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ABSTRACT

We describe a new binary encoding for numoers
termed lexicographic continued fraction (LCF) rep-
resentation that provides a one-to-one order pre~
serving finite bit string representation for every
rational. Conversion either way between binary
integer numerator-denominator pair representation
and LCF representation is shown feasible in time
linear with bit string length, given registers
of length sufficient to hold the numerator and
denominator. LCF bit string length is about
2 max{logzp,logzq} for the irreducible fraction

p/q. Realization of arithmetic (+, -, X, %) on
LCF bit string encoded operands is shown feasible.
Some relations between the theory of best rational
approximation and the values represented by trun-
cated LCF bit strings are noted to assess the
feasibility of a finite precision arithmetic

based on LCF representation.

1. INTRODUCTION AND SUMMARY

The binary fixed-point representation of the
fraction 19/44 is 0.01(1011101000), where the cuan-
tity in parenthesis repeats indefinitely. The
binary integer representation of numerator and de-
nominator for 19/44 is 10011/101100, For many
applications it would be desirable to have a finite
bit string representation for each rational where
lexicographic order of the strings corresponds to
the numeric order of the rationals., Neither the
fixed-point nor the numerator-denominator pair
representations provide both these features.

-

We propose a new binary encoding of numbers
based on the continued fraction representation of a
number that provides such an order preserving finite
bit string representation for every rational. This
lexicographic continued fraction (LCF) representa-
tion can be converted to and from the binary integer
numerator-denominator pair representation in tine
linear with the number of bits, gilven full length
registers of size sufficient to hold the numerator
and denominator values. LCF representation of the
fraction p/q yields a bit string of length rougaly
2 max{logzp,logzq], comparable to the combined
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length of the binary integer representations for
numerator and denominator when p and gq are of nearly
equal magnitude. For example, the LCF representa-
tion for 19/44 is 00111010011.

Utilizing the notation [ao/al/az/... 1 for

the continued fraction

where the partial quotients a, are assumed to be

integral, it is known from continued fraction
theory [HW79, Ch 10] that any non-negative rational
number p/q has a finite expansion

g = lag/a /.. /a ]

which is unique (canonical) with the added require-
ments aOZO; ai_>_ 1 for i>1, and amz 2 whenever

m>1. Thus
ELA [6/2/3/6] -1 .
44
1
2 + 1
3+-6—

Any particular partial quotient ay

arbitrarily large, e.g.
e = [2/1/2/1/1/4/1/1/6/.../1/1/25/...) .

Thus concatenation of fixed length fields each rep-
resenting a partial quotient is not feasible in the
manner standard for encoding digit sequence repre-
sentations in positional radix representation to any
base. In Section II we describe a variable length
lexicographic encoding of the (positive) integers
by bit strings of self limiting length that provides
the foundation for our continued fraction represen~
tation,

may be

In Section III we describe the formation of the
LCF representation of p/q = [aO/al/.../am] by con-

catenation, after specific modifications, of the
variable length bit string encodings of the partial




quotients ao,al,...,am. We first show that LCF

representation provides an order preserving one-to-
one correspondence between the non-negative
rationals (under numeric order) and the finite
length bit strings (under lexicographic order).
Conversion between LCF representation and standard
binary integer pair representation for numerator
and denominator is then shown to be straightforwerd
in time linear in bit string length given registers
sufficient to hold the numerator and denominator
values. Employing continued fraction arithmetic
ideas of Gosper [Go72] (see also [Kn81, p 602]) ard
procedures similar to the arithmetic unit for
rational arithmetic described by Kornerup and
Matula [KM83], we describe efficient direct algo-
rithms for determining the LCF representation of
the result of the arithmetic operations +, -, x, %
on LCF represented operands. The possibility o
supporting on-line as well as fixed precision
arithmetic in LCF representation by suitable
architectures derived from these algorithms is
noted. Regarding the encoding efficiency of LCF
representation, we employ a suitable model of
frequency of continued fraction partial quotient
values and show LCF representation requires about
3.51 bits per partial quotient value., This is
noted to be less than 2% greater than the most
compact (Huffman) encoding.

