R A g it S - .. A

ON THE NUMERICAL ALGORITHMS FORMULATED IN COMPUTER ARITHMETIC

Svetoslav Markov

Mathematical Institute of the Bulgarian Academy of Sciences

Sofia / BULGARIA

Abstract.We discuss some mathematical tcols
and techniques supporting the construction of
rigorous bounds preducing, numerically con-
vergent algorithms, which are formulated in
terms of computer arithmetic operations. Two
important computer-arithmetic ef'fects are
considered and their application as stop-
ping criteria is illustrated.

l.Introduction

In traditional numerical analysis numerical
algorithms are formulated in terms of fami-
liar real arithmetic operations. However,
real arithmetic is alien to computers: they
cannot perform it. Thus, there is g gap be-
tween the real-arithmetiec form of the algo-
rithms offered by classical numerical ana-
lysis and the disability of the computers
to execute the arithmetic procedures pre-
scribed by these algorithms. This gap per-
mits rather arbitrary computer realizaticns
of the arithmetic and conversion procedures
necessary for the execution of the numerical
algorithms. This arbitrariness basically
leads to the effect that one and the same
algorithm may produce (sometimes completely)
different results when run on different type
computers even when these computers operate
in the same precision. This situation con-
tradicts one of the basic ideas incorpora-
ted in the concept of an algoritam, namely
the strict and accurate ‘definition of the
corresponding (computaticnal) process.

Apart from the above mentioned uncertainty
of the computational results, the numerical
analyst is faced with the tedious problem
of establishing a reliable connection be-
tween the correct solutions of the problem
and the computational results practically
obtained by running the numerical algorithm
on a computer.The estimation of <%he global
computational error is usually done through
labeorious independent estimations of both
the truncation and the roundoff errors.

The above difficulties can be completely
overcome by means of a suitable formulation
of the numerical algorithm in terms of com-
puter-arithmetic operations.The usage of a
well-defined computer arithmetic allows the

CH1892-9/83/0000/0082$01.00 © 1983 IEEE

82

construction of numerical algorithms which
always produce well-defined intermediate
and final results depending only on the
chosen computational precision.

Moreover, computer arithmetic supports the
construction of numerical algorithms posse-
ssing some important properties. Two such
properties of particular interest will be
formulated in section 3. We shall then dis-
cuss some approaches and technical means
facilitating the construction of numerical
algorithms satisfying these properties.

2.5tandard computer arithmetic

For our purposes we shall make use of the
standard floating-point computer-arithmetic
operations with directed roundings as dis-
cussed in [13,I21,15]1. To be more specific
let R be the set of reals and S(b,p) be the
set of floating-point numbers handled by
the machine we are using; b is the base of
the number system; p is the number of base
b digits contained in the mantissa of the
floating-point numbers (it will be further
called computational precision); for sim-
plicity we assume no bounds on the exponent.

If a €R, denote by va the largest number
in S(b,p) which is & a, and by Aa the
smallest number in S(b,p) which is 2 a. The
mappings ¥V, A : R -»S(b,p) are called di-
rected (downwardly and upwardly, resp.)
roundings in R. These roundings generate
the following computer arithmetic in S(b,p) :
if a,b € S(b,p) and c€{+,-,x,/}, then asg/b
=V(acb) and a A b =A(aob). We shall assume
that the arithmetic operations AAAAND,
,WV are present on our computer. Assume
also' that programs for conversion of input
data are available which for each a €R may
produce Va or Aa ¢S(b,p); resp. programs
for conversion of cutput data are available.

Example l.Consider the Newton method for
the computation of va , aé€R

(1) X =a; =(xn+a/xn)/2, n=0,1,2,... .

*n+l
The result of the computations depend on
the rounding mode of the operations. For
instance, let a=2 and b=10, p=2. If we
round all operations up we get on the se-

cond iteration xp=1.5, and if we round all
operations down, then xp=1.4 .Consider in
some detail the algorithm (1) when all
operations are rounded up:

X =X, A (8BX))A2, n=0,1,...

where a=A a (rounding of a may be necessa-
ry due the fact that a €S(b,p)). The algo-
rithm (2) produces a well-defined sequence
of machine numbers as long as the system
S(b,p) is fixed.Thus for a=2 we obtain in
$(10,p) with p=1,2,...,7 the following se-
quences (xon2. and il=1.5 for all p):

(2) xg=a;

p| X- X5 = Xy = X5 =
1| %, (=2.) X, X0 X0
2 x1(=1.5) | x1 X X1
31 1l.42 X2 X2 Xo
4| 1.417 1.415 %3 %5
51 1.4167 | 1.4143 | %3 %3
6 1.41667 1.41422 }-(5 ;C3
7 1.416667| 1.414216 1.414214 24

We shall point out some interesting proper-
ties of (2). It produces a sequence of num-
bers Xy, i=1,2,..., such that Xj2X=Va ,
that is’ Xi is always a right bound for the
true solution X. The finite computational
precision p does not allow Xj to get arbit-
rarily close to X and we have ij=ij+1=...
for some integer j2> 0. Following Moore (see
[81,p.36) we shall call this "finite con-
vergence". It can be used as a natural
stopping criterion, so tnat (2) becomes:

(2/) io=‘5~! in+l=(inA_@lQlin_)_)A 2, n=0,1, etc.
until relation Xn+} < Xpn is violated.

