RN}
i

VECTOR REDUCTION METHODS FOR ARITHMETIC PIPELINES®

Lionel M. Ni

Department of Computer Science
Michigan State University
East Lansing, MI 48824

Abstract: Vector reduction arithmetic accepts a vector
as input and produces a scalar cutput. This class of vec-
tor operations forms the basis of many scientific compu-
tations. In a pipelined processor, a feedback loop is
required to reduce vectors. Since the output of the pipe-
line depends on previous outputs, improper control of the
feedback loop will destroy the benefit from pipelining. A
generalized computing model is proposed to schedule the
activities in a vector reduction pipeline. Two new vector
reduction methods, symmetric and asymmetric, are pro-
posed and analyzed for pipelined processing. These two
methods compare favorably with the known recursive
reduction method in achieving higher pipeline utilization
and in eliminating large memory for intermediate results.
An interleaving method is proposed to reduce multiple
vectors to multiple scalars in a single arithmetic pipeline.
The pipeline can be fully utilized by interleaved multiple
vector processing.

I. INTRODUCTION

Vector reduction arithmetic accepts single vector as
input and produces a scalar output. This class of vector
operations forms the basis in many scientific computa-
tions {Hwan79], [Kogg81], [HWSN81]. Perhaps the most
common example is the Vector Summation, which com-
putes the sum of all elements, a input vector. This
operation is needed in performing the Inner-Product
among many matrix operations. Other vector reduction
operations include the searching for the Mazimum or the
Minimum Element and computing the Mean Value of the
elements of an input vector. Table I presents some vec-
tor reduction operations, that one highly demanded in a
modern vector supercomputer [HwSu83]. We classify
primitive  vector  operations into = four types:
fl:VlXV2 — V3, fz:leS — _V'IZ; f3:V - S; and
[4V) — V,. Vector reduction operation belongs to type
f3, which is the only type that produces a scalar output.
Many vector computations, such as convolution, matrix
multiplication, and discrete Fourier transformation,
include vector reduction operations as evaluation primi-
tives [HwCh82|, [HwBrg3).

A vector reduction function, f: V— S, can be
evaluated recursively either in an array processor or in a
pipelined computer. Let X[i] be the i-th element of a
vector for 1<i<N. Let Z be the scalar output. We have

z = 1(X[1], X{2],....X|N]) (1)

Let Z[i] be the intermediate result after the first [i]
input elements are used in the evaluation of f. A re-
cursive evaluation of f is defined by

* This research was supported in part by the U.S. Engineering Foun-

dation under grant RI-A-82-11 at Michigan State University and in
part by US. National Science Foundation under grant ECS-80-
16580 at Purdue University.

CH1892-9/83/0000/0144$01.00 © 1983 IEEE

Kai Hwang

School of Electrical Engineering

Purdue University

West Lafayette, IN 47907

zp-yy XM Al lfm
—l *

f r—- === - A
=iy

NN

[ |

| |

2 =exp zp)) S -4 -

S = TA[ij+B]i]

(b) Vector inner product

(a) A vector reduction
using reduction arithmetic

processor

Fig. 1. The functional structure of a vector reduction
processor.

Z[i] = f(X[i), Z[i-1]) for2 <i<N (2

where ZZIZ[N} and Z[1]=(X[1]).

In a scalar processor, the evaluation of the vector
reduction arithmetic involves a DO loop operating on one
element at a time as specified in Eq. (2). Figure 1(a)
shows the input and output specification of a vector
reduction processor. For an example, the inner product
of two vectors can be carried out by cascading a multi-
plier with a vector reduction adder shown in Fig. 1(b).
Parallelism and pipelining are two major techniques in
achieving high performance in arithmetic processor
design. Vector arithmetic in an array processor has been
studied in [KoSt73], [ChKu75], [HwNi80], [NiHw81]. In
the pipelined evaluation of vector reduction arithmetic, a
feedback path is enough for data routing and accumula-
tion. This eliminates the use of expensive routing net-
work and excessive intermediate buffer in an SIMD array
processor.