An extension to signed LCF representation
(SLCF) is described in Section IV, SLCF represer-
tation conveniently admits a representation for
(unsigned) infinity. Both unary operators NEGATE
and INVERT are shown to be efficiently implemented
by 2's complementation of the SLCF bit string with
appropriate treatment of the "sign-bit'".

The extension of LCF (or SLCF) representaticn
to reals by infinite bit strings follows in a natu-
ral way from the limit of the encodings of contirued
fraction approximations to the particular real
value. In Section V some elements of the theory of
best rational approximation are recounted to analyze
the properties of a finite precision number system
derived from the set of values representable by
LCF bit strings of limited length. Directions for
further research are noted, such as: amodified ICF
representation with finite precision range/accuracy
tradeoffs comparable to floating-point systems;
incorporation with multiple precision floating-
slash systems; and on~line computation with LCF
bit strings.

Our principal results are summarized in a
series of highlighted observations throughout the
text. The properties appear to us sufficient to
consider LCF representation a worthwhile addition
to the design possibilities in the architecture of
number systems.

II. LEXICOGRAPHIC ENCODING OF THE INTEGERS

A full k-bit integer is an integer 1 whose

standard binary representation contains k bits with

leading bit unity, so then 2k—l§ ixg Zk— 1. The

variable length lexicographic bit string for the
full k-bit integer i, denoted (i), is formed fron
the stand.9/ binary representation simply by
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replacing the leading unit by a string of (k-1)
units and a zero. For example, '

27 = \3) 1011, standard binary,
V4 3
A,—/\
2(27) = 111101011 lexicographic,

—

same length

|

Throughout this paper we shall apply the subscript
2 to the bit strings for standard binary represen-
tation to distinguish them from the lexicographic

bit strings, which are not subscripted.

Note that standard binary representation of an
integer is right-adjusted where the left-hand bound-
ary must be assumed known. Lexicographic bit
strings are left-adjusted with a right-hand bound-
ary determinable by a left-to-right scan of the
string. Specifically, in reading the string
111101011 note that there are 5 bits up to and
including the first zero 11110 which determines
both the leading bit and the stopping rule, i.e.
read 4 more bits lOll2 in standard binary, obtain-

ing 11011, = 27,

bit string 2(i) yields valuable information as each
successive bit is read, first about the magnitude
of i, and then a narrowing as in binary search of

the range including i. Letting blb2b3... denote in

order the successive bits of the string 2(i), we
obtain for £(i) = 111101011 the following informa-
tion as each bit is read:

The left-to~right scan of the

Bit Processed

Interpretation

b, =1 1 2
b2 =1 i> 4

by =1 i>8

b4 =1 i > 16

b5 =0 16 < 1 <31
be = 1 24 < 1 < 31
b7 =0 24 <1 ¢ 27
b8 =1 26 £ i g 27
b9 =1 i= 27

In summary we note the following.
Observation 1. String Length: The lexicographic
bit string £(1) has length |2 log iJ + 1 for all
iz 1.0 2

Two bitstrings

a a,a,a

13983 v 00 s
b = blb2b3... s

can be compared in lexicographic order if we first

assume the shorter string to be extended with 0's

to the right as needed so they are both of the
same length (finite or infinite). Then we say




adb

(a lexicographically precedes b or
b lexicographically follows a)

if and only if there exists an index i such that

aj =b for all j < i,
ay < b1'
Furthermore
a = b (a lexicographically equals b)

if and only if aj =b, for all j 2 1.

|
Observation 2, Order: 2(i) lexicographically fol-
lows %(j) if and only if i > j 2> 1.0

Table 1 gives the standard binary and lexi-
cographic bit string representations of the integers
1,2, ...,20.

Integer s;?g:i;d Lexicographic
1 12 0
2 lO2 100
3 1l2 101
4 1002 11000
5 1012 11001
6 1102 11010
7 1112 11011
8 10002 1110000
9 10012 1110001
10 10102 1110010
11 10112 1110011
12 llOO2 1110100
13 1.1012 1110101
14 1.1.102 1110110
15 1.1112 1110111
16 100002 111100000
17 lOOOl2 111100001
18 100102 111100010
19 100112 111100011
20 101002 ] 111100100
Table 1. Right-adjusted standard binary
representation and left-adjusted
lexicographic bit string repre-
sentation of the integers
1,2, ...,20.
III. LEXICOGRAPHIC ENCODING OF THE RATIONALS

