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Abstract

An extension of the language S—algol4 called
Triplex? which facilitates the use of interval
arithmetic and which is similar to triplex algol
603 is described. Experience in the use of Triplex
is reported. In particular, a Triplex program
corresgonding to a triplex algol 60 program of
Nickell9 ig given, together with numerical results.

Introduction

Algorithms which contain non-trivial amounts
of numerical calculation cannot usually be
implemented exactly using the high speed floating
point unit of a computer for the following reasons.

(i) Data-values may be known only approximately.

(ii) Real numbers are, in general, represented
only approximately by machine numbers,
giving rise to input-output conversion
errors.

(i1i) The arithtmetic operations which are defined
on the set of machine numbers are themselves
inexact representations of t1e corresponding
arithmetic operations which are defined on
the set c¢f real numbers.

(iv) Infinite sequences of arithmetic operations
which may be required by a given algorithm
must necessarily be truncated after a finite
number of operations have been performed.

Furthermore, if an algorithm for solving a
properly-posed problem in numerical mathematics is
supported by a satisfactory theoretical analysis,
then there will exist theorems which contain
sufficient conditions for the existence and
uniqueness of a solution, and for the convergence
Or termination of the algorithm. It is usually
rather tedious to verify by hand that these
conditions hold and it is desirable that they
should be verified by using the computer.
Unfortunately, many conditions are of the form a <
b where a and b are real numbers which must, in
practice, be estimated by making often long (and
inexact) numerical calculations. Clearly it is
impossible to decide rigorously whether or not a <
b using ordinary machine arithmetic. The paper by
Rall20 contains an interesting example.

The preceding remarks reveal two serious
difficulties in numerical computing, namely that
it is usually impossible to implement a numerical
algorithm exactly on a computer, if ordinary
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machine arithmetic is used, and also that it is
usually impossible to decide, again by using
ordinary machine arithmetic only, whether or not
sufficient conditions for the applicability of the
algorithm hold. Both of these difficulties have
been and are being satisfactorily resolved by using
interval mathematicsl5,18,9,

High level language support for triples

Interval arithmetic has been incorporated into
several high level languages. Yoche24 has written
a package of interval arithmetic Fortran sub-
routines which is designed for use with a pre-—
compiler in order to allow INTERVAL to be used as a
standard data type. More recently, Guenther &
Marquardt/ have implemented interval arithmetic in
Algol 68, introducing a data type intval to
represent real intervals. The original
implementation of the interval arithmetic in a high
level language appears to be due to Apostolatos et
al3 who extended Algol 60 by introducing the data
type triplex. A triplex number x is an ordered
triple [inf(x), main(x), sup(x)] of real numbers
such that inf(x) < main(x) < sup(x).

In this paper we describe the facilities for
triple arithmetic which are embedded in the
language S-algol%s17, The implementation issues of
the new language called Triplex are described by
Cole & Morrison>. The advantage of the embedding
approach is that the triple can be a separate data
object with language constructs tailored to
manipulating that data object. This means that
programs which use triples will be considerably
shorzer, with all the attendant benefits, than
programs which use subroutine packages for example.
Another advantage is that the system can guarantee
the integrity of the triples without fear that the
user may accidentally alter one of the triples.
The only disadvantage of this approach is that the
compiler may have to be altered to achieve the
embedding. Fortunately this is not a serious
problem in this case.

Language extension is normally achieved in two
ways - syntactic extension and procedural extension.
The advantage of syntactic extension is that since
the extension may include infix operators the
programs will be shorter and clearer. The
disadvantage is that it is more difficult to
achieve syntactic extension than procedural
extension and that the designer often rums out of
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suitable symbols in the character set. On the
other hand, while procedural extension is easier to
implement it is often less safe and it is clumsier
for the user. The approach taken in Triplex is to
mix the two types of extension to give a balance
and the advantages of both.

Triplex is basad on the language S-algol which
itself is designed using two semantic rules
attributable to Strachey2l and Landinl®. The first
rule is the principle of correspondence which
states that the rules governing the use of names in
a language should be the same for all rames. This
means that if names for triples are introduced then
it must be done according to the rules of the
language that already exist in order to maintain
the orthogonality of the language. In particular,
Tennent22 points out that there must be a one to
one correspondence between the methods of
introducing names in declarations and zs
parameters.

The second rule is the principle c¢f data type
completeness which states that all data objects
have the same 'civil rights' in the larguage. Thus
if a vector of reals is allowed then sc should
vectors of any type including triples. This, of
course, does not mean that all operators need to be
defined on all data types since operatcrs are
merely syntactic sugarings of functions, but rather
that the rules for combining data objects are
complete with no gaps.

