MATRIX MULTIPLICATION ON LUCAS

Lennart Ohlsson
Bertil Svensson

Department of Computer Engineering
University of Lund

P.0.
220 07

Abstract

Multiplication of two N by N matrices involves
N“ multiplications of elements. The task allows a
targe amount of parallelism to be utilized, indica-
ting that it can be efficiently executed on a pa-
rallel computer. This paper describes how matrix
multiplication is performed on LUCAS, an SIMD type
parallel processor with bit-serial processing ele-
ments. The interconnection network is of Perfect
Shuffle/Exchange type. The case of study is when
the number of processing elements is between N2 and
N3, The algorithm presented can be applied to any
computer with the same interconnection structure.
Formulas showing how the execution time depends on
data ltength and matrix size are presented together
with measured values from execution on LUCAS.

LUCAS (Lund University Content Addressable
System) is a machine of SIMD type using bit-serial
processing elements (PEs). |t was designed and im-
plemented at the Department of Computer Engineering
at the University of Lund [Sve]. The main purpose
of the project was to provide a research tool for
investigation of applicability of this kind of com-
puter organization. As part of the project a high le-
vel language, Pascal/L, has been developed [Ferni],
and LUCAS is presently being evaluated in a number
of application areas [Krull, [Kru2], [oh1], [Svel.

A critical detail in the design of any SIMD
processor is the interconnection network between
memory units and processing eslements (PEs). Per-
fect Shuffle/Exchange is generally regarded as one
of the most useful structures. For some algorithms
it is the optimal one. Perfect Shuffle/Exchange
has been chosen as general purpose interconnection
network on LUCAS.

We have studied multiplication of N by N ma-
trices on LUCAS for different values of N. Of spe-
cial interest is the case when the number of PEE
is large compared to the matrix size (between N
and N° PEs). In this case very large gains in exe-
cution time can be obtained.

In the next section we describe those proper-
ties of LUCAS that are relevant to the solution of
the problem; i.e. the processing elements and the
interconnection structure.

In section 3 we give a matrix multiplication
algorithm for the case when the number of PEs is

CH1892-9/83/0000/0116301.00 © 1983 IEEE

Box 725
LUND, SWEDEN

equal to Nz. This is then generalized in section 4
to M*N? PEs, 1<M<N and M is a power of two.

2. The LUCAS Processor Array

Associative paralle] processors have two cha-
racteristic features: (1) Memory cells are acces-
sed according to their contents, rather than by
fixed addresses, and (2) data is processed in pa-
rallel in a selected subset of memory words [Fos].

The architecture of LUCAS is shown in Figure
1. It consists of three parts: a Host system, a
Control Unit and an Associative Array.

Data resides in the Associative Array, which
consists of 128 identical processing elements. The
working mode is bit-serial word-parallel, which
means that one bit of each word is processed at
the same time. A number of consecutive bitslices
is called a field. A field contains a vector of
data-items, and the location of a specific data-
item is uniquely given by its field address and
the memory word number, called index. E.g. A(i)
refers to the data~item in field A, word number i.

Instructions

HOST CONTROL UNIT
Status

bit-slice control
adcress

ASSOCIATIVE ARRAY

Memory word ! ALY
data .

interconnection
Network

[I
L _

Figure 1. LUCAS

A PE is shown in Figure 2. It consists of an
arithmetic logic unit (ALU), capable of performing
32 different functions on five one-bit inputs. The
PE has two 1-bit registers, T(tag), R(result), ¢
{carry) and X(auxilliary). When writing into the
memory, data from the R register is used. The out-
put of the Tag register is connected to the write
control logic of the associatied memory word. It is
used for activation control by inhibiting change
in the memory of those PEs where T is zero.

control

Memory word :}——~

From other
memory
words

Figure 2. A processing element in LUCAS

All the one-bit outputs from the memory words
are gathered on & 128-bit wide bus, accessible from
all PEs over an interconnection network. Through a
strapping area for each PE, eight of these are cho-
sen. This choice defines the topology of the Asso-
ciative Array. One of the inputs is fixed to be the
output of the PEs own memory word.