Utilizing lexicographic integer encoding it is
possible to represent any finite sequence of positive
integers PysPys cvvs P by the finite bit string
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Z(pl)-i(pz)‘... -ﬁ(pn), where "+" denotes string

concatenation. This string can readily be decoded
back into the sequence of integer values by a left-
to-right scan. For example, reading the first nine
bits of the string 11110101111010110001110101100 as
a lexicographic integer uniquely determines P = 27

with the stopping rule indicating reading of this
integer value is complete. Reading then continues
with the tenth bit to determine the next integer
value. The full string is decoded into the sequence
27,6,4,13,2.

In order to encode the sequence of integers
a.,8., «sey, a 0Of the continued fraction
0’71’ m

[ao/al/az/... /am] as a bit string corresponding in

a one-to-one order preserving manner with the
rationals, three properties of continued fractions
deserve special consideration in fabricating the
"LCF representation." The example 19/44=[0/2/3/6]
will illustrate these considerations. We further
make special note of the LCF representation for
zero, which follows readily even though there is no
lexicographic integer representation for zero.

i) Leading partial quotient of zero: From the
definition of a continued fraction
[ao/al/.../am], a2 1 for i 21 and a, 2

2 0.
0
We shall use the leading bit bo of the LCF ﬂ

representation for [ao/al/.../am]todenoteby
= >
b0 1 that ay =

1 and the partial quotients I
that follow start with ays and by b

0" 0 that
ay = 0 and the partial quotients that follow
start with al.

represented than satisfies a

Each partial quotient to be
i 2 1, so l(ai)is

uniquely determined for each a Note that

g
b, = 1 conveniently determines that the LCF

0
represented rational valueis > 1, and b0= 0

indicates a value < 1.

Example: 19/44 = [0/2/3/6] must then have a
leading zero bit in LCF representation, with
further consideration than devoted to encoding
the sequence 2,3,6,.

ii) Continued fraction order: From the definition

of continued fractions it follows for any

0 £1 ¢ m that

[ao/al/.../a /a /.../am]

i-1" "1

A

[aO/aI/.../ai_l/a1+l] for i = 23,

@Y
z [ao/all.../ai_l/ai+l] for i = 2j+1.

Simply stated, increasing a partial quotient

in any even indexed position increases the

value represented, e.g.

[0/2/4/6]1 = 25/56- > 19/44 = [0/2/3/6].
Increasing a partial quotient in any odd

indexed position decreases the value represented,




e.g. [0/2/3/7) = 22/51 < 19/44 = [0/2/3/6].

To impart lexicographic order to the bit s:iring
representations for the continued fraction:
{[ao/al/.../aﬁ]} consistent with the numeric

order of their rational values, we shall u=i-
ize the component substrings Z(ai) wheneve:

i=2j, and the 1's complement strings, denoted
by l(ai),whenever i=23+1 .

Example: Thus we are led to consider
0,2(2),2(3),2(6), for representation of
19/44 = [0/2/3/6] except for one final
consideration.

iii) Trailing zeros: The continued fraction
[ao/al/.../am/w] is taken to be identical to

[ao/al/.../am]. For lexicographic integer

consistency we must assume l(wz denotes an in-
finite sequence of 1's, hence 2(») denotes an
infinite sequence of 0's. To properly asstme
that the finite bit string for any continued
fraction [ao/al/.../am] can be extended to the

right withan infinite sequence of zeros, we are
then limited to the representation of continued
fractions wherem is even. Thus we must choos= to
represent every non-negative rational with the
alternativeunique [HW79,Ch 10] terminal index

i = i L .
even continued fraction p/q [ao/al7 /aZj]

Note that the standard canonical continued
fraction p/q= [a0/81/°"'/am] has a 2 2 and will

be the same as the terminal index even con-
tinued fraction when m is even. Since
p/q= [ao/al/-w-/ﬁn]= lag/ai/..e/a=1/1], the

latter is the canonical terminal index even con-
tinued fraction for p/q for m odd. As a specia’.
case note that [0/=] =0 is a terminal index even
continued fraction. Hence the zero bitstring
is the "natural" representation of zero. Since
the LCF representation can be extended to the
right with an arbitrary number of zeros without
changing the lexicographic ordering, we will use
the representation LCF(0Q) = 0,

Example: Thus for our desired LCF represenia-
tion of 19/44 we note [0/2/3/6) = [0/2/3/5/1

and obtain 0+£(2)+2(3)+2(5)+2(1) = 001110100:.1.00,
or equivalently simply 00111010011, LCF repre-
sentation will be assumed to have an infinite
string of zeros to the right and thus can be
terminated at the last unit entry.

