 / /
TSW” / / / /
/ / / RS}/
MSP / / /| R6 7/
LSW’ / / / /
/ LSP| / / / R7

The mnemonics MSW, SSW, TSW, LSW denote Most,
Second, Third and Least Significant Word of the
mantissas of the two factors. Each square
represents a 32-bit product, consisting of the two
parts MSP (most significant 16 bit) and LSP (least
significant 16 bit) as shown in the leftmost
bottom square. Those MSP’s and LSP s that lie on
the same diagonal, between two slashed lines, will
be added to the same accumulator register, this
register is marked on the figure for each
diagonal. The final product will then reside in
the eight-register “accumulator” RO - R7.

We have the following problem: Each time an LSP
or MSP is added to an accumulator, a carry may be
generated, this should be added to the next
accumulator (above to the left), this addition may
again generate a carry, and so on. We need a
method that will “swallow’ these carries without
extra addition. The one chosen is taken from (3),
page 233. The basis is the following procedure for
one single 16 x 16 bit multiplication:

procedure M(F*, F, Rin, Rout, Qin, Qout);
begin

P:=F *F + Rin + Qin;

Rout :=LSP(P);

Qout :=MSP(P);
end M;

133

- F, F’ are the two 16-bit factors.

- Rin, Rout both refer to the accumulator register
belonging to L3P of this product.
- Qin, Qout are 16-bit “carries”’.
from some previous product, Qout is the MSP of the
current product.

Qin is the MSP

The procedure assumes that P is a 32-bit value, so
that it may be parted into an MSP(P) and LSP(P).
The proof is simple, since all the righthand
values are 16-bit, we have:

P <= (2¥¥16-1)%(2%%16.1)+(2%%16-1)+(2%%16-1)
= (2%%32.1)
showing that P is a 32-bit value. (Knuth’s proof)

We may reformulate M in a form a little “closer
to the machine”:

procedure M(.....)i
begin
Rout:=LSP(F"*F) + Rin + Qin;
Qout:=MSP(F"¥F) + carry + carry;
end M;

The carries are from the previous additions.

The above proof shows that MSP of the product will
“swallow’” the two carries without generating any
further carry. These carry-additions need not be
separate instructions. In the actual implementa-
tion Qin and Qout each consists of both a 16-bit
value and a carry-condition, thus one "+ carry’

is not performed, and the "+ Qin” is actually an
‘add Qin plus carry’-instruction.

Referring to the above figure, if we now do the
multiplications in each column from bottom to top,
we see that Qout from one product may be used as
Qin in the next, since they belong to the same
register. At the bottom Qin=0, at the top Qout is
a register where nothing yet has been accumulated,
if we do the columns from right to left. The total

multiplication then becomes:
M(LSW’, LSW, R7, R7, 0, Q); Rightmost
M(TSW", LSW, R6, R6, Q, Q); column
M(SSW’, LSW, RS, R5, Q, Q);
M(MSW", LSW, R4, RY, Q, R3);
M(LSW", TSW, R6, R6, 0, Q); Next to
M(TSW’", TSW, RS, R5, Q, Q); rightmost
M(SSW’, TSW, R4, R4, Q, Q); column
M(MSW’, TSW, R3, R3, Q, R2);
M(LSW", SSW, R5, R5, 0, Q); Next to
M(TSW", SSW, RU4, RH, Q, Q); leftmost
M{SSW’, SSW, R3, R3, Q, Q); column
M(MSW", SSW, R2, R2, Q, R1);
M(LSW", MSW, R4, R4, O, Q); Leftmost
M(TSW", MSW, R3, R3, Q, Q); column
M(SSW’, MSW, R2, R2, Q, Q);
M(MSW’, MSW, R1, R1, Q, RO);

Before this program starts, the registers RU-RT

must be initiated to zero.

The code for each column is quite similar, only
different registers are involved. Code may be
saved by using a common code sequence for the
columns, this is possible by changing the actual
registers associated with each accumulator, for
each column. We note that Rout from line N in one
column is Rin in line N-1 in the next column.
Choosing the registers where the values are
finally to end up, we construct the following
procedure to handle one column:

procedure MM(F, Rout);

begin
M(LSW’, F, R3, Rout, 0, Q);
M(TSW’, F, R2, R3, Q, Q);
M{SsSW’, F, R1, R2, Q, Q);
M(MSW’, F, RO, R?, Q, RO);
end MM;

The total multiplication then becomes:

MM(LSW, R7);

MM(TSW, R6);
MM(SSW, R5);
MM(MSW, RU);

With this method, RO-R3 must be initiated to zero.