S-algol is complete under the principles of
correspondence and data type completeness and in
order to retain the language orthogonality so
should the Triplex extensions be. This means that
there should be names of type triple, triple
expressions, vectors of triples, triples as fields
of structures, triples as parvameters of procedures
and procedures whose result is a triple. In fact
the language Triplex provides the user with a
method of defining triples that ensures they are
well formed, infix operators for triple arithmetic,
standard functions normally defined for real
numbers and a guarantee that the triples are
protected from misuse.

Interval extension

In order to guarantee that the triples are
well formed we must know a little about the
arithmetic performed by the host computer. The
reasoning is as follows. In any implementation,
let M be the set of machine numbers such that L =
K) € Xl veevenvneeen € Xp~]l < Xp < U, If x is an
xi of M then x~ denotes xj-] provided x # L and x*
denotes xj+1 provided x # U. The set of machine
triples T is defined by

T={(i,ms J | i,mys Mandi<sn<s}

More often than not the real number we wish to
use i1s not in M. Let x' be a real number not in M
which lies between the values x and x* which are
in M. Then x' may be represented by the triples

[ x,x,x" ] or [ x,x*,x* ]

The choice of x or x* for the main part is not
usually imoortant., If it is, calculations should
be made to a greater accuracy than the end points
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and some measure of distance to the end points used
to chocse between x and xt.

More important is how to find x and x* on
machines that are computing to their greatest
accuracy. x* may be found from x by adding a one
to the low order bit of the mantissa of x except
when x = . Similarly x~ can be found by
subtraction except when x = L,

On machines which truncate the result of real
arithmetic, x' will be truncated to x if x' is
positive and x* if x' is negative. In either case
x or x* can be calculated from the other as
outlined above. On machines which round away from
zero, i.e. increase the absolute magnitude of the
number, x' will be rounded to x* if positive and
x if negative. Finally machines which round
randomly may give either x or x*. To be sure that
the number y given by such a machine is represented
by the correct interval [y~,y*] must be used. This
technique may be more generous than necessary when
x' is in M. However, this is both rare and usually
difficult to spot automatically.

Triplex language facilities

A triple may be formed using the syntactic
rule

<triple-expression> ::= [<real-expression>,
<real-expression>,
<real-expression>]

Thus
{ 1.3,1.3,1.3 ]

forms the triple equivalent of the real number 1.3.
When a triple [inf,main,sup] is formed, a check is
made to ensure the relation

inf £ main £ sup

holds. The interval is then extended as described
above. Once formed the values in the triple can
be inspected but never altered.

As wirh all other data objects in the language
a triple may be declared. The syntactic rule is

= let <identifier>
=] <triple-expression>

<triple-declaration>

Thus the above triple could be given a name by
let one.three = [ 1.3,1.3,1.3 ]

and the name used anywhere a triple expression is
valid. As an aside if the symbol '=' is used in
the declaration the name is constant and may not

be assigned to i.e. given a different triple value.
If the symbol ':=' is used in the declaration then
the name is variable. Thus the only difference
between a constant and a variable is that a
constant may not be updated. This is guaranteed

by the compiler. This type of constant is called

a dynamic constant8 and should not be confused with
the manifest constants of, say, Pascal?3 since the
initialising value can be any legal expression in
the language and not just literals and, moreover,
the concept also applies to vectors and structures.

There are four arithmetic operations defined
on triples. The syntactic rule is




<triple-expression> ::= <({riple—expression>
P P P p
[+1-1*|/J<triple-expression>

Taken along with the other rules for expression
formation in the language, expressions of arbitrary
complexity may be formed.

For the user's convenience the compiler will
coerce integers and reals to triples when
necessary. For example

2% [ 1.3,:.3,1.3 ]
gives the same result as
L 2,2,2 1% [ 1.3,1.3,1.3 ]

Along with the arithmetic operatiois, two
relational operations are defined on triples. They
are equal and not equal denoted by the symbols =
and # respectively.

Let Tl = [ il,ml,sl ]
and T2 = [ 12,m2,s2 ]

then Tl is equal to T2 if and only if

f

il = 12 and ml = m2 and sl = s2

Some implementations of triples or intervals3
allow other relational operations such as less
than, greater than etc. While these operations
may be well defined, such definitions are not
universally acceptable and therefore constitute a
pit for the unwary to fall into in the case of
overlapping intervals. 1In our opinicn it is too
dangerous to include these operations, especially
since they may be written as functions if required.
It is then the user's responsibility to take care
when using them and hopefully to fully understand
the consequent implications.