Formally, the lexicographic continued fraction
(LCF) bit string representation corresponding to the
unique terminal index even continued fraction
p/q= [ao/al/az/.../azj] for any rational number

p/q 2 0 is given by

7 — -
l-l(ao)'l(al)-...«Q(azi)-l(a21+l)-

-...-z(azj)-i(w)
LCF(p/q) =¢ _ _ 12)
O-Q(al)'¢..-l(a21)-l(a21+1)-

[...-Z(azj)-i(w) for

for p2q>1,

O<p<gq,
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where the standard finite form of LCF(p/q) will be
truncated at the last unit bit except for LCF(0) = 0.

For example,

LCF(22/7) = LCF([3/6/1})

determine continued fraction,
142(3)+2(6)+2(1)+2()

substitute lexicographic, com-

plementing odd index positions,
1-101-00101-0-0...

110100101
concatenate and truncate,

and

LCF(314/100) = LCF([3/7/71)
=1:2(3)"2(7)*2(7)*L(=)
=1-101-00100+11011-0...
=11010010011011 .

The process is clearly reversible. Specifically,
by extending any finite bit string with an infinite
sequence of zeros, a left-to-right scan uniquely
determines a terminal index even continued fraction,
hence a unique non-negative rational value. Note
that the leading bit of the string indicates whether
to commence decoding the next portion of the string
as a lexicographic integer in standard or comple-
mented form, after which the interpretation alter-
nates between standard lexicographic and comple-
mented lexicographic form. For example:

11010010011101110... = 1-101-00100-1110111-0,..
= 102(3) L(7)*2(15) + R (=)
=LCF({3/7/15])
= LCF(333/106) .

These reversible encoding and decoding pro-
cedures established the following.

Observation 3. Uniqueness and Completeness: LCF
representation provides a one-to-one correspondence
between all finite bit strings (assumed right ex-
tended with zeros) and all finite irreducible
fractions p/q> 0.0

Note that the lexicographic order of the LCF
bit strings of our preceding examples,
11010010011011 { 1101001001110111 { 110100101 ,
corresponds to the numeric order of the rational
numbers the fractions represent,

314 333
100 - 3-14 <158

= 3.1415 ,..<%%

= 3.1428... .

Lemma: p/q>p'/q' if and only if LCF(p/q) lexi-
cographically follows LCF(p'/q').

Proof: The result is immediate if p/q> 1> p'/q',

so assume either p/q>p'/q'>1 or p'/q' <p/q<1l.
_ Vil o (al/at '

Let p/q [aO/al/.../am], p'/q [ao/al/.../an],

where 1 is the smallest index for which the partial




quotients differ, i.e. aj = aj

! .

i
Append = to the shorter partial quotient sequenc2
if it is a subsequence of the other to determinei.
Then from the definition of continued fractions
and the lexicographic order for &(k),

for j<1i, ai#a

1) for i odd: p/q>p'/q'iff ai‘iaiiff
L(a}) 4 L(ay) LEELCF(p'/q") {LCF(p/q),

ii) for i even: p/q>p'/q'iff a, > ai iff
2(a]) { 8(a;) iff LCF(p'/q") 4 LCF(p/q) . O

Observation 4. Lexicographic Order: The lexico-
graphic order on the LCF bit strings corresponds to
the numeric order on the rational values they
represent. O

Our next observation extracts significant
architectural content from the LCF(p/q) bit string
relevant to the operation of the Euclidean GCD
algorithm on the fraction p/q.

