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Abstract

In this paper we cover the problem of approx-
imation of numbers and of functions by presenting
some well known results in a unified view that
could help in better understanding the algebraic
bases of the problem. In fact the extendedEuclid's
algorithm happens to be the unique and common tool
solving the approximation problems both for numbers
and for functions.

1. Introduction

One of the misleading beliefs about computer
algebra has been for long time about the unique
possibility and the total interest in that field
only for exact computation and for the closed form
solution of given problems. Even if this aspira-~
tion for exact computation mainly characterizes
the algebraic manipulation field, nevertheless
the interface between numeric and symbolic computa-
tions has been deeply studied from the very begin-
ning. Moreover the use of algebraic approaches in
many typical numeric problem has been very interes-
ting and fruitful, and it is sufficient to recall
here one problem for all: the polynomial zeroes
determination,

In this paper we will cover the problem of
approximation of numbers and of functions by pre-
senting some well known results in a unified view
that we hope would help in better understanding
the role of algebraic computation in a direction
which happens to be not completely known.

Our unification view starts from two unifica-
tion results:

(i) the similarity of integers and polynomials

(as covered in JL'13)

(1i) the relation between the Newton and Hensel

iteration methods (as covered in %)
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and it will be concerned with the problems of the
so called error-free computation and of the ra-

tional interpolation of functions.

2. Error-free computation

The problem of error-free computation has been
investigated by many authors in the recent past.

Two classical solutions of this problem are
based on the infinite precision integer and ra-
tional arithmetic and on the multiple moduli re-
sidue arithmetic'® . However both these kinds of
arithmetic suffer from an unpredictable need of
space.

A significant alternative, that lies between
these approaches and the floating point arithmetic,
is the approximate rational arithmetic that as-
sures low complexity operations together with
powerful capabilities. Horn'? and Matula and Korne-
rupl7in fact proposed a method to approximate a
rational number, that is based on a classical al-
gorithm for finding successive convergents of a
continued fraction expansion of the given number
(see [9] sect. 10.7). According to this method
since an approximate value of the rational p/q is
accurate to within 1/q2, it gives similar accurancy
as double precision arithmetic.

Another very interesting approximate rational
arithmetic is based on the use of the so called
p-adic arithmetic, first introduced by Hensell! in
1908 and then followed by Hehner and Horspool!® in
order to define an efficient and easy arithmetic.

In the same direction Krishnamurthy, Rac and

Subramanian'® and Gregory®* /56

proposed a particular
p-adic representation with fixed length numbers

that they called Hensel-codes.




Let a be a rational number, and let p be an
integer, that usually is assumed to be prime, then

the sequence of digits

32 1804t (1)
with
a = z a,pl (2}
i=n
and O i‘ai < p, for i = nﬂn+1,...,an # 0 and n

positive, negative or zero, is the p-adic repre-
sentation of a.

Since any such a can be uniquely expressed as

a = c/d pn (3)
with p and n as in (2), and ¢, d and p pairwiss
relatively prime, it follows from (2) that:

* :
c -
a= ¥ aipl n (4)

i=n

This p-adic representation leads to a power-
ful arithmetic that has very useful and significant
properties for error-free computationl°’14.

Let us now suppose we would like to deal cnly
with fixed length p-adic numbers, namely a p-adic
sequence as (1) with only, say, r p-adic digits.

Then a raticnal number o would be expressad
by the value of n, that represents its exponent

e, and by the sequence

a (5)

a ...
n n+l1 n+r-1

that is a sort of mantissa: m . For given p we can

then represent a by the so called Hensel-code

H(p,r,a) = (ma , e) (6)

o

In order now to operate with this kind of re-
presentation we need two algorithms for the direct
and inverse mappings of rational numbers into their

correspondent Hensel-codes.,

Kornerup and Gregoryls and Miola'® independent-

ly devised algorithms for those two mappings, bhoth
based on intensive use of the extended Euclid's
algorithm.

However similar results were also reached by

Wang”’ and by Wang, Guy and Davenport21 for the re-
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construction of rational numbers from p-adic images.