An interconnection structure that provides
generality, in the sense that arbitrary permuta-
tions of the 128-bit vector can be performed in a
small number of steps, is the Perfect Shuffle/Ex-
change network [Ston], [Park]. It occupies two of
the seven available inputs of each PE, one for the
Perfect Shuffle connection and one for the Perfect
Shuffle + Exchange connection. The effects of Per-
fect Shuffle (PS) and Perfect Shuffle + Exchange
(XS) are shown in Figure 3.

7
e
~—<

VAN Y

Figure 3. Perfect Shuffte (PS) and Perfect
Shuffle + Exchange (XS)

The Host, which is interchangeable, is an or-
dinary mini- or microcomputer. At present a 280 ba-
sed system is used. During execution it sends in-
structions to the Control Unit and handles input
and output of data to the Associative Array. The
Control Unit executes the instructions in the form
if microprograms, sending the same microinstruc-
tions to all the PEs in the Associative Array.

3. Matrix multiplication algorithm, N2 PEs

We now present an algorithm for matrix multi-
plication on a LUCAS-type machine. This section is
organized as follows: First we make some basic as-
sumptions and definitions. Then we study the ef=-
fects of transferring a matrix over the intercon-
nection network of LUCAS. Next comes a detailed
description of the algorithm, which can be divided
into four distinct phases: Pre-alignment, Multi-
plication, Summation and Post-alignment. Finally

we give a short summary of the algorithm in a form
that is suitable for the coming generalization in
section 4,

3.1 Basic assumptions and definitions

Throughout this section we assume that the
matrices to be multiplied, A and B, both are of
size N by N.elements, where N=2" for an integer n.
We further assume that the number of PEs is equal
to N2 (LUCAS, with its 128 PEs does not suit into
this scheme).

When we illustrate different steps of the al-
gorithm, we use small values of n -~ typically 2, 3
or 4 - without explicitly indicating each time
that a generalization to any n can be made.

We assume that the matrices A and B are sto-
red in two fields of the associative array in row-
major order, and that the result matrix, C, also
is to be stored in this way (Figure ka). Element
ajs: is then located in field A, memory word i*N+j.
We'will refer to this location as A(i,]) or expli-
citly A<In_1ln_2...l1han_1Jn_2...J]J0>, where
<|n—1'n-2"'|l]0> and (Jn_]Jn_z...
binary representations of i and j

Jpdg> are the

respectively.

We can now state the initial conditions as:

Alk,i)=a B(i,j)=bij

The elements of C are computed from the elements
of A and B according to the formula:

N-1
c =X a . *b.
kj . ki ij
i oo i
We want to obtain:
C(k,j)=c, .

(k,j) K]
200 200 220
291 220 200
202 201 221
%03 221 201
%0 %02 %22
1 %22 %02
Ry 203 423
°13 °u 03
220 ¥:0 330
&2t 330 210
322 2 i
223 a3 21
%30 2. 21,
23 232 2
32 S 33
°33 233 23
A PSiA) XS (A}

Figure 4. A Matrix A stored in row-major order (a)
and the effects of the PS and XS opera-
tions (b).

117

i

1

i

i

I

1
Py

Requiring that the matrices are to be stored
in row-major order is no limitation. This is beca-
use working with matrices stored in column-major
means, if we ''think'' row-major, to work with trans-
posed matrices. Since:

T_.T
A*B=C <=> BT*A =C
we only need to change order of A and B in the co-
lumn-major case.

3.2 Shuffling a matrix

Applying the operators PS and XS to a matrix:

%00 %01 %02 203
A - o %11 %12 %3
%20 21 22 %23

730 %3 32 %33

stored in row-major form, yields the following re-
sult matrices (see Figure 4b):
.