Pipelining is made possible by subdividing the func-
tion into small segments. The data flow depends on the
rate at which new data can be fed into the pipeline. If a
function is partitioned into K segments, at most K times
speedup can be achieved by the pipeline unit. This peak
performance can be achieved, only if the input elements
are independent of each other and the input string is
sufficiently long. However, due to recurence with feed-
back inputs, the peak performance can not be achieved in
most cases.

The existence of feedback implies a certain degree of
sequentialism. Because of this sequentialism, pipelining
does not help in the direct implementation of Eq. (2).
Equation 2 must be modified in order to appeal to pipe-
lining. Improper control of the feedback around a pipe-
line can destroy the high throughput. This paper pro-




poses methodologies to construct and to schedule vector
reduction arithmetic pipelines.

A general recurence problem accepts a string of
inputs X[1], X[2],...X[N], and produces an output string
Jl% Z[2},.. Z[N}l where each Z[i] is a function of X]i} and

[i-1] throug Z{i-m] for some m [KoSt73]. In vector
reduction operations, only the final term Y = =Z[N] is
desired. Vector summation and inner product instruc-
tions have been implemented in IBM 3838 [IBMc76],
TIASC [Step75], STAR-100 [CDCo75}, CRAY-1 [Cray77|,
Cyber-205 [Kasc79], and ESL systolic processor [KuYe82|.
This paper provides a generalized pipeline model for the
evaluation of vector reduction arithmetic under different
scheduling strategies.

We shall first consider the reduction of a single vec-
tor into a scalar. The recursive reduction method
[Kuck78] is reviewed in section 2. The proposed sym-
metric vector reduction and the asymmetric vector reduc-
tion, methods are described in Sections 3 and 4. These
three methods are compared in processing time and
memory requirements. Section 5 discusses the situation
in which multiple vector instructions are reduced in an
arithmetic pipeline. A new scheduling method for multi-
ple vector inputs through a single pipeline is proposed.
Different scheduling methods are compared against the
number of vectors being processed in an interleaved
fashion.

2. RECURSIVE VECTOR REDUCTION

The recursive reduction method is restricted to vec-
tors of length equal to an integer power of 2. The N ele-
ments are divided into two halves. N/2 pairs of elements
are processed in the first iteration through the pipeline
(Fig. 2.). The intermediate result vector of N/2 elements

X

BUFFER| | N words

IN/2 words

r__l___

A
1 BUFFER BUFFER

L J

P

1
B

1
2
r : Pipeline
K
Z

Fig. 2. The hardware organization of a pipelined vector
reduction processor for implementing the recur-
sive reduction method.

145

is again divided into two halves, N/4 elements each, in
the second iteration. After log,N iterations, the final
scalar result is obtained. Large memory buffers are
needed to hold the intermediate results.

A generalized procedure based on the recursive
reduction of vector with arbitrary length N is specified
below. The input buffer X holds the input elements XLI]
through X[N] initially. It will be used later to hold the
intermediate results. The two buffers A and B are used
to hold the divided subvectors. When N is large, these
buffers will significantly increase the hardware cost and
time delays.

Algorithm-RR: Recursive Vector Reduction

Input: XIN;(
Output: Z=X[1]+... +X[N]

Procedure

M=N;
Fori =1 to |Tog2l\ﬂ do
begin
For j = 1 to |[M/2| do
begin
X[2j-1];

] = X[24]

erformX = f(Ali],Bli]) for 1<i<|M/2
Ff (M mod¢[:112) l(t ]enlg()[ I_M/l2_J l+1 /%([M}

end

Let N; be the number of elements in the X buffer
before the i-th iteration, with N, = N. The input has
IN;/2| pairs of vector elements. The following identities
are needed in later roofs.

6/2l " fori=1 to [Tog,N] (3)
and . . . .
INi/2l =LIN+27-1)/2] = [(N-271)/2] (9)

The i-th iteration requires (K-1)+ [N;/2] pipeline
cycles. The total data transfer time between X buffer
and A, B buffers equals 2(N-1) cycles, one cycle per ele-

ment. The total processing time is obtained below in
terms of the vector length N and the pipeline size K.

