g

ARITHMETIC FOR A HIGH-SPEED ADAPTIVE LEARNING NETWORK ELEMENT

Hideaki Kobayashi* and Ronald D. Bonnell

Department of Electrical and Computer Engineering
University of South Carolina
Columnia, SC 29208

ABSTRACT

This paper presents a novel arithme-
tic scheme for a high-speed adaptive
learning network (ALN) element. An ALN is
a self-organizing scheme for implementing
the Kolmogorov-Gabor (K-G) polynomial
which maps an input vector X into an out-
put scalar Y. 1In the first layer of an
ALN there are n(n-1) / 2 elements. In the
next layer the number of elements needed
depends upon the number of outputs that
are propagated from the first layer. >n
this paper only the design of a single
element is considered. An array of memo-
ries (RAMs) and a parallel adder are used
to perform multinomial arithmetic for the
element. The memory array contains
subfunction values which are calculated by
an external host computer and downloaded
to the memory array. All the memories op-
erate on the input variables concurrently
via a common address bus. The subfunction
values from the memory array are then
summed by a parallel adder to obtain the
output of the element. A complete ALN im-
plemented with the proposed ALN elements
has advantages in operation speed and less
hardware.

INTRODUCTION

In many applications, the model dy-
namics are difficult to describe analyti-~
cally. Therefore, it is desirable to have
a dynamic model that can be adjusted to
represent the input~-output database of the
application dynamics. An ALN [1,2] is a
self-organizing nonlinear multilayer net-
work that can be "trained" to determire
the terms in a general K-G polynomial for
many variables:

* This work was supported in part by the
National Science Foundation under Grant
ECS82-04987 and by the University of South
Carolina under a Research and Productive
Scholarship Fund.

CH 1892-9/83/0000/0164301.00 © 1983 IEEE

Y = WO + SUM WI XI + SUM SUM WIJ XI XJ
I I J

+ SUM SUM SUM WIJK XI XJ XK + ...
I J K

where Xs and Ws are input variables and
coefficients, respectively, and Y is the
output variable. The key in building an
ALN is to wuse layers of high speed ele-
ments [3] that perform six terms in the
complete multinomial for two input vari-
ables:

Y=W0 + Wl X1 + W2 X2 + W3 X1 X2

2 2
+ W4 X1 + W5 X2

This paper describes an arithmetic
scheme for a high-speed ALN element which
uses a memory array and a parallel adder.
The complete multinomial will be parti-
tioned into a set of subfunctions each
represented in a sum-of-product form. The
proposed ALN element will be compared with
a typical element using multipliers, memo-
ries, and a parallel adder.

MULTINOMIAL PARTITIONING

Figure 1 shows an implementation of
the complete multinomial for two n-bit in-
put variables and six n-bit coefficients.
The intermediate products are generated by
n x n-bit parallel multipliers (MULs 1-3).
Memories (MEMs 0-5) containining the re-
spective coefficients (W0-W5) are used to
generate the six terms of the complete
multinomial. The terms from the memory
array are then summed by a parallel adder
to obtain the element output Y. The above
implementation 1is not practical for a
large input or coefficient length n since
lafge multipliers (2n x n) and memories
(2 X 3n) are needed.

X1
X2
n 1In In ' 1In 1h
A i 1 1 L
' An MuL1 MuL2 MuL3
12n 12n Ton
/ A
MEMO MEM1 MEM2 MEM3 MEMY MEMS
(W0) (W1) (W2) (W3) (WY) (W5)
n 1on 2n 3n 3n 3n
A i 1
W0 W1X1 W2 x2 W3 X1X2 Wy x12 W5 x22
PARALLEL ADDER
Y = WO+ WIXL+W2X2+W3XLX2+ Wt X12 + W5 X22
Figure 1. A typical implementation of an

ALN element

and a parallel adder.

The above approach can be improved Ly
eliminating the multipliers. This is ac-
complished by programming the subfunction
values into the memory array. Since tte
total number of memory bits increases
exponentially with the address length, it
is necessary to partition 1large operands
into several suboperands. Let n-bit input

variables be partitioned into d number of
r-bit suboperands (where d=2, 3, 4, ...
). For example, the input variables are
each partitioned into the followirg
suboperands:
r 0
X1l = X1H 2 + X1lL 2
r 0
X2 = X2H 2 + X2L 2

where XH”s and XL”“s represent the most ard
least significant suboperands. Then the
complete multinomial for two input vari-
ables can be partitioned into the follow-
ing subfunctions:

2r r r r

Y= Y1 2 + Y2 2 + Y3 2 + Y4 2
r 0

+ Y5 2 + Y6 2

165

using multipliers, memories,

where
2 2
Yl = W3 X1H X2H + W4 X1H + W5 X2H
Y2 = W3 X1H X2L
¥3 = W3 X1L X2H
Y4 = W1l X1H + 2 W4 X1H X1L
¥5 = W2 X2H + 2 W5 X2H X2L
Y6 = WO + Wl X1L + W2 X2L + W3 X1L X2L
2 2
+ W4 X1L + W5 X2L
Note that each subfunction includes a
unique pair of input suboperands. The
number of subfunctions, g, is given by
2
g=4 + 2(@d- 1!
where d is the number of input

suboperands.,

A memory of only 22r x M, bits is
needed to contain each value of
subfunction YI (I=1, 2, eses 4q), Figure
2. The range for the number of memory
output bits, mj, required to represent the
value of subfunction YI is given by

(2r + n) < m < (2r + n + 2)
= i -

where n is the number of bits in the coef-
ficient. The two additional bits are gen-
erated by multi-term addition.