%00 %20 %01 21
a a a a
pS(A) = aoz a22 a03 a23
10 %30 11 3
a a a a
P12 %32 %3 933
- ~
320 %00 %21 %o
a a a a
XS () = azz a02 a23 ao3
30 %10 %31 f1y
932 @ 833 93

As shown by Stone, logZN perfect shuffles of
a matrix stored in this form, results in the matrix
being transposed [Ston]. (In the case illustrated:
PS2(A)=AT.) This can be sheown in the following way:

Consider an arbitrary element a... It is ini-
tially stored in memory word <'n—|'n-2""1'0Jn~1

jn—2"'j1j0>' The PS operator brings this element
to word <|n_2...|110Jn_]...J1J0|n_]>. After n per-

fect shuffles, element aij will arrive at word

<Jn_]Jn_2...j]J0ln_1In_z...l1i0>, i.e. the matrix
A is transposed:
Ps"(a) = A"

Similarly, the XS operator brings the element a,.
to word <in-2"'ili0jn-1"'jﬂj0i8—1>’ where i{
denotes the binary complement of F1.

Transposition of matrices is one operation
that is required in order to perform efficient ma-
trix multiplication on LUCAS. Other kinds of mat-
rix transformations are also needed in order to
align the elements for multiplication. We will
next turn our attention to the nature of these
alignments, which constitute the first phase of
the algorithm.

3.3 Pre-alignment

With N2 processors we have the potential to
simul taneously perform all multiplications requi-
red to compute an entire row of the result matrix.
To compute row number k of C, row number k of A(k)
has to be aligned with every column of B. Let A
denote the matrix that has as its columns, row
number k of A. This can be expressed:

A(k)(i,j) =a

i
Formation of A(k) from A means broadcgsting
of N elements (row number k of A) to all N“ memory
words according to a certain pattern,

We define two additional operators that can
be applied to a field of the memory (the result
field need not be the same as the source field).

Broadcast Upper BU: Words with even indices
are loaded using the PS input; words with odd in-
dices are loaded using the XS input,

Broadcast Lower BL: Words with even indices
are loaded using the XS input; words with odd in-
dices are loaded using the PS input.

|
Yyl
NN

Figure 5. Broadcast Upper (BU) and Broadcast
Lower (BL).

BU and BL are illustrated in Figure 5. The
result of BU is that the contents of the upper
half of the memory is spread out to all words.
Looking at the binary representation of the index
we see that BU transfers the contents of word num-
ber <0kn—2"'k]k0in-lin-Z"'ili0> to words <kn_2

"'klkOIn-1|n-2"'l1|0x>’ where x takes the values
0 and 1. n successive applications of BU will

spread the contents of word number <00..00 L
n-1ipepe e Tyignx
..xx>, That is, n BUs spread row 0 to all columns:

Ih-geeeiqig> to words number <i

%00 %00 %00 oo
a a a a
01
BU"(A) = . a01 a01 ao1 NG
02 %02 %02 202
%03 %03 %p3 %03

Similarly, the result of BL is that the con-
tents in the lower half of the memory is spread
out to all words, and n applications of BL will

s?re?? row number N-1 to all columns, i.e. form

From this it should be clear that the follo-
wing sequence of operations will spread any row
k = <k k k,k.> of A to all columns, i.e. it
n-1.n-2" 170
forms (k)
for 1:=n-1 downto 0 do

if k]=0 then BU else BL;

Example: Row number <1011> is broadcast to all co-
lTumns by the sequence BL,BU,BL,BL.

The formation of all A(k), k=0,1,...,N=-1, from
A can be described by the tree structure of Figure

Ihe number of broadcasts necessary to form all
A(k
n-1 K
2+b+. +N/2+N = X N/27 = 2(N-1)
k=0

Figure 6. The pre-alignment tree.