Theorem 1:
The recursive vector reduction method requires

T(N,K) cycles,
(K-1) + 3 M]

) logoN] + 3(N-1)

ﬁos:m

il
1

T,(N,K)

- (K-1) (5)

Proof of Theorem 1 is rather straightforward. Sum-
ming all iterations, N-1 pairs of operands are fed into the
pipeline. This method requires to use excessive buffers to
hold the intermediate results. Extra time is needed to
transfer data between memory and buffers. Two cycles
are needed in transferring a pair of elements from the X
memory to the A and B buffers. The pipeline utilization
will be low due to filling and draining overhead in each
iteration.

Two improved vector reduction methods are to be
presented, in which the excessive buffer area (A, B)
can be eliminated by using a feedback path from the out-
put to the input of the pipeline. The pipeline utilization
can be significantly improved in these new vector reduc-
tion methods.




Segments
S1 8; 835 8,85 Sg S; S5 Sg Sy

/. The
first
K,=5 o & o ) ) o :It‘;:"tbn

second

=3 iteration
K, ©c 0 o O rrn
ithil‘d .
K;=2 c o o o teration
: © The
e fourth
K,=1 © 0 0 0 o0 o o .o iteration
(The number of ——— Pipeline flow
productive ® productive segment
segments) o

unproductive segment

Fig. 3. The pattern of :Sductive segments before and
after each pipehe iteration for the symmetric
reduction in a pipeline with K=10 segments.

3. SYMMETRIC YECTOR REDUCTION

The hardware organization of a vector reduction
pipeline is shown in Fig. 8 There are K segments in the
pipeline. C is a constant input and B(t) is the feedback
input at the t-th pipeline cycle. The feedback input will
be latched if e=1. B(t-j) indicates the feedback input at
the (t-j)-th cycle. The pipeline is synchronized by a com-
mon clock. Each pipeline segment takes one cycle delay.
The memory system can supply one vector element per
cycle.

The reduction operator, f, is commutative and we
assume N >K. The N elements are partitioned into K
groups.

Y = {(P(1), P(2),....P(K)) (6)
where
P(i) = f(X[N=i + 1], X[N-K~i + 1] X[N-2K~i +1],...)
for 1<i<K {7)

If (N mod K) = 0, then P(i) is the reduction result of
N/K elements specified in (7). Otherwise, P(i) is the
reduction result of [N/K] elements for 1<i< (N mod K)
and of [N/K| elements for (N modK) <i < K. A pipe-
line segment is productive for a given clock period, if the
segment is actively involved in the computation during
the period. Otherwise the segment is called unproductive.
This implies that the result generated by an unproductive
segment will be ignored.

The number of cycles required to evaluate an input
vector, T(NK), can be divided into four phases.
T(NrK) = Tl(NrK)+Tp(N1K)+Tm(N’K)+Td(NiK) (8)
where T, is the time needed to fill up the pipeline, T, is
the time needed to partition the N elements into K
groups, T, is the time required to merge K groups into
one group, and T, is the time required to drain the pipe-
line. Since the input elements, X[i]'s, are supplied at the
rate of one element per cycle, the following results are
obtained.

T{NK) = Min{NK} (9)
To(N,K) = Max{O,N-K} (10)

The time functions T; and T,, add to N cycles. The
input elements from local memory or from the output of
inputs  will be

another pipeline.  The control

{c1,c0,e}=(0,0,0) and (c1,¢0,e)=(1,0,0) for the evaluation
of Egs. (9) and (10), respectively. After N cycles, all K
segments are productive and the i-th segment will be
operating on P(i). The merging of K groups is done by
combining two groups at a time. The number of TOups
is reduced by half after each iteration. Thus, [%ogZK']
iterations result in a single group. In this group-merging
phase, we propose a Symmetric Reduction {SR) method.
All groups have to pass through the pipeline once in each
iteration. Groups at two productive segments are merged
into a new group as demonstrated in Fig. 8. The pro-
ductive segments are indicated by solid dots.