A first significant observation can be made
at this point by recognizing that all the approx-
imate rational arithmetics we have mentioned here,

namely the proposals and the results of *'%76r12 /15

16 417419 156 on the basic algebraic and number
theoretic properties of the extended Euclid's al-
gorithm and its relation with diophantine analysis
and continued fraction expansion of rational
numbers. Those properties are very well known (see

1,9,13
’

for instance however we would like to give

a short overview of that, so we will also be able

to immediately refer to that in the next sections.

3. The extended Euclid's algorithm and its properties

The extended Euclid's algorithm (EEA) '’13

for given ag . a, non negative integers, computes
x and y, as well as the greatest common divisor

(ged) of ag and a such that:

1’

ax +ay = a = gcd(a0 , al) (7)

The computation is carried out by using three
vectors (ao ’ al,...,an ), (xo,xl,...,xn ) and
(yo,yl,...,yn ) such that at each step the fol-

lowing relations hold:

ai+1 =a, 4 + g.a for given a, oy
Xi+1 =X 4 + g.x for x, = 1, Xy = 0 (8)
Yigg = Yy Y 4yy; fory, =0,y =1
where q = __ai—l/ai J pa, = 0 with an_1=gcd(ao,a
and also such that the property

agky T agy; =y )

holds for all i = 0,1,...,n-1,

The values xn are then the solution of
(7).

This equation (7) has the general form

-1 " Yn1

ax +ayy=c (10)

that is known as a diophantine equation in the in-

teger unknown x and y, for given a,.ay,¢ integers.

1
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1t gcd(ao,a ) divides c¢ then the solutions

1
;,; of (10) are related to the solution X o4
13

)

Yooq of the equaticn (7) (see for instance ; in

the following way:

X = mX + kal/gcd(ao,a )

n-1 1

(11)
)

y = my_ + kao/gcd(ao,a

-1 1

for any integer k and m such that c==m'gcd(ao,a ).

1
On the other hand the EEA and the solution
(11) of the equaticn (10) have also interesting
relation with the continued fraction expansion of
numbers.
In fact the problem of solving the equations

(7), (10) can be alsoc formulated as the calcula-

tion of an approximation to ao/a1 since in (7)

Y
+ >
= < ( )

9
N
Therefore -y/x is an approximation to ao/a1

if we assume 0 < x < a

that is quite close to ao/a1 and has a very small
denominator.

From this observation wa can also verify that
the successive values of q in the EEA are the suc-

cessive terms of the continued fraction expansion

of ao/a1
/ag = q + —t :
a/31 = 94y . T 13
2 ag*,

The successive convergents of ao/a1 are then
the values -yi/xi for i > 0, with XYy computed
throughout the EEA as in (8) °/!3,

4. The use of EEA for error-free computation

The proposals of 12

and of 7 directly refer
to the representation of a number by a convergent
of its continued fraction expansions. While the

result of '°

; as far as the mapping of a rational
number o = a/b onto its Hensel-code H(p,r,a/b) =

= (ma , eu) is concerned, is based on the simple
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computation of e, =n such that

. p (14)

ol
afn

for a given p, and on the determination of the
unique solution of the following diophantine equa-

tion

mad + c = kpr (15)

for the unknown ma , given c,d,pr pairwise rela-
tively prime.

The inverse mapping, namely the reconstruc-
tion of a rational number c¢/d, and then of a/b as
in (14), from its image mod pr, is then defined
in ¥ and it is based again on the use of EEA to
generate continued fraction convergents of ma/pr.

However a basic observation must be made here.

OBSERVATION 1. The solution of the inverse
mapping problem is unique only when a restriction
on the rational number c/d we are looking for is

posed; namely if this ratio is limited as:
0<|cl<nNand0<ad=<un (16)

A discussion of this observation, and the

proof of a related theorem can be found in '* 17 .

5. Rational approximation of functions

Let Xo’xl'XZ"" be a sequence of points some
of which may be repeated. The problem of rational
Hermite interpolation of degree-type (u,v), with
u+v = N, is to determine a rational function
A(x)/B(x) with degree (A) < u and degree (B) < v,
which interpolates an analytic function o(x) at
the first N+1 points of the sequence: xo,xl,...
"’xu+v'
For 4 = N and v = 0 we have the polynomial
Hermite interpolation problem solved by a poly-

nomial P(x) of degree N such that
N
a(x) - P(x) = B(x) (X~Xi) (17)
i=0
where B(x) is a analytic function.