TWO
SUBOPERANDS
Ir AT 4T r 4r r
r
RAM RAM e o o RAM
oo y
1
s X J
A3
Y1
Figure 2. Generation of a subfunction

value using RAMs,

A novel implementation of the com-
plete multinomial for two n-bit input
variables and six n-bit coefficients is
shown in Figure 3. Note, the_ absence of
multipliers. An array of 2T x mji-bit
memories (MEMs 1-6) is configured in par-
allel to generate the m;-bit values of
subfunctions which are calculated by an
external host computer and downloaded to
the memory array. Next, the values of
subfunctions from the memory array are
summed by a parallel adder to yield the
element output Y. The approach based on
partitioning multinomial arithmetic can
easily be extended to implement ALN ele-
ments for large operand lengths. For ex-
ample, the first designznrequires memory
bits in the order of 2 and this memory
requirment can be feduced into memory bits
in the order of 27 by partitioning input
variables.

SUMMATION OF PARTITIONED MULTINOMIALS

A carry-save adder network [4] for
the summation of the values of
subfunctions is shown in Figure 4, where
"asterisks" represent binary digits. a
subfunction matrix of the values of six
subfunctions is reduced by carry save add-
ers (full adders) into a two-row matrix.
The two rows are then summed by a carry
loockahead (CLA) adder to yield the element
output Y. To minimize the number of
stages required for summation, it is im-
portant to reduce the height of each ma-
trix according to a specific threshold

X1H
X1L
X2H
X2L
' T Ir 4T 4r Fr qIr Ir Ir 4 ' r 4r
4 y y
MEM]L MEM2 MEM3 MEMY MEM5S MEME
(W3-W5) (W3) (W3) (W1, Wy) (W2.W5) (WO-W5)
1™ [™ 1™ 1™ 1™ 1"
4 4 4 ' y
\ Y2 Y3 Y4 Ys Y6
PARALLEL ADDER

Figure 3. A novel

ALN element using

parallel adder.

implementation of an

166

memory array and a

value. The ideal height of the i-th ma-
trix, h;j, is given by
3
h =|—nh
i 2 i+l
where [X] represents the greatest integer
equal to or less than X. The carry-save
adder network in Figure 4 has the ideal
height sequence of 6, 4, 3, and 2.
Since large random logic CLA adders

are extremely difficult
integrated circuits, the

trix needs to be reduced into a smaller
two-row matrix. Note that the CLA adder
length is reduced at the expense of adders
which are used in the rightmost portions
of the matrices, Figure 4.

to implement in
subfunction ma-

HARDWARE REQUIREMENT AND TIME DELAY

The total hardware requirement for
the first approach using multipliers, mem-~
ories, and a parallel adder are:

. Three n x n-bit multipliers
n . >
. Two 2 x 2n-bit memories
2n .
. Three 2 X 3n-bit memories

. One l4n-bit parallel adder

The total time delay ,Tltot, for
typical ALN element is:

the

The total number of adder input bits, T1 =Tl + Tl + Tl
k, is given by tot mul mem add
q wherg T%mulr Tlmem, and Tlzdd represent
kK = SUM m multiplier delay, memory access time, and
i=1 i adder delay, respectively.
SUBFUNCTION MATRIX
* * * * * * * * * *
* * * * * * * *
* * * %* * * ¥* *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * * *
* * * * * * * %* * * * * * *
* * * * * * * * *
* * * * * * * * *
* k k k k Kk Kk k 6
* * * * * * * *
* * * * * *
* k k k k k *x Kk *x *k *x K k k |
* * * * * * * * * *
X k k kx k k * k 4
* Kk k Kk k *x K I
* Kk 0k Kk x *x k * Kk ‘k *k Kk Kk * '
* * * * * * * * * * 3
* k k k k Kk & l
x * k K *x * *x * *x *x *k * x kx l
¥ k Kk Kk x Kk * K * * 2
* * * * %* * * * * * * * * *
ELEMENT OUTPUT Y
Figure 4. Summation of the subfunction
values wusing a carry-save adder network

and a CLA adder.

167

The total hardware requirement for
the proposed ALN element using a memory
array and a parallel adder are:

2r
. k 2 =bit memories

. One k-bit parallel adder

The total time delay, T2tot, for the
novel ALN element is:

T2 = T2 + T2
tot mem add

Compared with the former approach,
the latter is clearly advantageous for
faster operation and less hardware.

The regular and iterative structure
of the memory array offers an efficient
VLSI implementation for large ALN ele-
ments. The use of a memory array also
meets the requirement of minimizing the
number of possible cell types in a VLSI
implementation.

CONCLUSION

In this paper several new approaches
to implement a high-speed ALN element
using a memory array and a parallel adder
have been presented. The table lookup
technique has been extended to eliminate
multipliers by simply partitioning the in-
put variables into several suboperands.
It also has been shown that both time de-
lay and hardware requirments are reduced
significantly.

ACKNOWLEDGEMENT

The authors wish to thank Y. P. Foo
of University of South Carolina for his
invaluable assistance.

REFERENCES

1. A. G. Ivakhnenko, "Polynomial Theory
of Complex Systems," IEEE Trans. Sys-
tems, Man and Cybernetics, vol.
SMC-1, pp. 364-378, Oct. 1971.

2. R. D. Bonnell and P. A, Karnazes,
"System Identification Techniques
Using the Group Method of Data Hand-
ling," 6-th IFAC Symp. on System
Identification and Parameter Estima-
tion, Washington, DC, June 1982.

3. H. Kobayashi, Y. P. Foo, and R. D,
Bonnell, "Multinomial Arithmetic for a
High-Speed Adaptive Learning Network
Element," IEEE Southeastcon’82,

Destine, FL, Apr. 1982,

H. Kobayashi and P. H. Chen, "Auto-
mating Design of Carry-Save Adder Net-
works," IEEE CICC”83, Rochester, NY,
May 1983,