Figure 8.shows the pattern of productive segments in
each iteration for a pipeline of 10 segments, where K;
denote the number of productive segments after the i-th
iteration and Ky=K. The first pipeline segment always
processes group P(1). The distance between two produc-
tive segments is always 2! after the i-th iteration. The
control sequence is illustrated below for merging K'
groups in a pipeline with K’ < K. The following func-
tion will be used to indicate whether a given integer is
even or odd.

if x is even

if X is odd. (11)

X(i]

B(t) e ~[LATCH]

c
¥

’ _
MUX

le— O

cl - MUX

[

Z = Z|N]

INPUT PAIR
o C ,Xfj
1| C ,B(t))
0 | B(t) ,XI[i]
1 | B(t) ,B(t))

N -N-1is

Fig. 4. The hardware organization of a pipelined vector
reduction processor with K segments.

Algorithm-GM: Symmetric Vector Reduction
Input: K’ productive segments.
Output: K' groups are merged into one group
with time delay Tgg(K').
Procedure:




t=0; "
for i=1 to [-]ogZKTI do
begin
if K' < K then {t=t+1 to t=t+K-K', set
set (CIYCO’e):(OYO)O)}7
if (K’-l)mod(2’"}‘<)‘ > 0 then {for t=t+1 to

t=t+(K’'-1)mod(2"""),

set {c1,c0,e)=0,0,0,)};
G=0 g :
for j=1to [K' /27T~ e(K! /27)) do
begin

for t=t+1, set (c1,c0,e)=(G,G,G');
if i>1 then {for t=t+1 to t=t+2°-L],
, set (c1,¢0,e)=(0,0,0)};

end;

for t=t+1, set {c1,c0,e)=(E,1,0)
end;
Tsr(K')=t;

nd.

If N<K, then K’ =N; ctherwise, K’ =K. The above
algorithm can be applied to arbitrary value of N and
Tsp(N,K)=Tgg(K'). Each iteration requires K cycles,
plus a few cycles in the latch if the number of productive
segments is odd. Table 2(a} shows the contents of succes-
sive pipeline segments during the merging of six groups
using the SR method. The following lemmas are used in
evaluating the time required in the group-merging phase.
Lemma 1 can be proved by induction,

Table 1.
Reduction Arithmetic

Representative Vector Reduction Operations

Expression
N
s =y X
i=1
S = max{Xi, j:l,N}
S = min{X, i=1,N}

Vector Summation

Search for Maxima

Search for Minima

N
Vector Chain Product S =1I x;
i=]
N
Vector Inner Product S =Y ab,
i=1
N
Mean Value M=% X/N

1
—

Lemma 1:
The number of productive segments after the i-th
iteration equals

K; = [K;y/2] = [K/2]
Lemma 2:

If K is not an integer power of 2, then

(12)

flogK1-1 ogs(K+1]l-1
. 2weK)- Y 2te((K+1)) =1 (13)
i=0 i=0

Proof:

Since K is not a power of 2, K can be written as
K=2"d, where m>0 and d is an odd number. Thus,
e(K)=0 for i<m, e(K,)=1, e((K+1)ij]=l for i>m,
e((K+1),)=0, and’(K+1),, 4, =[(d+1)/2 = [4/21=K,,
From Lemma 1, we have K;=(K+1); for i>m. Since

147

is not an integer power of 2, this implies that
logoK] =flogy(K +1)]. Equation (13) is thus proved.
Q.ED.

Theorem 2
In the group-merging phase of the symmetric reduc-
tion method, the total time delay equals

_sK)
Tsr(NHK) = Tg(N) + (K-N)- fog,N],
where g(M) a M:-[log,M] + gllosMl _ s

Proof:
. Lo . 9
n(!%’)i( a:ﬁpl.ymg mathematical induction and Lemma 2,

Y, 2ve(K)=2"8K, if K#2X for some k. If K, ,

iIN>K

IN<k (14

i=0

is even, then K cycles are needed in the i-th iteration.
Otherwise, it takes extra 2! cycles to merge with a
dummy segment as stated in Algorithm-GM. If N<K,
each iteration requires (K-N) additional cycles to cover
the delay in dummy segments. Since it takes [log,N]
iterations, Eq. 14 is thus proved.