3.4 Multiplication

The matrices A(k), formed by the above proce-
dure, are now multiplied, element by element, with
the matrix B. We call the resulting matrices C(k).
Their respective elements are:

(k)

C(k)(,J)—A (i,))*B(i,j) =a , *b..

i ij

3.5 Summation and Post-alignment

Element ¢ ; of the result matrix can be ob-
tained from C(ki by summing all elements of column
j- In other words, the columnsums of C k) are the
elements of row k of C. The computation of these
forms the third step of the algorithm.

The interconnection network can be used to
perform the summation efficiently. We introduce
the operation ADDShuffle (ADDS) of a field F:

ADDS: PS(F) + XS(F)
The result of ADDS is that the contents of
words with indices <Xln_2...l1IOJn_]Jn_2J1J0>

(x=0,1) are added and the results are put in words

>. n successive

number NLINCEEEY PR Y NN FPEPRN Pt
applications of ADDS to a matrix stored in F yield
all column-sums of the matrix, since the contents

of all words <xx..xxjn_1jn_2...j1j0> are added.

Thus, n successive ADDS operations on C ()
yield the desired result. The N sums are obtained

S ie.
at positions number <i ne1in-2" 1loxx LXXD,

each column contains N copies of a sum. Column j
of ADDSn(C(k)) contains N copies of element ij of
the result matrix C:

ok “1k “2k C3k
C C C C
n o S0k Sk 2k 3k
ADDS (C(k)) T ¢ c c c
ok 1k “2x 3k
ok 1k 2k “3k

A result matrix, C, can be formed from all
ADDS™(C (,y), k=0,1...,N-1, by taking as row k of
C, row number k of ADDS (C(k)):

N-1
(J) ADDS (c(k) k,J) =i§0C(k)(i:j)=Cjk

It can be seen that the desired result matrix is
the transpose of this matrix and can be obtained
by n Perfect Shuffles. This is the post-alignment
step.

The formation of C can be described as a mer-
ge of different rows of all ADDSM(C k))' This pro-
cess of merging parts from different results can
be started earlier, since in the computation of
each ADDS”(C(k)) there is redundancy present. Ma-
trix Cyy contains the information needed to com-
pute row number k of C. The sum of column <j _
jn-2"'j1j0> needs to be preserved at word number
<jn_1jn-2'"jljokn-1kn-2"'k1k0> only. This is
achieved by, at step number } (l=n-1, ,0) of the
addition, storing the result in the even word only
if k‘-O, and in the odd word only if k This
gives room for two simultaneous ADDShu%fles, wor -
king on different fields - i.e. on different C
but using a common result field. We call this Ap%
ration ADDMerge (ADDM(FO,F1)):

ADDMerge: inwords with even indices do: ADDS (F0)
inwords with odd indices do: ADDS{F1)
The process of forming C from all C(x) can be

described by the tree shown in Figure 7. The num-
ber of ADDM-operations in this tree is N-1.

i
i

Figure 7. Summation and post-alignment

3.6 Review

The algorithm starts with matrices stored as
follows:

A<kn—1kn_2"'k1k0'n—1'n—Z""1'0> =a;
BTy ez Ty ol papdnege -y dg> = by
It then produces N different matrices A(k) such

that:

x)_. . S
<Eoqbnoge Ty igd oy dqage oo ddp” =8

These are all multiplied by B to form C(k):

C(k)<ln_lln_2...lIIOJn_1Jn_2...J1J0>
= A *by;

The different C k) are then summed over i and at
the same time merged to only one matrix:

C<Jn-1jn-2'"JIJOkn-ikn-Z"'k1k0>

N-1
= X a, .*b,. = Ci

120 ki ij K j

After n perfect shuffles we finally obtain:

0In-1dn-27"31907 = %

C<kn_1kn_2...k‘k
which is the desired result.