After the computation, the significant part of the
product is in RO-R3, while RU-R7 is compressed
into the GRS-bits, as described in “Accuracy and
rounding’.

Division

The division method is based on an algorithm
taken from (3), page 237. We shall regard the
dividend U, the divisor V and the quotient Q as
consisting of 16-bit “digits’: U=ut,u2,u3,ul,
V=v1,v2,v3,v4, Q=q1,92,q3,cl, each digit then
occupies one register.

The basis of the method is a procedure DIGIT,
which generates one digit gi of Q. DIGIT operates
on a remainder R, both as input and output. This
remainder has one digit more than U, V:
R=r0,r1,r2,r3,ri4,.

procedure DIGIT(R, qi);
begin ghat is a 16-bit value;

rO:=rt; multiply R by 2%¥16
rl:z=r2; 'y
r2:=r3; s
r3:=rl; -
ri:=0 ; y

L
guess a ‘trial digit’ ghat;
R:=R -V¥*ghat;
while R<O do begin

R:=R+V;
ghat:=ghat-1;
end;
Qqi:=qhat;
end DIGIT;

Knuth’s ‘guess’ of trial digit is the following:

ghat:=FLOOR(rOr1/v1);
if ghat >= 2*¥*16 then ghat:=2%%16-1;

134

‘FLOOR(x) " means the integer part of x, i.e.
the biggest integer not greater than x. Later we
shall also use "CEILING(x)”, which denotes the
smallest integer not less than x.

This trial digit then comes from dividing the
two most significant digits of the remainder by
the most significant digit of the divisor. Knuth
shows that this ghat is never smaller than the
correct digit, thus the while-loop in DIGIT only
counts ghat down. He also shows that ghat is not
more than 2 too big, provided that the most
significant bit of v1 is “17, which is fulfilled
in a normalized mantissa. Therefore the loop will
execute twice at most, with this choice of ghat.

We now have the following problem: Knuth
assumes the existence of a 16-bit division
operation to compute rOri1/vi, but our machine has
no such hardware operation. The quotient is
computed 4 times, but we see that the divisor is
the same, v1, each time. If we then had the
inverse of v1, we could multiply by rOrl to get
ghat. The multiplication is simplest if the
inverse is contained in 16 bits. The position of
the binary point should be chosen so that these
contain as many significant bits as possible.
Regarding v1 as an integer, we have for all
vi<>2¥%15,

2¥%1541 <= v < 2%¥16
and so:

2¥R15 < 2¥R31/yT <= D¥H3Y/(DR%1541)
= 2¥%16 - 2 4 2/(2%%1541)

2%%¥31/v1 is not an integer. Our multiplication
factor must not produce a ghat less than

Knuth’s, if we are not to alter DIGIT and test for
both too small and too big ghat. Thus we must use
the CEILING of the value, ancd the above
inequalities show that we have:

2%¥15 < CEILING(2¥¥#31/v1) <= 2%%¥16-1

which means that CEILING(2¥¥31/v1) is contained in
16 bits, and its most significant bit is ‘17, so
we have got the maximum precision possible in 16
bits. For v1z2¥%¥15 it is simple to compute
rOr1/v1, for all the other v1 we want a way of
computing the value CEILING(2¥¥31/v1). The method
chosen is an iterative process often used to
construct a division-operation, when a
multiplication is available, see (4). The
mathematical basis can shortly be described:

We regard the function f(x)=2%%31/x ~ vi

and will determine x so that f(x)=0. We have
£7(x)= -2%%31/x*%2 Given an initial guess x0 of X,
we approximate f(x) by the tangent at x0, and set
this to zero:

f(x0) + £ (x0)*(x-x0) = 0

Substituting £(x0) and f“(x0), we finally arrive
at:

x = xD¥(2%¥%16 - xO*y1/2#%16)/2%%15

This gives a quickly converging iterative formula
for x, as may be seen most easily from a function
diagram of f{(x) and the tangent. The formula is
implemented by the following steps:

1. Multiply x0 and v1, discard least significant
word of result.

2. Negate result (equal to 2¥*16 - result in two’s
complement arithm.)

3. Multiply by x0.

4, Shift result one bit left, keep upper 16 bit as
final result.