Observation 5. Primitive Euclidean GCD Program:

The bit string LCF{p/q) may be interpreted as a
program encoding the operation of a binary Euclidean
GCD '"machine" on a dividend register (initialized

to p) and a divisor register (initialized to q).
Primitive operations are shift-left, shift-right,
subtract-into, and shift-right-and-subtract-intc.
The initial bit sets the state as to whether the
initial quotient digit is in an even index or odd
index position. Interpretation of 2(&21), the even

index state, has each of the leading ones correspond
to a single shift-left of the divisor register with
the first zero then denoting subtract-into the civi-
dend register. Succeeding register bits then ercode
for each 0 a single shift-right of the divisor reg-
ister and for each 1 a shift-right-and-subtract-into
of the divisor register into the dividend register
until the divisor register reaches its original
(unit) position. Interpretation then changes to

the odd index state. Processing of 2(a2i+1), the

odd index state, interprets the complement of each
successive bit in like manner to the even index
state but on the opposite registers. The latter
situation corresponds to the observation that the
contents of the dividend register and divisor reg-
ister must implicitly be interchanged after each
partial quotient. The length of the LCF bit string
is then a measure of the complexity of the GCD wcom-
putation in terms of the binary shift, subtract. and
shift-and-subtract primitives. Note that this
encoding does not reflect the trial subtractions
that need to be restored (or the equivalent in non
restoring division) during a typical binary division
instruction, but rather indicates only the success-
ful primitives enroute to completion of the GCD
algorithm (much like the encoding of a direct suc-
cessful path through a maze). D

Observation 5 utilizes the fact that conversion
from numerator~denominator pair representation :o
LCF representation is implicit from the Euclidean
algorithm. Alternatively, assume given the con:inued
fraction [ao/al/azl.../am]. Then with P_,= 0,
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p_l=l, q__2=l, q_l=0, and Pysdy for 0<i<m
determined by

+ pi_z N

o
]

i° #Pia
(3)

95 T 2% T 400

we obtain pm/qm = [ao/al/az/m../am]. Thus conver-

sion from LCF representation to numerator-denomina-
tor pair representation is equally straightforward.

We illustrate this conversion by interpretation
of the LCF bit string 001011001. We employ two
registers each for parallel construction of the
numerator and denominator, where each bit of the
LCF string denotes an appropriate "microcode
instruction" on the registers implicitly computing
the {pi,qi} by equatioms (3).

LCF Numerator Denominator
Step String Interpretation Registers Registers

0: 0 Initialize to RO 00000 RO 00001 RO
State; 00001 R1 00000 R1

(Set to odd state)
1 0 Shift RO Left; 0 0000 RO O 0001 RO
00001 R1 00000 R1
2: 1 Add RO IntoR1; 0 0000 RO O 0001 RO
00001 R1 00010 R1
3: 0 Shift RO Right; 00000 RO 00001 RO
Add RO Into RI1; 00001 R1 00011 R1

(Set to even state)
4 1 Shift R1 Left; 00000 RO 00001 RO
0 0001 R1 0 0011 R1
5: 1 Shift Rl Left; 00000 RO 00001 RO
00 001 R1 00 011 Rl
6: 0 Add R1 Into RO; 00100 RO 01101 RO
00 001 R1 00 011 R1
7 0 Shift R1 Right; 00100 RO 01101 RO
0 0001 R1 0O 0011 RI1
8: 1 Shift Rl Right, 00101 RO 10000 RO
Add R1 Into RO. 00001 R1 00011 R1

(Set to odd state)

For this example note that after Step O the RO reg-
isters contain p,=0, 9= 1; after Step 3 the RI1
registers contain Py 1, q1==3; and after Step 8 the

RO registers contain p,= 5, 4, = 16. Hence we obtain

5/16 as the rational value in numerator-denominator
form corresponding to the LCF bit string 001011001.

Assume a computer model with arbitrarily large
registers capable of bit wise parallel operations
to effect SHIFT and the register pair logical opera-
tions AND and OR. Then each shift instruction as
described in Observation 5 and employed in our
preceding example requires only constant time.




Utilizing carry-save techniques each subtraction
and/or addition between registers can be implemenied
in constant time, so we obtain the following.

Observation 6. Conversion: Conversion between LCF
representation and binary integer numerator-denom--

inator representation is possible in time linear in
bit length, i.e. 0(log p+log q) for the irreducible
fraction p/q.

