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Abstract

Two binary algorithms for the square
rooting of a sum of two numbers are prese-
nted., They are designed for high~speed di-
gital circuits and are based on the clas-
sical nonrestoring method. The main dif-
ference lies in the replacement of subtra-
ctions and additions by the parallel re-
duction of three summands to two, their
sum being unchanged,to eliminate a carry
propagation.The term "parallel reduction"”
is introduced here for the carry-save ad-
dition of three summands, positive and ne-
gative as well.The two result summands
form a successive partial remainder. Their
most significant three-bit groups are used
to determine the "digits™ =1,0,+1 of the
square root in a redundant notation. These
digits are transformed into the conventio-
nal-notation bits, which are used in the
further steps of the square-rooting pro-
cess,

Derivation of the algorithms

The classical nonrestoring method is
desoribed, among others, by Y.Chu [1] and
I.Flores [2].The high-speed square-rooting
algorithms, based on this method, are de-
vised among others, by G.Metze [3}and V.G.
Oklobd%ija, M.D.Ercegovac [4] .The Metze'’s
binary algorithms give the square-root va-
lue in the notation with the digits -1, O,
+1, too, They are specially fitted to ob-
tain the results in notations with the mi-
nimum possible number of the non-zero di-
gits., The nonredundant notations with the
digits -1,0,+1 are discussed there too.
The algorithms described in [47] , cover
also nonbinary number notations and take
into account a bigger number of wvarious
digits of the redundant notations of the
square root, There are known many other
methods of the square rooting, which are
applied in digital circuits, such as digit
by digit method of J.E,Meggit [5], the me~
thod of T.C.Chen [6] using the redundant
notation, or the cellular array method of
J.C.Majithia [7].
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The classical binary method1for extra-

cting an n-bit square rooj Y22 , from
a 2n-bit integer X, for 25(n-%€X<22n, is
based on the iteration
— o Sn=i n~% _
X, = Xy =2y, _ 4y 207 )yg2 =y
2 - !
= xi-1\—Yi (J. = 1,2,...,n) ,
where
YsVX<Y+1, /2/

the symbols aretgefined as follows:
X, = the i successive partial
remai%ger, XO=X,
v, = the i successive "digit"
i
of theniﬁuare root, Y,
Y. - ¥, R - the i partially-

+ deve&oped square root, YO=O.

The additions and substractions, occurring
in the classical nonrestoring method, be-
ing used in digital circuits, correspond
to the assumption, that y.e{-1,+1}. The
square root is however ustually presented
in the equivalent, conventional binary
form, and its bits are determined on the
basis of the signs "-" and "+" of the suc-
cessive partial remainders /instead of the
digits ~1,+1, corresponding to successive
additions and subtractions/,

The process of the iteratiomns /1/ is

convergent, when yi=+1 for Xi_1;O,

y.==~1 for X, <0 and, when
i e

1 .
[y # n-i
Xl 27, _+v32 ), /3/
where X¥ =X, 277", is the "shifted" suc-
cessive partiai remainder,

In the algorithm given in this paper,
the two-summand partial remainders are
used, to eliminate the carry propagation.
Following that, the choice of either
y.==-1 or y.=+1 must be based on the group
ot the mos significant bits of the succe-~
ssive partial remainder, If the remainder
sign cannot be determined from such bits
groups, y.=0 must be taken. On the other
band, /1/"and /3/ implicate, that y. may
be equal O, if +

>* P« NI
[xi_1_ €27, -2 , /4/




because the next partial remainder
Xi=xi ; fulfills then /3/.

The analysis of /3/ and /4/ leads to
the conclusion that for the determining
of the digits y e [-1,0,+1}, it is neces-
sary and enough to examine the bits, taken
from thrce binary positions of both sum-
mands of the shifted partial remainders,
The weights ., of these_examined positions

are 27, 2 + and 2n+2‘

The first algorithm

The first algorithm, in which both
partial-remainder summands are presented
in the binary complementary notation, is
explained in the numerical example 1. The
square root Y of the sum X of two integers
X! = 010011011011 (+12473) and
X% = 010010001011 (+116E) is there extra-
cted.