L. Matrix multiplication algorithm, M*NZPEs

in this section we will show how the algo~-
rithm described above can be modified to reduce
the number of multiplications by a factor of M,
where M=2" and 0<m<n, if we have MxN® PEs avai-
lable. B

The idea is that M different A(k) now can be
stored in the same field. |f the matrix B is brcad-

cast and then properly aligned, we can produce M
different C()) simultaneously. The elements of C
are then computed by a number of ADDMerge_opera-
tions. The post-alignment, which in the N° case
was a simple transposition, is here more complica-
ted. However, it is possible to do the permutation
with 2% (2n+m) passes through the Perfect Shuffle/
Exchange network. The algorithm tree is shown in
Figure 8.

g
[.
i
) b T

A0

Post-
alignment

T

¢

Figure 8. Pre-alignment, summation and postzalign-
ment in the general case with MxN“ PEs.
Trees are drawn for m=2, i.e. M=k,

In this case the initial conditions are:

A<0...0kn_1kn_2...klkoln_1|n_2...!]|0>
Y
B<0...0 >

"n-1'n-20 " odn-1dn-27 e

i

The number of initial zeros are m. As we want
to work with full parallelity we start off by
spreading A and B with m BU-operations each:

A<kn—1kn—2"‘k1k0'n—1ln-Z""l'OXX"'xx>
= A
B<[n-1'n—2' “hodnotdpagr e dgxXe s xx>

We noy only need to produce N/M different ma-

trices ALKk) (k=0,M..N-M). This is done by n-T‘)
broadcasts and m Perfect Shuffles for each A%/,
They satisfy:

A(kxd

n-1 n-

kn_m_]..k0>

'n-27 T todp-tdn-2 0y dy

A

They are then multiplied by BUm(B) to form C(k):

..J1J0

Each C K contains information not only of row k
of C, éu% also of rows k+1,k+2,...,k+M-1. After
ADDMerge in n-m steps we only have one C matrix
field. m additional ADDShuffles yield the elements
of C, m times duplicated;

C<j k k. k

n-19n-2"""J1d0%p-m-1-"""g

C O XXD> = ij

he1tt"

kn-m‘Oxx'

As can be seen, the final permutation of the
C elements is not as straightforward as in the N
case. We want to reach a state where:

€<00...00k k okok

n-1n-2° I >

0dn-17n-2--"11Jg
This permutation can not be reached in logzP passes
through the Perfect Shuffle/Exchange Network, where
P is the number of PEs. However, in log,P passes
it is possible to reach an intermediate state,
from which the desired result can be obtained in
another log,P passes. For the sake of readability
we only show it in the special case when n=4 and
m=2:

C<J3J2J1J0k]k0k3kzxx> = ij

n the first 10 (logyP) passes C is permuted
to:
. TN e . . - .

c<00(k3()J])(kzqtuo)klk0J3J2J1J0> =
where (¥)is addition modulc 2.
From this it is possible to reach:

C<00k3k2k1k0J3J2J1J0> = ckj

5. Timing
On a bit-serial machine like LUCAS the sum-
mation and alignment operations execute in a time
that is proportional to the field size, i.e. the
number of data-bifs, b. Multiplication time is
proportional to b“. Lower bounds for execution ti-
mes, in number of clockcycles, for the basic ope-

121

rations used for matrix multiplication are listed
bejow. Measured execution times are somewhat lar-
ger, since initializing and controlling the opera-
tions take some time.

Shuffle: 2b
Broadcast: 3b
ADDShuffle: 3b
ADDMerge: 5b
Multiplication: 3b2

This gives us the followin
trix multiplication with N

% execution time for ma-
PEs:

Pre-alignment: 2(N-1)*3b
Multiplication: N3b2
Summation: (N-1)*5b
Post-alignment: nx2b

In the case with MNZ PEs we have:

Pre-alignment:

2%m*3b + 2(N/M=-1)*3b +
m* (N/M) *x2b

Multiplication: (N/M}*3b2
Summation: (N/M=1)%5b + m*3b
Post-atignment: 2*(2n+m)*2b