The conversion procedure derives from the
Euclidean algorithm and assumes registers suffi-
ciently large to hold p and q. O

The Euclidean algorithm can be extended to
support arithmetic on continued fractions [Kn81,

p. 602], [KM83]. Specifically, by initializing
Pysdy for i=<2, -1with the seed matrix

P, 9, "a ¢

P; 9, b 4],

the recurrence equations (3) vield f(pm/qm) where
f is the bilinear form f(x) = (atbx)/(c+dx). The

seed matrices
r s r s 0 s 0 r
’ 9| and ]
s 0 s 0 r O s 0J,
implement the operations Add r/s, Subtract r/s,

Multiply by r/s, and Divide by r/s, respectively,
applied to the operand [ao/alfaz/.../am]. Arith-

metic in this form on LCF encoded operands is asym-
metric in that one of the operands must first be
fully converted to numerator-denomimator form, as

in the example converting 001011001 to the pair
101/10000. Then the other LCF encoded operand is
decoded with interpretation applied to a seed matrix
constructed from the converted value (i.e. 101/10000)
and the operation to be performed. The final result
is then in numerator-denominator form and must be
converted back to LCF form.

Gosper has noted {Go72] that this scheme can
be generalized by introducing a 2x 2x 2 matrix and
working in three dimensions. Entries in the matriz
correspond to coefficients of the expression:

axy + bx + ey + d
exy + fx + gy + h

f(x,y) =

where x and y may be fed into the ccmputation as
continued fractions, whose partial quotients are
used to perform computations as in (3) along two
dimensions of the matrix. The entries of the

2x 2x 2 cube thus constructed represent the value of
£(x,y), corresponding to whatever parts of x and y
have been fed into the computation so far. Along

the third dimension one plane represents the numera-
tor, and the other the denominator, and along this
dimension the partial quotients of the continued
fraction expansion of f(x,y) may be computed by the
Euclidean Algorithm as in Observation 5.

Hence the cube represents an "on-line'" model
computation-cell which can receive two LCF bitstresms
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Observation 7.

Observation 8.

Observation 9.

and emit the resulting LCF bitstream corresponding
to the value of any expression of the form f(x,y)
above (including the add, subtract, multiply and
divide operations).

Assuming either the constant time bit parallel
operations on arbitrarily long registers criteria
for the asymmetric arithmetic or a constant time
operation for bits input and output from the compu-
tation-cell model we obtain the following.

Arithmetic: The standard arithmetic
operations (+, -, X, +) can be performed on operands
represented in LCF bit string form to yield the
result in LCF form in time linear in the bit string
lengths. ©

Several important unary operations on LCF
represented operands are natural and very straight-
forward to compute. For inversion note from the
definition of continued fractions:

[al/az/...am] fora, =0,

l/[ao/al/az/.../anJ = (4)
[O/ao/all.../am] forao #0.

Inversion shifts the even/odd status of each partial
quotient, and we simply obtain:

Inversion by 2's Complementation:
For any finite non zero fraction p/q the 2's comple-
ment of LCF(p/q) is LCF(q/p). The 2's complement of
LCF(1/1) =1 is again 1, which is the unique repre-
sentation of unity. The 2's complement of
LCF(0/1) = 0 would improperly again yield 0O with,
however, a carry out of the leading bit to the left,
which could be used to recognize infinity as the
computed result, O

Extraction of Integral and Fractional
Parts: The values of the integral portion and the
fractional or (mod 1) portion of p/q are readily ob-
tained from reading out and separating the leading
partial quotient aO.D

Our final concern of this section: How effi~-
cient is the LCF representation viewed as an encoding
given appropriate frequency data for the partial
quotients? For the distribution of partial quotients
over the continued fraction representation of all
fractions 1/j with 1<i, j<n, Knuth (Kn81] demon-
strated that, as n + =, the frequency with which a
partial quotient has value j is log2[1+l/j(j+2)].