The numerical example 1

100101100110 X=+2406
0 1|o o}f1 1lo 111 0|1 1’ X' =+1243
0 110 ol1 olo ol1 ol1 1 X" =z+1163
LL 11 +1 1
111 110 0 J
10{1 -Jjo o 001 +1 =1
1011
111 1)1 1 1
1olo 0j- 1 © 111 0 o]
0
f7_1 110 1 0 1 /
0{0j0 0 -00 000 +1 0
T 01 1 1
olo 0jJo 1 010
1{1]0 1J0 1 = 1 0 101 -1 0
T 110011 /J’
0jo 1lo o0 1t 1 1 1
ol1]0 1jO 1 0 = 1 1 110 -1 1
0 1000 1 1 J;.
101111111
001000011 JXXO
00000

0101 X =+5 Y=+49

The numbers X' and X" are sliced into
two-bit groups. In the first algorithm
step, their most significant groups form
two of three reduced Sumgands. The third
reduced summand is -277% /gee /1//.

As a result of the parallel reduction

of three summands, the two-~summand partial
remainder, in each algorithm step, is ob-
tained. Such reduction cam be executed in
a row of one-position adders. The perfor-

mance of such adder is described by,

d+2e := a+b+c /5/
where a, b, ¢, are the bits taken from
three reduced summands, and d, e, are the
appropriate bits of two swnmands obtained
after the reduction.

The most significant three-bit groups
of both partial-remainder summands, encir-
cled in the numerical example 1, determine
the successive digit y. € {~=1,0,+1} of the
square root Y. These thiree-bit groups,
treated as three-~bit numbers, are added
modulo 8. The results/obtained in the com~
plementary notation/ are shown on the
right side of the example 1. They are tra-
nsformed into digits -1,0,+1 according to
the table

10x -1
110 -1
111 0 /6/
Oxx +1

where, the bits desigmed by the "x" are
irrelevant for the transformation result.
The respective digits =1,0,+1 of the squa-
re root Y, are shown further to the right
of the numerical example 1.

The square-root bits are determined
during the respective algorithm steps, in
the way shown on the right side of the ex-
ample 1, The digit +1 or -1 permits final
determination of the square-root bits from
all more significant binary positions than
the position of this digit. When a digit
+1 is obtained, the already determined di-
gits y., beginning from the last examined
digit #¥1 or -1, without their signs, are
taken as the bits of the square root, For
a digit -1, the already determined digits,
beginning from the last examined digit +1
or -1, without their signs, are taken and
negated to get the square-root bits. The
digit O does not permit to determine any
square~root bits,

The transformation of the digits -1,
0,+1 into the square-root bits can be im-
plemented on two shifted registers, which
provide the parallel transfer between them,

Two summands, obtained as a result of
the last parallel reduction, form the
final remainder X . Its sign shows that,
either the square=root value is correct
/it is correct when X 20/, or it is with
an overflow /when X< B/. Thus, the final-
remainder sign has e same meaning for
the determination of the square-root bits,
as the digits -1 and +1 have /see right
side of the numerical example 1/. When the
final remainder is negative, the additio-
nal reduction step ought te be executed
/if the correct remainder is required/.

On the basis of the already known
bits of the square root, the tgird of . the
reduced summands —(2Yi 1+y12n- )yizn-l,




in the complementary notation, is formed.
For y.==1 it consists of two "ones" on the
least significant binary positions, and of
the already known square-root bits on fur-
ther positions /they are underlined in the
numerical example 1/, When y.=+1, the
above mentioned square-root bits, together
with the sign bit, are additionally nega-
ted in the third summand /they are also
underlined in the example/. For the digit
yi:O, the third summand is equal O.

The square-rooting digital circuit,

based on the described algorithm, has been
patented in Poland [9].

The second algorithm

The second algorithm, in which the
bit weights of the first partial-remainder
summand are negative and of the second one
are positive, is explained in the numeri-
cal example 2. The square root of a dif-
ference of two positive integers
0110010001011 /+3211/ and 0001100100101
/+805/ is there extracted.