In general we have that the rational function

A(x)/B(x) is such that




a(x) - (18)

N
géi; = B(x) T—T(x—xi)
i=0
When the pcints X, are distinct the rational
interpolation problem is known as Cauchy interpola-
tion, and in the other side when all the points xi
are the same this interpolation problem is called
Padé interpolation. Then every problem and every
result concerning Cauchy interpolation has its

Padé equivalent, so0 we will refer to these two

situations interchangeably.

An algebraic formulation of (18) can be im-
mediately found. Let in fact
+tax +ax +...

a(x) = ag (1<)

be a power series expansion (in %, over a field)
of the function a. A Padé approximant (or inter-

polant) to a(x) is a rational function A(x)/B(x)

such that:
a) deg(a) < n

b) deg(B) < v (20)

N+1

c) B(x)a(x) Z A(x) med x

for N = u+v.
If we consider the truncation of a(x) at the

N-power term we have

N
aN(x) =ag +ax +... tagx
and
Bx)ay (x) = Alx) mod ¥ (21
The formulations (20) and (21) show how, for

a given function o(x), we will have a table of all
the interpolants of a(x) for different values of M
and v. We would like now to discuss how this table
can be constructed using the EEA, so we do not go
into more details of rational interpolation.
However for a good survey on rational inte:po-

lation see 2,

213

6. The use of EEA for rational interpolation

The problem of rational interpolation as
formulated in (20) and (21) has a clear relation
with the problem of reconstructing rational
numbers from their images modulo a prime, as

19 | The

formulated in section 4 and solved in
formulation (21) in fact immediately suggests the
use of the EEA to determine the rational approx-

imant of a given function o(x). Brent, Gustavson

2,7,8 18

and Yun and McEliece and Shearer in-
dependently discovered the relation of the EEA
with the problem of Hermite rational interpola-
tion.

According to these results if we apply the

N+1

EEA to Ao(x) =X and Alux) = aN(x) {or to

(x)

in thi ase
N i e c

N
A (x) = (x-x.) and A, (x) = o
o) , i 1
1i=0
of Cauchy interpolation) we obtain the following

properties:

a) each step of the EEA furnishes a unique refer-
ence to the rational interpolation table.

b) the rational function Ai(x)/Yi(x) obtained by
the EEA furnishes as many as deg(Qi) equal
entries to the interpolation table, along the
(p+v)-th antidiagonal.

c) all entries along the (p+v)-th antidiagonal of
the interpolation table are computed uniquely

by the EEA.

In formulating these properties we have made
use of a symbolism for the EEA elements which is
a natural extension of that used in section 3. In
fact the EEA applies also for polynomials over a
field and here we have indicated polynomials by
capitalizing the same letters we used in section 3.
A basic observation can then be made here on

these properties.

OBSERVATION 2. The solution of the rational
interpolation problem is uniquely determinated by
the EEA, because a natural restriction on the de-
sired solution has been assumed by the limitation
on the degree of the polynomials A(x) and B(x) as
in (20).




7. Conclusion

This paper has presented some well known re-

sults on the use of the extended Euclid's algorithm

for approximation processes in a hopefully meaning-

ful unified view, underlining the generalities and

the properties of this algorithm.

The unification remarks coming out from this

presentation can be the following:

(1)

(ii)

(iii)

(iv)

The integers and the polynomials have a well
known similarity which is very useful in al-
gebraic algorithm designing trts
The iterative methods as Newton and Hensel
constructions have been shown to be very
related 2 .

Approximate rational arithmetic and rational
interpolation of functions are also related,
and both together have strong dependency
from the use of the extended Euclid's al-
gorithm 15719 +18/2,7:8

The solutions of recovering a rational ex-
pression for numbers and for functions are
unique when the desired answers are assumed
to be limited in their sizes, (see observa-

tions above).

These remarks cnce again make evident the

unification strategy in algebraic computation. This

strategy is more and more powerful in these days

and it is the significant base for developing new

systems and it can help for incorporating also the

p-adic arithmetic for error free computation and

in general more numeric-like methods.
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