In particular,

Partial Quotient

1 log2(4/3) = 0.4150
2 1og2(9/8) = 0.1699
3 1og2(16/15) = 0.0931
4 log, (25/24) = 0.0589
5 1og2(36/35) = 0.0406




This leads to an expected partial quotient bit
length in LCF representation of

) (1+2[1032jj) log,[141/5(3+2)] = 3.51 .
j=1 -

An optimal Huffman encoding of characters with the
frequency 1og2[l+1/j(j+2)] for j>1 is readily

shown to require at least 3.45 bits per character
where these encodings are not even required to
preserve lexicographic order.,

Observation 10. Encoding Efficiency: LCF repre-
sentation requires approximately 3.51 bits per
partial quotient over the expected distribution of
partial quotients, which is less than 2% greater
than the most compact encoding possible even if
order preservation were not required. O

IV. SIGNED LCF ENCODING

A natural choice for the extension of LCF rep-
resentation to include negative rationals is to
attach a sign-bit to the left of the representa:ion.
To preserve lexicographic order it is necessary to:

i) use 1 for positive and 0 for negative
numbers as the sign bit.

ii) complement the bit-pattern representing tha

absolute value of the number (complementation

must be by 2's complementation in order that

the representation ends in an infinite striing

of zeros).

Denoting the signed lexicographic encoding by
SLCF we define as follows:

1-LcF(®) for £ 20,
q q
SLCF(R) =
O-TC(LCF(—E-)) for g <0,

where TC(-) is the 2's complement operator defired
on bit-strings interpreted as integers, Thus ir.
general we have:

SLcF(—-g) = TC(SLCFCE)),

which also applies to the represemtation of zerc
yielding
SLCF(0) =1,

where no trailing zeros need be specified.

The inversion operator as discussed in Observa-
tion 8 now has to be revised appropriately, since
the sign should not be complemented. Thus with

Tail(alaza3...) = a2a3

sea y

SLCFC%) = Sigmcg)-TC(Tail(SLCF(E))

whenever p# 0. Notice again that an attempt to

form the 2's complement of an "empty tail" (any
finite or infinite string of all zeros) results in

a "carry-out", which can be used to recognize iniin-
ity as the result. The only possible representa:ion
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Observation 11,

of infinity would be the empty string, or equiva-
lently any finite or infinite string of all zeros,
which in lexicographic order would "compare low"
to any other bitstring, and hence act as -« in

comparisons. The following illustrates the thirty-
two different rational numbers that can be distin—
guished by the first five bits of their SLCF
representation:

8 11111 -1/8 01111
4 11110 =1/4 01110
3 11101 -1/3 01101
2 11100 -1/2 01100
5/3 11011 -3/5 01011
3/2 11010 -2/3 01010
4/3 11001 -4/5 01001
1 11000 -1 01000
4/5 10111 -4/3 00111
273 10110 -3/2 00110
3/5 10101 -5/3 00101
1/2 10100 -2 00100
1/3 10011 -3 00011
1/4 10010 A 00010
1/8 10001 -8 00001
0 10000 400 00000
V. LCF ENCODING OF THE REALS

LCF representation of an irrational number x
as an infinite bit string follows readily as the
limit of the LCF encodings of the truncated rational
approximations ij/q2j= [ao/al/.../azj] of the

unique infinite continued fraction x = [ao/al/az/...L

The set of all infinite bit strings (except for those
with an infinite terminal sequence of 1's) is then
readily seen to be in one-to-one correspondence with
the set of all reals, and bit string lexicographic
order preserves real order. This extension thus
provides a foundation for approximate real arith-
metic with LCF representation. Note that differing
initial k-bit strings for any two infinite LCF bit
strings are sufficient to order the two distinct
reals these infinite strings represent. For example,
LCF(r) = 11010010011101111111..., which is shown
with sufficient length to confirm 333/106 <w < 22/7
by comparison with our earlier demonstrated bit
strings for LCF(333/106) and LCF(22/7).

Real Representation: LCF represen-
tation provides a one~to-one order preserving corre-
spondence between all infinite bit strings (having
no terminal sequence all 1's) and the reals, where
the rationals are those strings having only a finite
number of 1's in the string (hence a terminal
sequence all 0's), o

The truncated continued fractions
Pi_

1, [ao/all.../ai], i=0,1,...,m




derived from the infinite continued fraction
x= [ao/al/az/...] form a sequence of continued

fraction approximations of x called convergents.
The convergents to x are also termed ''best rational
approximations" to x and their properties can be
summarized from classical material on continued
fractions [HW79, Chl0] as follows.