The numerical example 2

100101t100110 +2406
‘0 0‘1 110 o|1 o‘o 1|o 1! - -805
1t 1lo ol1 olo olt olt 1] &+ +3211
1 1 1 +1 1
+ + 1 > 1
0 Oy< 1|0 + o] 0
0
oh- - 1Joj1 0 =
o DO - 0 + +1 0
100 1{11
"= - 1JOoj1 01 -
1()&?1 - 10 + -1 0
01 10l0 11
- - 1J1looo0o 1 =
TG 1o - 11« -1 > 1
01 10|00 11
0--0jooo01 -}
- >
0000 11 +jx>0
00000 T1tO 1

Xn=+5 Y=+49

The bits of the first of the three
reduced summands have now the negative we-
ights /it represents now the number -805/
and the bits of the second summand have
positive weights. The third summand is, as
in previous example, in the binary comple-
mentary form,

101

The parallel reduction of three sum-

presented in the above men-
tioned notations, is now described by

~d+2e ~a+b+c /7/
where a, b, ¢, are appropriate bits taken
from three reduced summands, and d, e, are
appropriate bits of two summands obtained
after the reduction /compare /5//. Accor-
ding to this formula the parallel reduc-
tion of three summands to two can be exe-
cuted in a row of one-position adder-sub-
tractors, the performance of which is des-
cribed by the truth table

mands to two,

abclde
000jOO0
0 0 1 11
o106 |11
o1 1]01 /8/
100110
1T 01100
110100
1 1 1 11

This table shows that the structure of the
mentiorned one-position adder-subtractor is
not more complex than that of the one~posi-
tion adder. The only difference is such,

that, for the obtaining the "out-put-carry"
function "e", the negation of the argument
"a", instead of the "a" ought to be used

in the appropriate Boolean formula,

positions of the threce
are located in the nume-
rical example 2, between two vertical
lines. For these parts of the reduced sum-
mands s special addition /executed in a
special addition cirecuit/, instead of the
parallel reduction, is proposed, according
to the schema

Four binary
reduced summands

< M1
MM
oM
MoK M

/9/

=)

where the bits with the positive weights
are denoted by the and with the nega-
tive ones, by the "y" /further more signi-
ficant result bits are not taken into ac-
count here/.

n. 1
x",

The mentioned special addition ought
to be executed in the special high-speed
addition circuit, as it effectively deter-
mines the square-rooting speed.

The three most significant result
bits yxx /they are euncircled in the schema
/9/ and in the numerical example 2/ deter-
mine the successive square-root digits -1,
0,+1, depending, whether they represent
/in the binary complementary notation/ the
negative number, zero, or positive number.
The decoding is executed according to the
table




Txx -1

000 (0]

001 +1 /10/
O1x +1

The appropriate square-root digits -1,0,+1
are shown on the right side of the numeri-
cal example 2,

The transformation of the digits -1,
0,+1 into the square~root bits is executed
in the same way as in the previous algo~-
rithm, It is also shown on the right side
of the numerical example 2, Also in the
Same way as previously the third summand
is formed, for the parallel reduction in
the successive algorithm step, on the ba-
sis of the already known square~root bits.

The parallel reduction need not be
performed on the most significant bits,
they are cut off in the numerical example
2 by the left vertical lines. The cutting
bits do not influence on the further squ-
are~-rooting process.

The patent of the square=-~rooting di-
gital ecircuit,based on the described al-
gorithm, has been claimed to Patent Office
in Poland in 1981 [10].

Conclusion
x=2neuszion

The computer arithmetic algorithms of
the complex operations are usually based
on the sequence of the additions and sub-
tractions, the execution time of which in
the parallel digital circuits depends
mainly upon the carry-propagation time,
This propagation can be eliminated when
redundant number notations are applied. It
however, requires more bits for the number
notations and lcads to increased memory
capacity which often dotermines the cost
of the computer systems,

The solution of this problem, espe-
cially for very high—é@ed computer systems
for the numerical computations, the author
sees in the replacement of additions and
subtractions, being the microoperations of
complex operations, by the parallel reduc-
tion of the number of the summands with
their sum being unchanged,

This paper presents examples of such
solutions for the extracting of the square
root.

Similar methods, using of the para-
l1lel reduction of three, four and more su-

mmands, can be applied for the division,
for some elementary functions, as the ex-
ponent and logarithm functions and also
for computation of such arithmetic expres-
sions as scalar products, polynomials and
function series. The appropriate digital

circuits and systems have been designed
and some of them are patented.
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