A triple may be input by using the standard
function readt which has the following
specification

procedure readt( file t > triple )

This performs in & similar manner to readi or readr
and causes three real literals to be read from the
relevant file. These literals may be preceded by
any combination of newline, space or horizontal

tab characters.

Output of a triple is provided by means of
the standard function tformat having the following
specification

procedure tformat( triple tjint b,a - string )

where 't' is the triple to output, 'b' is an
integer specifying the number of digits before the
decimal point and 'a' another integer specifying
the number of digits after the decimal point. The
result is a string which may be subsequently
written out using a write clause. The string
consists of three real numbers, in the format
specified, separated by a single space, in the
order from left to right of inf,main, sup.

It should be noted that in order to maintain
the highest degree of accuracy on input and output,
the machine arithmetic for triple I/0 is simulated.
This is naturally quite time consuming.

There are a number of standard functions of
which the following are the most commonly used

inf main sup abs sqrt 1n exp atan sin cos trip

The arithmetic functions are the Triplex
equivalent of the corresponding real functions
whereas inf, main and sup take a triple parameter
and return the real part of the triple
corresponding to their name. The function trip
may be used to override the automatic triple
extension. For example

[ 1,1,1 ]
needs no extension since the integers are
represented exactly in the computer. Therefore
the user can take advantage of this by using
trip( 1 )
which will form the triple with no extension.
The user may also define triple functions and

the following example is in fact the function abs
written in Triplex for triple arithmetic.

procedure tabs( ctriple t - triple )
case true of

int( =) 20 : ¢t
sup{ © ) < 0 : [-sup( t ), -main( ¢ Y,-inf( t )]
default [ O,rabs( main( t ) ),

if rabs( inf( t ) ) >
then rabs( inf( t ) )
else sup( t ) 1}

sup( t )

Triple arithmetic

Before we describe a solution to a numerical
problem using the Triplex language we will define
the arithmetic operations +, -, * and /
corresponding to addition, subtraction,
multiplication and division respectively on

triples. They are based on the definitions of
these operations on intervals given by Good and
London6. They are as follows.
Let

T1 = [ il,ml,sl ]

T2 = [ 12,m2,s2 ]
Addition

TL + 72 = [ il + i2,ml + m2,s]1 + s2 ]
provided L < il + i2 and sl + g2 < U

Subtraction

TL -T2 =[ il - s2,ml - m2,sl - 12 ]
provided L < il - s2 and sl - 12 < U

The main product Tl * T2 is always ml * m2 but
the values for inf and sup is determined by the
sign analysis in the table below

T1 T2
[il,sl] [1i2,s2] Tl * T2
1 (20,201 [20,20] [i1*i2,s1%g2]
2 [20,20] [<0,20] [s1%12,51%*352]
3 [20,20] [<0,<0] [sl*i2,i1%s52]
4 [<0,20] [20,20] [11*s2,51%{2]
5 [<0,20] [<0,20]1 [min( 1l*%52,51%{2,
max( 11*i2,s1*s2 )]
6 [<0,=0] [<0,<0] [s1%i2,i1*{2]




7 [<0,<0] [20,20] [il*82,s1%i27
8 [<0,<0] [<0,20] [il*s2,i1%i2’
9 [<0,<0] [<0,<0] ([sl*s2,11,1i2’

provided L < min( i1*i2, il*gl, il%s2, sl*s2 ) and
max( i1*i2, il*sl, il*s2, sl*s2 ) < U

Division

The quotient is undefined 1f the divisor spans

zero. When it does not the main value is always
ml/m2. The table below defines the operation.
Ti T2
[11,s1] [12,s82] Tl / TZ

1 [=20,20] [>0,>0] [i1/s2,s1/12]

2 [20,20] [<0,<0] [s1/s2,11/i2]

3 [<0,20] [>0,>0] [i1/i2,s1/1i2]

4 [<0,20]  [<0,<0] [s1/s2,il/s2]

5 [<0,<0] {>0,>0] [11/i2,s1/s82]

6 [<0,<0] {<0,<0] [s1/i2,i1/s2]

Computational experience using triplex

Several algorithms for the solution of non-
linear algebraic equations and for optimization
have been implemented in Triplex. Amcng these are
the algorithms of Moorel®, Madsenl4, plefeld and
Herzberger2, Krawczyklz, Alefeldl and HansenlO,1l,
Listings of some of the Triplex programs
corresponding to these algorithms may be obtained
from the authors of this article.

An illustration of how Triplex S-algol may be
used is provided by the implementatior. of the
interval Newton algorithm for bounding a zero of
f:R-R in triplex-Algol 60 which is contained in
section 7.5 of the article by Nickell®. Nickel's
program bounds the zero x* = 0 of f:R+R defined by

f(x) = x/(1+ix])
in the triple x = [ -7,4711,247921 J.