Q.E.D.

Once all groups are merged into one group, K cycles
are needed to drain the pipeline in the last phase. The
draining delay equals

Tcl(NiK) =K (15)

4. ASYMMETRIC VECTOR REDUCTION

The symmetric reduction method demands extra
cycles to complete the operation as shown in Table 2(a).
In the second iteration, three groups are merged into two
groups. But it takes four more cycles to put P(1) at the
first pipeline segment. We describe below an Asymmetric
Reduction (AR) method, which eliminates those unneces-
sary delays as illustrated in Table 2(b).

In this AR method, the reduction pipeline needs to
record the state of each segment. Denote the state of the
latch as S, and the states of pipeline segments as
S1,Sg,--,Sk. S;=1 indicates that the i-th segment is pro-
ductive; otherwise, it is 0. The state of the pipeline is
expressed by (So,Sl,...,S}%). Initially, we have S,=0 and

if

S;=8y=" - =S¢=1, < N, and §;=8,= - - - =§y=1
and Sy4y=:-: =Sg=0, if K>N. The group-merging
operation is terminated when S;=1 and S,= - - - =S =0.

The control signals are determined by the current
states of Sy, S|, and Si. Table & shows the partial state
transition table and the control sequence for the fast
reduction method. The situation of having both S, and
Sy equal to 1 will never occur. Merge (C,C) means that
two dummy inputs are inserted in the pipeline. This will
result in an unproductive segment. The next state is
determined by the present state as follows:

So =Sy © Sk
S; = S¢Sk (16)
S; =S4 for2 <i<K
The control outputs are determined by
cl =¢c0 = SOSK
e = §OSK (17)

The above equations can be easily modified to cover
three other phases.  We define a special function
h(M) & M:[log,M] —- 2MoeMl 4 M 4o be used in the fol-
lowing theorem.




Theorem 3:

In a pipeline with K segments, the number of cycles
requires in the group-merging phase of the asymmetric
reduction method equals

_ b(K) if N> K
TarlNE) = ly(N) + (K-N)Mog,NT  if N < K

In the AR method, the distance between any two
productive segments is no longer a constant. But the dis-
tance between the first and the second productive seg-
ment is still 27! before the i-th iteration. Thus, if K is
odd, it takes K~2'"! cycles in the i-th iteration; otherwise,
it takes K cycles. Equation 18 thus can be proved simi-
larly to the proof of Theorem 2.

Table 4 shows the total number of cycles required for
group-merging for K=1 to 16 and under the SR and the
AR methods, respectively. It also shows the number of

Table 4.

(18)

Number of cycles required in each iteration of
the group merging phase for different pipeline

sizes.
i=1 [ i=2 | =3 | =4 T TK)
K — — . e e e
PS SR AR|PS SR AR|PS SR AR[PS SR ARlSR!AR
1 Tol o
o e — - —
RIITETT S =g~ "o~
3] 2T 412171 T3T3] L7175 7
41274 4T 4y dd (_‘8[’:{3~
IR ol A o S o 18] 0]
637 8176 o s T 61 8 ) M0, 16 7]
8 SN 0 0 A A L2220
(814 8 8T27 878 "1 8 8, T2 a4
T 5 M0 "8y 5 M7 e s Te T T T e a5 ]
o] 5 10116, 3 T120 8 1o 1a T 67171 ThoT 10 Tap Mg
i e e T Bt m T e I 8T 7 7 T 1T im a1 5o ]
2067112 181 8 M2 o) % 16 87 0 [ ha 7 12 52 [ 44|
13 7 114 12 4 1_5_ 11, 2 13 13 1 13 113 | 55 49
DIEaPTrhrut AbvinuirAnrRaubris he whl
(T8 16114 T 15 157172 1718 Tus |1 | a5 Tas 611759 ]
16 8,16116r4 16|18|2|16116|l|l116[G4|64