Note that for a specified input data a, the
final computational result depends only on
the computational precision p. For every
positive integer p we obtain a well-defined
final result x=x(p), and x(p)—X with p-»co.
To summarize: i) the algorithm (2°) produces
well-defined results depending on nothing
but the computational precision p; ii) the
algorithm produces a rigorous right bound
for the correct result; iii) this bound
converges to the solution with p-+oo.
Remark. By rigorous bound we mear, in con-
trast to traditional numerical analysis, a
reliably guaranteed, absolutely sure, prac-
tically secured bound.

3.Rigorous bounds producing,
numerically convergent algorithms

We are particularly interested in numerical
algorithms formulated 'in computer-arithme-
tic form, which satisfy the following two
properties:

RB-property. For any arbitrarily chosen
computational precision p the numerical al-
gorithm produces well-defined rigorous
bounds for the solution of the problem.
NC-property. The algorithm is numerically

83

convergent to the solution, that is, the
bounds computed with precision p tend to
the correct solution with p-»soe.
Remarks. The abbreviations RB and NC stand
for rigorous (or: reliable) bounds and nu-
merical convergence, respectively. The mea-
ning of "solution" and "convergence" needs
some explanation; however, we shall not go
into detail, since the meaning of these
terms is closely connected to the specific
numerical problem in consideration %e.g.by
solution we may mean the so-called interval
hull of the solution set, the convergence
is related to a certain metrics, etc.%

A numerical algorithm satisfying the RB-
and the NC-properties will be further cal-
led a rigorous bounds producing, numerica-
1lly convergent algorithm, briefly:an RBNC-
algorithm. An RBNC-algorithm produces reli-
ably guaranteed bounds containing the salu-
tion and these bounds tend to the solution
when increasing the computational precision.

We shall next briefly discuss some mathema-
tical means and techniques supporting the
construction of RBNC-algorithms. The well-
known simple interval arithmetic (1,81 is

a very efficient tool for creating algori~
thms satisfying the RB-property. However,
it is not so efficient when constructing
algorithms satisfying the NC-property. Se-
rious obstacles arrise in overcoming the
simultaneity problem (see e.g. [91,p.210).
A more sophisticated mathematical tool
supporting the construction of RBNC-algo-
rithms is extended interval arithmeticI6,71.
The technique of obtaining RBNC-algorithms
by means of extended interval arithmetic is
described and illustrated in I32l.In the
process of elaborating this technique we
arrived to some other approaches for formu-
lation of RBNC-algorithms without using in-
terval arithmetic, like the "two-sided app-
roach" and the "one-sided approach'.

We shall give some definitions. Assume that
X is the solution of a given numerical pro-
blem (under suitable input data) in a sui-
table ordered metric space S.Suppose we ha-
ve an iterative algorithm of the form:
(A) { X0sX]seeo 9 Xy given,
xn+1=f(xn,xn_l,...,xn_k),n-k,k+l,...
where k20 is a fixed integer, xi € S, i=0,
l1,..., and £ is a computable function de-
fined on SXSX ... X S.The algorithm (A) is
called a left (resp. right) one-sided BC-
algorithm if it satisfies the requirements:
B-property: x,4 X (resp.xn2X), n=0,1,...;
C-property: xp—+infX (resp. xp-ssup X).
Remark. Ilinf X, supX] denotes the interval
hull of X; the inf and sup signs can be
omitted in the one-dimensional case.
A pair of two one-sided algorithms for sol-
ving a given problem, one of which is left
and the other right, will be called a two-
gided algorithm. A two-sided algorithm is
a two-sided BC-algorithm if both one-sided
algorithms involved are one-sided BC-algo-
rithms.

In
1

4.Construction of RBNC-algorithms
4.1.Two-sided approach

The two-sided approach for constructing an
RBNC-algorithm consists of two steps:

Step l.Construct a two-sided BC-zlgorithm,
defining a sequence 10,11,15,... of left
cne-gided approximations and a sequence Ty
rlyr2,+.. of right one-sided approxima-
tions converging to the correct solution X.
Step 2.Perform a computer-arithmetic reali-
zation of the two-sided BC-algorithm trans-
forming it into an RBNC-algorithm. The com-
puter-arithmetic realization consists of a
suitable replacement of the real-arithmetic
operations involved in the two-sided algo-
rithm, by computer-arithmetic operations,
in such a manner that at each iteration (n)
the computed (in computer-arithmetic) in-
terval [lp,ry]l contains the true interval
[ln,rn) defined by the BC-algorithm.