The initial x0 is taken from a table, where the
index consists of some (currently 7) of the most
significant bits of vi1. It seemed difficult to
deduce in a purely mathematical way how many
iterations would be necessary and how much the
final x would differ from CEILING(2¥¥31/v1). Also
the steps in the calculation above are not all
exact.

For safety reasons a test routine was construc-
ted. For each v1<>2¥¥15 this routine computes the
inverse x by the iterative process described, then
multiplies x by v1, and finds how much this
product differs from 2¥*¥31 in multiples of v1,
this gives the difference x - CEILING(2¥¥31/v1).
The routine also counts for how many v1’s this
difference is negative, 0, 1, 2, .. and so on.
Thus one can experiment to find out how many
iterations are necessary, and also check that the
inverting procedure gives no values smaller than
CEILING(2¥¥31/v1). If the value is bigger, it may
cause the while-lcop in DIGIT to run some extra
times. It is of interest to estimate an upper
limit for the number of times this loop will run.

Knuth’s ghat=FLOOR(rOr1/v1) may cause it to run
twice, as proved by him. The value we use is
ghat=FLOOR(rOr1*¥v1inv/2%¥%31), where vlinv is the
result from the iterative inverting procedure. The
current routine, which uses 3 iterations (it will
be changed later, when a better table for
start values is available) is showed by the
test routine to produce 1501 viinv’s that are one
too big, the rest are equal to the value
CEILING(2¥¥31/v1}. This latter value may be nearly
one greater than 2¥¥31/v1, thus:

0 < vlinv - 2¥¥31/y1 < 2

Since rOr1 < 2¥¥32 ye get:

0 < rOr1*v1inv/2¥*¥31 - rOri1/v1 < = U4

0 <= FLOOR(rOri1*y1inv/2%¥%31) -~ FLOOR(rOr1/v1) <=z U4
showing that our qhat is no more than 4 bigger
than Knuth’s, so the while-loop in DIGIT cannot
run more than 6 times. (As yet, it has never been

seen to run more than 3 times, usual has been one
or zero in the examples tried till now.)

We may now describe the total division process,
some of these steps were explained in “Accuracy
and rounding”:

1. Given a dividend U=ul,u2,u3,ud and a divisor
V=v1,v2,v3,vi.

2. Get the inverse vlinv of v1, by the iterative
inverting procedure.

3. Set the initial remainder R:
R:=U-V if U>=V
R:=2¥0-V if U< V

4. Call DIGIT 4 times to get U x 16 bits of the
quotient. The “guess” of ghat is now:
ghat: =FLOOR(rOr1¥v1inv/2%%31)
if ghat >= 2*¥¥16 then ghat:=2%¥16.1;

5. Shift the result 1 bit to the right, with “1°
in from the left. Set sticky bit equal to “or”
of the bits of the final remainder.

6. Round.

We see that actually two division algorithms
are used:

The iterative gives an n-bit division, based
on an n-bit multiplication.

Knuth’s gives an m x n-bit division, based on
an n-bit division.

It was considered to use only the first method
to get the whole 64-bit inverse. This would
however involve long composite multiplications,
whereas in Knuth’s algorithm just one 64 x 16-bit
multiplication is needed in each DIGIT-call. Also
the control of the accuracy seemed easier with the
latter method, so it was finally decided to use
both algorithms, as described.

REFERENCES

(1) A Proposed Standard for Binary Floating-Point
Arithmetic.
Draft 8.0 of IEEE Task P754
COMPUTER, March 1981

(2) An Implementation Guide to a Proposed Standard
for Floating-Point Arithmetic
Jerome T. Coonen,
University of California at Berkeley
COMPUTER, January 1980

(3) Donald Knuth: The Art of Computer Programming,
vol. 2: Seminumerical Algorithms

(4) Morris & Ibbett: The MUS Computer System
Macmillan 1979

135