Table 2. Contents of pipeline segments (K=6) of each
cycle during the group merging phase.
1 2 3 4 5 6
1 3 4 [ 5
5-6 1 2 3 4
i=1 5-6 1 2 3
3-4 5-6 1 2
3-4 5-6 1
1-2 3-4 5-6
1-2 3-4 5-6
1-2 3-4
1-2 3-4
3-6 1-2
1=2 36 12
3-6
3-6
1-2 3-6
1-2 3-6
1-2
. 1-2
1=3 1-9
1-2
1-6
(a) Symmetric Reduction (SR) method.
1 2 3 4 5 6
1 2 3 4 5
5-6 1 2 3 4
. 5-6 | 1 2 3
=1y 56 1 [ 2
34 | 56 1
1-2 3-4 5-6
1-2 3-4 5-6
., 1-2 3-4
1=2 i-2 34
3-6 1-2
3-6 1-2
3-6
. 3-6
1=3 36
3-6
1-6
(b) Asymmetric Reduction (AR) method.
Table 3.  Partial state transition table and control out-
put of the sequence controller for the asym-
metric reduction method.
PRESENT STATE | NEXT STAGE | OUTPUT COMMENT
So S, Sk Sy S, cl ¢0 e
1] 0 0 0 [ 0 0 0 | merge (C,C)
0 0 1 1 0 0 0 1 | merge (C,C), latch B(t)
] 1 0 0 1] 0 0 0 [ merge(C,C)
0 1 1 1 0 0 0 1 | merge (C,C), latch B{t)
1 1] 0 1 0 [ 0 0 | merge (C,C)
1 0 1 0 1 1 1 0 | merge (B(t),B(t-}))
i 1 0 X X X X X | never occur
1 1 1 X X X X X | never occur

PS: Productive segements after the i-th iteration
SR: Symmetric reduction method
AR: Fast reduction method

cycles required and the number of productive segments in
each iteration. Note that the number of cycles required
in the SR method is at least K for each iteration;
whereas, it is at most K for the AR method. flog,N]
Precisely, the SR method requires 2(2l €2 —Kz
more cycles than the AR method, if N> K. If K =
for some k, the total processing time will be the same for
both methods. In the worst case of K=2k+1, the SR
method requires 2{K—2) more cycles than the AR method.
The number of pipeline segments, K, in a typical vector
processor is in the range (2,15). Thus, when N is much
greater than K, the difference in processing time between
the SR method and the AR method is at most 2(K-2),
which is insignificant. The following result indicates the
superiority of the proposed SR and AR methods over the
recursive reduction method described in Kuck’s book.

Theorem 4:

If N >> K, the recursive reduction method requires
3N+0(K logy N) pipeline cycles; whereas, the SR or AR
method each requires N+0(K log, K) pipeline cycles to
complete. The saving in vector reduction time in these
two proposed methods is 2N +0(K-(log,N~log,K)).

Theorem 4 summarizes the results obtained in
Theorems 1 to 3. This implies that the improvement
made by the proposed methods increases linearly with the




vector length. If N is smaller than K, all three methods
require approximately 0(Klog,IN) cycles.

A significant advantage of the proposed SR and AR
methods over the recursive reduction method lies in the
saving of N memory cells (in A and B buffers) for holding
the intermediate results. hen N is large, this saving is
considered significant. This implies also the saving of 2N
pipeline cycles for transferring the vector operands from
the X memory (usually in the main memory), to the A
and B buffers (usually in the cache). All these savings in
time and memory make the proposed methods attractive
for practical implementation in vector arithmetic proces-
sors.

5. MULTIPLE VECTOR PROCESSING
Several vector inputs may independently request the
use of a vector reduction pipeline. For example, to find
one row of a product matrix from the multiplication of
two matrices involves multiple vector inputs and multiple
scalar outputs. The scheduling of multiple vector inputs
in a single reduction pipeline is studied below. Assuming
M independent vectors of N elements each, the scalar
result for the j-th vector is defined by
Y(jl =X, X[5,2,. X[,N]) for1 <j <M (19)

The memory is assumed to supply one element per
pipeline cycle. The simplest method to evaluate Eq. (19
1s to process one vector at a time. The total sequentia
processing time will be M-T(N,K). With careful control,
the draining of the last vector may overlap with the
filling of the pipeline with the next vector input. Thus,
the above computation time can be reduced to be
M:T(N,K)-(M—-1)-T (N,K). Even with this overlapped
operations between vectors, the pipeline is still not fully
utilized during the group-merging phase. A more efficient
method is to interleave the processing of the multiple vec-

tor inputs.