Theorem: The convergents pi/qi= [ao/al/.../ai] of
x==[a0/al/a2/...] for i=0,1,2,... satisfy the fol-

lowing properties:
(1) Recursive ancestry:

With P_,= 0, Py = 1, 9., = 1 and 9% 0,
Py=24Pi TPy
947249179

(11) Irreducibility:

gcd(pi,qi) =1,

(1ii) Adjacency:
_ 1
4Py 1 7Py = D7,

(iv) Alternating convergence: for x#0,
Py P P, Py._ Py
_O‘<_2<.a-<'_2'l< --.<‘X<---<42_1< -.-<z"",
o %2 923 923-1 31
(v) Best rational approximation:
P P,
r i r i
THE, sEqR = x| > [ - x
i »
S a4 s 93
(vi) Quadratic convergence:
P
O RO ) g
9384417 9 9 939541
Observation 12. Rounding to Convergents: Every

convergent ij/q2j to p/q >0 has pzj/qzjs p/q and
LCF(ij/qu) is an initial substring of LCF(p/q).

Thus chopping of LCF(p/q) to the appropriate place
can determine LCF(pZi/qu)' However, not all chop-

pings of LCF(p/q) yiéld convergents of p/q, so it
is necessary to read and interpret LCF(p/q) from

left-to~right to find those that do. Similarly,

every convergent p2j+l/q2j+l to p/q has

p2j+l/q2j+l >p/q and can be found by a rounding by

augmentation to the appropriate number of bits.

Again it is necessary to read and interpret LCF(p/q)
left-to-right to find those augmentations correspond-
ing to convergents. o

Let a k-bit continued fraction denote any irre-
ducible fraction p/q for which LCF(p/q) has no 1's
beyond the initial k bits. This definition allows
any k-bit string followed by an infinite string of
0's to be read left~to-right yielding a unique k-b:..t
continued fraction. There are then 2K distinct

k-bit continued fractions which are shown for k=35
and p/q <1 in Figure 1.

1 - 10000
8/9 —— 01111
4/5 4. 01110
3/ 4 01101
2/3 - 01100
5/8 —4— o01011
3/5 44— 01010
5/9 —— 01001
1/2 —4— 01000
2/5 —— 00111
1/3 —— 00110
2/7 —— 00101
1/4 4 00100
1/6 —— 00011
1/8 —— 00010

1/16 ——~ 00001

0 =L 00000

Figure 1. The 17 LCF 5-bit Strings Having
Values in the Unit Interval

Note that expansion from k-bit to (k+1)~-bit
continued fractions adds exactly one new represent-
able value in every previous gap. The new values
serve to bisect each gap but may be off center as
much as two parts to one. The off center positions
serve, however, to capture all the relatively simple
fractions at appropriately small values of k.

The inverse of every k-bit continued fraction
other than 0/1 is again a k-bit continued fraction.
Note also that the negative of any signed rational
number requiring at most k+1 bits in SLCF represen-—
tation is representable in k+l bits in SLCF repre-
sentation. Any convergent to a k-bit continued
fraction is a k-bit continued fraction., The k~bit
fractions for k~+ do not, however, yield the
property of being asymptotically uniformly dense on
the interval [0,1] as do the fixed-slash factions
[MK80]. This shortcoming is the result of a base
dependent bias inherent in the specification of the
k-bit continued fractions.

The specification and investigation of a finite
precision continued fraction number system based on




k-bit LCF representation appears worthy of further
study. Alternative representation of the leading
partial quotient a, (or ay if ag= 0) can be en-

ployed to yield a variation of LCF represental:ion
where the resulting "k-bit" finite precision number
system can achieve range/accuracy trade offs com-
parable to floating-point or floating-slash [MK80]
number systems. Integration of some aspects of LCF
representation with the fixed-and floating-slush
arithmetic unit described in [KM83] provides zn
alternative approach to multiple precision slash
arithmetic. Utilization of LCF representation for
on-line continued fraction arithmetic in the manner
suggested by Gosper [Go72] is still another direc—
tion for further study.

We believe the properties demonstrated ard the
potential for further enhancements makes LCF repre-
sentation a useful tool in the design of number sys-
tems and arithmetic units,
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