Some applications of this approach and the
corresponding tecihnical details are given
in [3,4]1. The following simple example may
serve as illustration of this approach.

Example 2.For the computation of e¥ for
small nonnegative x (say, O€x<£1) a two-
sided BC-algorithm may be construzted on
the basis of the relations sn(x)flexsrn(xh
sn(x)=l+x+x2/2! +...+x% /01, rp(x)=

(1+X+x2/2!+...+xn/n!)/(1»xn+1/(n+L)!).
This algorithm may be written in an itera-
tion form as:

ao=So=l,

an=an-1(x/n), sp=sy.] +ap,

n=1,2,...,
for the left bound, and

8g=sp=1,

an=an-1(x/n), rp_1=sp.1/(l-a,),

Sp=spn-1 +an, n=1,2,...,
for the right bound.
Denote by [x,X] the smallest machine inter-
val for x.The computer-arithmetic realiza~
tion of the above BC-algorithm yields the
following RBNC-algorithm:

8p=80=1,

8n=an_19 (x¥n), sp=s,_1¥ay;
=1,2,¢..3
(3) {22100
ag=8y=1,
an=a, 1A (XAn), F_178, 1A (1¥E),
§n-§n_1 én; n=1,2,,.. .

We give below the results of the computa-
tion of eX for x=l by means of the above
algorithm in S(10,3), that is in decimal
floating-point arithmetic with precision 3.
Let us emphasize once more that the compu-
ted values of the variables involved in
the above formulas depend only on the spe-
cified precision p. Thereby it is of no
consequence whether a computer is used or
the necessary computations are done by
hand.The computational results are given
in the following table:

n an Sn an 1Van+1 rn . sn

Of 1.00 1.00} 1.00 .000 [4.00 11.00
11 1.00 2.00| 1.00 .500 [3.01 §2.00
2| 500 2.50| .500 .822 12.79 | 2.50
31 .166 2.66 1 .167 «958 12.75 | 2.67
41 .0415 2.70 | .418 .991 12,74 12,72
5 .00830 1 2.70| .00836 | .998 [2.75 | 2.73
6| .00138 | 2.70 .00140| .999 (2.76 | 2.74

The effect of finite convergence, mentioned
in sec.3, is clearly seen. Using it as sto-
pping criterion we obtain as final result
the interval [2.70, 2.741.

A program sysiem supporting the execution
of RBNC algorithms should be able to carry
out the calculations several times in d4if-
ferent precision. If this can ve automati-
cally organized, then the user may pres-
cribe the necessary accuracy of the final
result. We give below the final results of
the computation of e by means of formula
(3) when using five different precisions p:

p | T 2 3 7 5
s | 226|270 2.716 | 2.7179
T | 4 [2.9 274 2.721 | 2.7185

4.2.0ne-sided approach

For a large class of numerical problems it
is often comparatively easy to construct a
one-sided BC-algorithm (left or right),but
is very difficult or impossible to const-
ruct another one-sided BC-algorithm produ-
cing approximations from the other side of
the solution. We shall demonstrate that it
is possible to obtain an RENC-algorithm on
the basis onlyof a one-sided BC-algorithm.
using some purely computer-arithmetic eff-
ects.

Consider first the following computer-~
arithmetic realization of the one-sided
BC-algorithm (1) producing computed Xi,
which are always to the left of the Corres-
ponding real xi:

(4) xo%a, xp.9=(x, ¥(aV¥x,))V2, n=0,1,...,
where a=Va. Some results of the computa=
tion of ¥a by means of (4) for a=2, b=10
are presented below (§o=2. for all p;§l=l.

for p=1 and x,=1.5 for all p22):

bl X, = Xz = Xy = X5 =
gy (G104 x X X
2| 1.4 X2 x2 X2
31 1.41 X2 X0 X2
4 | 1l.416 1.414 X3 X3
5 1.4166 1.4142 X3 Xz
6 | 1.41666 | 1.41421 | x3 x5
7 1.416666 1.414215 1.414213 X,

similar to
is to be
As in

A computer-aritametic effect,
the effect of finite convergence,
observed in the above calculations.
algorithm (2) we see that for some j20,
depending on p, we have §j=§j+l=...=§(p).