The following Triplex S-—algol prcgram also
implements the interval Newton algorithm given by
Nickel.

procedure f( triple x » triple )
x / (trip( 1 ) + tabs( x ) )

procedure f.prime( triple x - triple )

/

begin
let M=1/ ( (1+ 1leb ) * (1 + leb6 ) )
let z = trip( 1 ) / tpower( tript 1 ) +
tabs( x ),2 )
let z.1i := inf( z ) ; let z.m := main( z )
let z.s := sup( z )
if z.s > 1 do z.s := 1
if z.m > 1 do z.m 1
if z.1 > M do z.1 M
if zm > M do z.m M
[ z.i,z.m,z.5 ]

end ! f.prime

! MAIN PROGRAM

let n := 0 ; let n.max = 16

let x := [ -7,4711,247921 ]

write "n":3,"inf (x)":11,"main(x)":25,
'lsup (X) ":23"”‘“"

while

whi
beg

end
wri

res

Lo~ LWNE-O o

le n € n.max do
in
write n:3,tformat( x,0
let y trip( main( x
let z=y - f(y )/ £
let I = tintsct( z,x )
if I( tintsct2 ) do
begin
write
abort

""nThere is

end
let z.x.1 = I( tintsct
let z.x.s = I( tintsct
let z.m = main( z )
if z.x.1 £ inf( x ) an
begin

write "'n'Converg

"iteration
"ne

nFinal triple "

"containing the z
tformat( [ z.x.1i,
abort

if z.m > z.x.1 and z.m
[ z.x.1,z.m,z.%X.8

x 1= [ z.x.1,( z.x.1i +
n:=n+1

te "'n'nMaximum number o

The above program prod
ults.

inf( x )

-0.7000000000000001e+01
-0.7000000000000001e+01
-0.7000000000000001e+01
-0.7000000000000001e+01
-0.7000000000000001e+01
-0.7000000000000001e+01
~0.7000000000000001e+01
-0.7000000000000001e+01
-0, 7000000000000001e+01
-0, 7000000000000002e+01
-0.7000000000000002e+01
-0.9983817225711355e+00
-0.1798759659490610e-01
-0.1656910912515204e-01
-0.1788632749431861e-06
-0.4960106059565740e~-11
-0.1028674620408200e-26

n

,16 ),"'n"
) )

.prime( x )

no zero of f in x."

1,1)
1,2 )

d sup{ x ) £ z.x.s do

ence attained in ",

",iformat( n ),".",

’
ero of f is'n",
z.m,z.x.s 1,0,16 )

< z.X.§8 then

z.x.8 ) [/ 2,z.x.5 ]

f iterations."”

uced the following

main{ x )

0.4711000000000000e+04
0.2351500106112054e+04
0.1171750265595868e+04
0.5818755591461645e+03
0.2869386373891154e+03
0.1394710551756515e+03
0.6573908703998034e+02
0.2887703538153902e+02
0.1045525295227102e+02
0.1271274573832112e+01
-0.1616139042072018e+01
-0.1434128631756218e+00
0.2056724932422962e-01
~0.4230117447650240e-03
0.1789389362091416e-06
~0.3201914288863417e-13
0.1025519176787315e-26

sup( x )

Nolie JENN N I NN

7

0.2479210000000001e+06
0.4710000212224109e+04
0.2350500531191738e+04
0.1170751118292330e+04
0.5808772747782310e+03
0.2859421103513031e+03
0.1384781740799607e+03
0.6475407076307805e+02
0.2791050590454205e+02
0.9542549147664226e+01
0.7115559962198918e+00
0.7115559962198919e+00
0.3574766401020007e+00




TR

13 0.4144868895657035e-03
14 0.1394914761989317e-04
15 0.320191371810879%e-13
16 0.3166203683631262e-24

Maximum number of iterations.
Conclusions

The Triplex system was designed to be a simple
but powerful extension to S-algol to provide high
level facilities for interval arithmetic while
retaining the power of the high speed floating
point unit of most computers. The extensions to
S~algol include facilities to manipulate triples
as a basic data type, infix operators to operate
on triples and standard functions for more complex
triple operations. The system also protects
triples from misuse and guarantees that they are
well formed. This type of language extension
leads to a concise notation that allows programs
to be relatively small with all tae attendant
benefits that that entails.

To give the reader a feel for the utility of
the system a solution to a well known problem in
numerical analysis is cutlined us:ng the Triplex
language. The system is available on request
to the authors.
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