Consider the case of M=K first. For interleaved
processing, the memory will provide X]l,1],
X[2,1],...X[M,1] at the first M cycles, X|1,2|,

X[2,2],....X[M,2] at the next M cycles, and so on. After
the first M cycles, the i-th segment will operate with
X[M+1-i,1] for 1<i<K. Another M cycles later, the i-th
segment will operate with X[M+1-i] and X[M+1-1,2].
After M:N cycles, the i-th segment will operate wit

XM+1-i,1]), XM+1-,2],..., and X[M+1-iN]. At the
end, K=M more cycles are needed to drain the pipeline.
The total processing time will be K(N+1). This
approach is considerably faster than processing the vec-
tors sequentially, because no merging phase is needed.
Pipeline segments are unproductive only at the filling up
phase and at the draining phase. The idea of interleaved
processing is to have all pipeline segments shared by as
many vectors as possible.

It M>K, not all M vectors can be allocated with
pipeline segments. In order to store the remaining M-K
vectors, M-K dummy segments are introduced as shown
in Fig. 5. Since the number of input vectors varies. the
length of the dummy segment buffer, D, is adjustable by
program control. Virtually, each vector is assigned with
one segment for the arithmetic reduction. With D
dummy segments inserted, the processor can be viewed as
an M-segment pipe. The ftotal processing time will
become M(N +1).

If M<K, some vectors may be allocated with more
than one segments, and different vectors may use
different numbers of segments. In this case, the control
of the pipeline will be very difficult because the procedure
of merging groups for each vector will be input depen-

149

FIFO
BUFFER

1
2
3
DUMMY
SEGMENT I
BUFFER D
. K

¥

Fig. 5. The hardware organization of a pipelined vector
reduction processor with a dummy segment buffer
and a FIFO buffer for multiple vector processing.

dent. Since K is not always an integer multiple of M, one
way to allocate vectors with an equal number of segments
is to leave some segments idle which results in low pipe-
line utilization. With the help of a dummy segment
buffer, the pipeline can be fully utilized by choosing
D = [K/MIM-K.

Let Q = [K/M]=(D+K)/M be the number of seg-
ments allocated to each vector including the dummy seg-
ments. By feeding the elements into the pipeline in an
interleaved fashion all D+K segments will be occupied by
groups of vectors in M:N cycles. Each vector has Q
groups in Q segments. Since Q>1, a group-merging
phase is needed. In Fig. 4, a latch was used to hold the
group to be merged with the next group. For multiple
vector processing, each vector needs its own latch. Thus,
a FIFO latch is provided in Fig. 5 for this purpose.

Both the symmetric reduction and the asymmetric
reduction method can be used during the group-merging
phase. However, the control sequence needs to be
modified. The control sequence for each vector is the
same as that of single vector processing. The number of
iterations will be [log,Q] during the group-merging phase.
Since M vectors are processed in an interleaved fashion,
each control output must be repeated M times, one for
each input vector. The size of the FIFO latch is chosen
to be K-1. The total processing time becomes
M:N+QT_ (N, Q)+K. The quantity T, (N,Q) depends
on the reduction method to be used. It was evaluated in
Theorem 2 and Theorem 3 for the SR and AR methods
respectively.

If the number of required vectors becomes large, the
dummy segment buffer may be cost prohibitive. In this
case, the vector inputs must be partitioned such that one
block of vectors is processed at a time according to the
above procedure. In multiple vector processing, the prob-
lem of low pipeline utilization due to group merging can
be essentially eliminated.