This effect is intrinsic for this particu-
lar algorithm and is mainly due to the fact
that truncation error rapidly becomes insi-
gnificant. For every chosen p, §(p) presents
a rigorous left bound for the solution.We
thus have an algorithm producing a reliable
left bound forva :

(4) 1™ 5V (2%,)V 2, 120,152,

until X 1%"
Formulas (2’) and (4‘) considered together
present an RBNC-algorithm for the computa-
tion ofva. They serve as a good illusration
of the fact that an RBNC-algorithm can be
obtained only on the basis of a one-sided
BC-algorithm.
Consider one more example in the same di-
rection, where a more typical computer-
arithmetic effect takes place. To this end
we return to example 2., Using the expres-
sion sp(x)=1+x+x2/2+...+x%/n! we construc-
ted the following one-sided BC-algorithm
for computation of left bound for e¥X,x=0:
(5) { 30=80=1,

an=an_l(x/n), S =S, yte,s n=l,2,...
By means of suitable roundings we obtained
the following one-sided algorithm producing
rigorous left bound for exp(x):

a8 = =
_ogol’

§n=§n_1W ()_(Vn) ’

n=1,2,..., until

Xo=a»

(6) $n=8,1V9 2,

EEn+1ﬁ Zn’

Consider now the following algorithm which
produces computed values §p of sy which are
2 then the real s, defined by (5):

(7) { a, =5=1,
an=an_yg_(x£5n)y s
Let us take a look at
where the values §_ as computed by (7) are
presented. From a certain index N onward
the values SJ’§N+1"" present rigorous
bounds for the correct solution. This is
precisely the place where S, starts to in-
crease with just one unit in the last posi-
tion (the value of 8p, jumps to next machine
number). This effect is due to the fact that
truncation error has become negligible, but
since_we have to add a very small positive
term a, to the positive sum 8p-1 and the ad-
dition is performed in rounding up mode we
have to increase sp.1 by one unit in the
last position (or, in other words: to pass
to the next machine number). It is to be no-
ted that some published algorithms for round
up addition produce alb=a for a>0 and suf-
ficiently small b>0 (which is theoretically
wrong, but may surve certain purposes). Such
is the case with the algorithm of Yohe [101.

Having in mind the discussed computer-arith-

n=sn-1A & ,n=1,...
the table in sec.4.1l.

metic effect, we obtain the following simple
algorithm producing a rigorous right bound
for the value of exp(x):

50=§O=1,
(7) 8,=8, A (EAn), (§n=sn_1¢£ =

n=1,2,...,until (s_,s

machiﬁe n&mbers. n’“n+l

The pair (6)~(7’) presents a RBNC-algorithm.
An important moment in the construction of
RBNC-algorithms is +the suitable computer-
arithmétic realization of the corresponding
one~sided algorithms. The technique of such
a realization is presented in some detail

in [3,41.Both approaches discussed above
proved to be extremely suitable for the con-
struction of RBNC-algorithms for computatiom
of Taylor and harmonic series (in particu-
lar: elementary and special functions).Com-
putational results show that these approa-
ches are practically very effective and su-~
ggest that they can be used for solving
more general numerical problems.

n’
) contains no

The accomplishment of the computer-arithme-
tic realization of the algorithms opens a
wide field for sophisticated usage of vari-
ous computer-arithmetic effects such as the
effects described above of "finite conver-
gence" and of "passing to the next machine
number". We believe that the mastery of
these techniques will lead to an extension
of the classes of problems, which can be
reliably solved numerically.

REFERENCES

l.G.Alefeld,J.Herzberger.Einfiilhrung in die
Intervallrechnung.Mannheim,Bibl.Inst.,1974.
2.J.Coonen, et al.A proposed standard for
binary floating-point arithmetic,ACM Signum
Letters,Special Issue,0ct.1979,4-12.
3.N.Dimitrova,S.Markov.Interval methods of
Newton type for nonlinear equations,Pliska
Studia math.bulg. 5, 1982,105-117.
4.N.Kjurkchiev,S.Markov.Two interval methods
for algebraic equations with real roots.
Pliska 5, 1982,118-131.
5.U.Kulisch,W.Miranker.Computer arithmetic
in theory and practice.Acad.Press, 1981.
6.5.Markov.Some applications of the extended
interval arithmetic to interval iterations.
Computing Suppl. 2, 1980, 69-84.
7.S5.Markov.On an interval arithmetic and its
applications. Proc. of the 5th Symposium on
computer arithmetic, Ann Arbor, May 18-19,
1981, IEEE Computer Society Press, 1981,
274-277.

8.R.Moore.Methods and applications of in-
terval analysis. SIAM Studies in Appl.Math.,
SIAM, Philadelphia, 1979.
9.P.Sterbenz.Floating-pcint computation,
Prentice-Hall, Englewood Cliffs, N.J.,1974.
10.J.Yohe.Roundings in floating-point com-
putations, IEEE Trans. Comp. C-22, 1973,
577-586.

85