The presented algorithm has been programmed
and tested on LUCAS for 8 by 8 matrices. As LUCAS
has 128 PEs we have N=8 and M=2. LUCAS runs on a
5 MHz clock. Execution times in microseccnds are
listed below. Values in parentheses are cbtained
from the formulas above.

b=8 b=12 b=16
Pre-alignment: 55 (51) 81 (77) 106 (102)
Multiplication: 255 (154) 489 (346) 799 (614)
Summation: 34 (29) 48 (43) 63 (58)
Post-alignment: 48 (45) 70 (67) 93 (90)
Total: 392 (278) 688 (533) 1061 (864)

For. comparison the same task has been program-
med in assembly language on a conventional VAX
11/780 computer. The execution time obtained for
8 by 8 matrices was approximately 3600 microse-
conds, regardless of the number of bits.

6. Conclusions

We have shown that matrix multiplication on a
Perfect Shuffle-connected computer can be done ef-
ficiently for various matrix sizes. It is important
that the most time consuming step - the multipli-
cation - is performed with full parallelity. To
accomplish this, some non-trivial pre-alignment
operations are required. We have presented a simple
control scheme that performs these with a minimal
number of passes through the interconnection net-
work. This makes pre-alignment time small compared
to multiplication time. The summation of products
is performed in a way that makes maximum use of the
available parallelity. To obtain the result matrix
in the correct order, a post-alignment step is re-
quired. We have shown that this can also be accom-
plished in a few passes over the interconnection
network.

To give a sense of the amount of inevitable
overhead time in an implementation, the algorithm has
been programmed and tested on LUCAS. The measured

execution times exceed the absolute lower bounds
for this type of processcr with typically 20-30%.
The amount of pure data alignment compared to to-
tal computation time is between 18 and 26%, and the
ratio decreases with increasing data length.

A characteristic property of LUCAS type pro-
cessors is a highly repetitive structure. This ma-
kes them very well suited for VLSI implementation,
which would yield a very cost effective alternative
to a conventional computer. A commercial LUCAS with
1024 PEs is quite feasible. The lower bound for the
matrix multiplication algorithm on such a machine,
with 5 MHz clock, 16 bit data, is for 16 by 16 ma-
trices 0.96 milliseconds and for 32 by 32 matrices
6.0 milliseconds. Corresponding execution times on
a VAX 11/780 are 26 and 240 milliseconds respecti-
vely.

Acknowleg@mment

This research was in part supported by the
National Swedish Board for Technical Development.

References

[Fern1] C. Fernstrom, ""Programming Techniques on
the LUCAS Associative Array Processor',
Proceedings of the 1982 international
Conference on Parallel Processing.

[Fern2] c. Fernstrém, '"The LUCAS Processor Array
and its programming environment", Lund
University, Dept of Computer Engineering,
Ph.D. dissertation, 1983,

[Kruil] I. Kruzela, B. Svensson, '"The LUCAS Archi-
tecture and its Application to Relaticnal
Data Base Management'', Proc of the 6th
Workshop on Computer Architecture for Non
Numeric Processing, 1981,

[Kru2] I. Kruzela, '"An Associative Array, Proces-
sor Supporting a Relational Algebra',
Lund University, Dept of Computer Engi-
neering, Ph.D. dissertation, 1983,

[oh1] L. Ohlsson, ""Real time spectral analysis
of speech on a small associative compu-~
ter', ‘Lund University, Dept of Computer
Engineering, Technical Report, 1982.

[Park] D.S. Parker, ''Notes on Shuffle/Exchange~
Type Switching Networks'', 1EEE Trans on
Computers, vol. C-29, pp. 213-222, 19890.

[Ston] H.S. Stone, "Parallel Processing with the
Perfect Shuffle', IEEE Trans on Computers,
vol. €-20, pp. 153-161, 1971,

[Svel B. Svensson, '"'LUCAS Processor Array De-
sign and Applications', Lund University,
Dept of Computer Engineering, Ph.D. dis-
sertation, 1983.

122