6. CONCLUSIONS
The main contributions in this paper are summar-
ized below in three areas:




® Two vector reduction methods have been proposed
using an arithmetic pipeline with feedback connec-
tions. These methods eliminate the use of large
buffer memory for holding intermediate results.

¢ The new vector reduction methods result in
significant time saving of 2N +0(K-log,N-K-log,K)
pipeline cycles and in memory saving of N memory
words for intermediate results.

® An interleaved method is proposed for reducing
multiple vectors into multiple scalars simultane-
ously. The pipeline can be fully utilized with max-
imum speedup in this multiple vector reduction
scheme.

References

[ChKu75] Chen, S.C., and Kuck, D.J., “Time and parallel
processing bounds for linear recurrence sys-
tems,” IEEE Trans. on Computers, Vol. C-24,
July 1975, pp. 701,717.

[CDCo75] Control Data Corp., Control Data STAR-100
Computer Hardware Reference Manual, Publi-
cation No. 60256000, 1975.

[Cray77] Cray Research Inc., Cray-1 Computer System
Hardware Reference Manual, Publication No.
2240004, Minresota, 1977.

{Hwan79] Hwang, K., Computer Arithmelic: Principles,
Architecture, and Designs, Wiley & Sons, Inc.,
New York, N.Y., 1979.

[HwNi80] Hwang, K., and Ni, L.M., “Resource Optimiza-
tion of a Parallel Computer for Multiple Vector
Processing,” IEEE Trans. Computers, Vol. C-
29, No. 9, Sept. 1980, pp. 831,836,

[AwSN81]Hwang, K., Su, S.P., and Ni, LM., “Vector
computer architecture and processing tech-
niques,” Advances fn Computers, Vol. 20, M.
Yovits (Ed.), Academic Press, Inc., 1981, pp.
115-197.

[HwCh82) Hwang, K., and Cheng, Y.H., ‘“Partitioned

150

Matrix Algorithms for VLSI Arithmetic Sys-
tems,” IEEE Trans. Computers, Vol. C-31, No.
12, Dec. 1982, pp. 1215-1224.

[HwSu83] Hwang, K., and Su, S.P., “Modeling and
scheduling of multiple-pipeline vector super-
computers,” TR-EE 83-2, School of E.E., Pur-
due University, Lafayette, Indiana, Jan. 1983.

[HwBr83] Hwang, K., and Briggs, F.A., Parallel Computer

Architecture, McGraw-Hill Book Co., New

York, N.Y. (in press to appar).

IBM Inc., IBM 3838 Array Processor Func-

tional Characteristics, No. 6A24-36390, file no.

S5370-08, IBM Corp., Endicott, N.Y., October

1976.

Kascie, M.J., “Vector Processing on the Cyber

200,” in Infotech State of the Art Report,

‘‘Supercomputer,” Infotech Int. Ltd., Maiden-

head, England, 1979.

Kogge, P.M., and Stone, H.S., “A parallel algo-

rithm for the efficient solution of a general class

of recurrence equations,” IEEE Trans. on Com-

puters, Vol. C-22, August 1973, pp. 786-793.

Kogge, P.M., The Architecture of Pipelined

Computers,” McGraw-Hill Book Co., 1981, pp.

139-140.

Kuck, D.J., The Structure of Computers and

Computations, Vol. 1, John Wiley & Sons, Inc.,

1978, pp. 255-259.

[KuYe82] Kulkarni, A.V., and Yen, D.W.L., “Systolic
processing and an implementation for signal
and image processing,” IEEE Trans. on Com-
puters, Vol. C-31, October 1982, pp. 1000-1009,

(IBMc76]

[Kase79)

[KoSt73]

[Kogg81]

[Kuck76]

[NiHw81] Ni, L.M., and Hwang, K., “Performance Model-
ing of Shared-Resource Array Processors,”
IEEE Trans. Software Engineering, Vol. SE-7,
No. 4, July 1981, pp. 386-394.

[Step75] Stephenson, C.M., “Case study of the pipelined

arithmetic unit for the TI Advanced Scientific
Computer,” Proc. 9rd Ann. Symp. Computer
Arith., 1975, pp. 168-173,




