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Abstract

A fully digit online arithmetic unit generates
at least the < most (least) significant digits of
the result after having been supplied no more than
the (7+k) most (least) significant digits of each
operand, where Xk 1is a small constant. This digit
serial property can be used to reduce the aggregate
fill and flush times of a chained array of digit
online arithmetic units and teo reduce their VLSI
interconnection complexity. However, because of
this digit serial property, unique and inherent
limitations may have to be imposed on any arith-
metic unit which performs digit online operatioms.
For some calculations, these limitations may be so
severe as to make digit online evaluation virtually
impossible. We show several important signal pro-
cessing problems where these limitations have ei-
ther been avoided or their effect greatly reduced.

Introduction

Digit online arithmetic units have a digit
serial property which distinguishes them from more
conventional full precision arithmetic units. This
digit serial property permits the chaining of the
digits of the output(s) of ome digit onlime unit
directly into the input(s) of amother. As a result,
networks of digit online arithmetic umits offer the
promise of being able to solve certain types of
numerical problems significantly faster than other
more conventional networks of comparable hardware
complexity. Unfortunately, digit serial processing
of floating peint numbers requires that several
unique limitations be imposed on the operands. If
the effect of these limitations can not be resolved,
then it may not be possible to build digit online
networks to accurately solve important problems
which can be solved by more conventional networks.
Since these limitations do not exist, or have a
negligible effect in conventional networks, they
have not received wide exposure to investigation.
We will show several important signal processing
problems where these limitations have either been
avoided or their effect greatly reduced. Hence,
the speed and the implementation advantages of digit
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online networks can be used to solve these problems.

Definitions and Notations

First some definitions and notations are pre-
sented, A nonredundant, unsigned, fixed point num-
ber system F can be concisely characterized by
the integer values », p, and &, which are, re-
spectively, the radix, precision, and scale factor,
and by a set D of symbols {do, dj, e dn}

called digits, Such a number system will be desig-
nated by F(r, p, 8, D). Each digit di’ 1<1i<n,

has a predefined integer value associated with it.
The representation set RF of the fixed point num-

ber system F 1is a set of representations each of
which has the form:
d;d, . ..d. .
172 g2
The value associated with any representation & in

p 3
Fois 1d, 29 The atgic (x).=d. is
e A J 7.
J=1"J J
the j'th digit of the representation. The digits
d.,d., ..., d. and the k most significant
1 ta i
digits of x, while the digits d, ’di R
p-k+1 “p-k+2
vees d. are the Xk Lleast significant digits of

&, Conventional fixed point number systems are
nonredundant since the representation associated
with each value is distinct. Redundant systems, on
the other hand, have several different representa-
tions corresponding to the same value. Let

7 . ) .
Vp = {v”, 7<i<m} be the set of numerical values
which can be exactly represented in F, Suppose

the set Vf is ordered such that

. z . .
1<g =>» <v‘7, l<ism, 1<g<m.
Then the fixed point number system F is wuniform-
ly distributed, if there exists a constant v
e

such that

v
e

If ¢=p, F 1is an integer number system ﬁ@ =1)

141 7 ,
=v -v, I<z1sm-1,

and, if & =0, F is a fractional number system
(—p))

Consider performing certain fixed point opera-
tions in a digit online manner. If F is some

v =r
(e




arbitrary fixed point number system and 0 1is some

operator, then, O(xz, xZ, ey xﬂ), P F, 1=j:n,
is performed in a right directed digit online man-—
ner if at least the < most significant digits of
the result are generated after no more than the P
(i+k) most significant digits of each input
have been consumed. The operation is performed in
a left directed digit online manner if at least the
7 least significant digits of the result are gen-
erated after no more than the (Z+k) least signif-

icant digits of each input mJ have been consured.
The small, predefine constant Kk corresponds to
the digit online delay. The drawback with left
directed algorithms is that the set of arithmetic
operations for which there exist a left directed
digit online algorithm is quite small (basically

integer addition and multiplication)6. We restrict
our attention in this paper to right directed algo-
rithms for which there exist a family of right di-

rected digit online algorithmsA.

Unfortunately, several unique and inherent
limitations must be dealt with when performing cer-
tain floating point digit online cperations. For
some operations, these limitations may be so severe
as to make performing these operations in a digit
online manner virtually impossible. For other op-
erations, these limitations may not be nearly as
severe; it may be possible either to avoid (in much
the same way that overflow and underflow are
avoided in a conventional arithmetic units) these
limitations or to show (in much the same way error
analysis for conventional arithmetic unit indicates
that accurate answers are being generated) that the
effects produced by the limitations are manageable.
Since these limitations may interact, it is some-~
times difficult to determine the overall impact of
one particular limitation. These limitations are
directly or indirectly related to the allowable
operand range as detailed in the next section.

Digit Online Arithmetic

Let (xc, %w) and (ya” ym) be possibly un-

normalized floating point numbers where z, is the

integer exponent and xm is the fractional man-

tissa. The definition of the exact floating point
¥ (: i
sum (zcr, zm) of (acc, xm) and (Y o ym) is

given by:
= \/ =
(zc,zm) (xc,xm) + .yc,ym) o .
(e -y ,/ (yc—xc)
) =
(max(xc,yc,+uc,(xmr Y, T )um)
(x -z ) (yc-z Y
(max(xc+uc 'Y cmc)’ Lo Y /s
(~u )

where u, is any integer, “, =r ¢ and

. _lx-y if z=2y
Toy= {0 othervise
For example consider producing the sum of
(-14.,+.4723) and (-14.,+.6435). In this case the
following result is obtained
(zc,zm)==(-14.,+.4723)4-(—14.,+6435) =

(maw(-14.,-14.)+u , (+. 47250714514,
64350 (141D,
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(-14.+uc,+1.1158um).
Note that if u_= 1 then the result is
(-13.,+.11158) %nd overflowof the mantissa has been
prevented. Hence, mantissa overflow can be pre-
vented by a judicious choice of U, Now, consider

producing the sumof (+12,,+.1764) and (+12.,-.1723).
In this case the following result is obtained:
(zc,zm) = (+12.,+.1764) + (+12.,-.1723) =

(max(+12.,+12.)+uc,(+.1764r(+12"+12')+

(+12.=+12.))u ) =

-.1723r
m

(+12.4u_,+.0041u )
e m
Note that if u, = -2,

normalized value (+10.,+.4100). Hence, unnormal-
ized mantissas can also be prevented by a judicious
choice of U,

then the results is the

desirable to be able to ad-
the range +I to =-p. Un-

fortunately, in digit online arithmetic such a lux-
ury is not possible. The digit online delay will
increase correspondingly when the choice for u,

It would be most
just uc anywhere in

is other than 1 or ¢ (subtracting one from the
lower limit adds one to the online delay). Hence,
to keep a small digit online delay, the lower bound
on uc must, in turn, be kept close to zero. Only

small digit online delays permit effective chaining
of digits between digit online arithmetic units and
are, thus, directly related to gains in processing

speed2’3.

Digit online arithmetic units do not escape
the problem also encountered in conventional arith-
metic units of having to deal with rounding of re-
sults before storage. Consider the result
(-13.,+.11158) in the first example above. To
store this result when p = ¢, it must be rounded
to some nearby representable value such as
(-13.,+.1116).

With these two considerations in mind, an al-

gorithm4 has been formulated to perform digit on-~
line floating point addition. The definition for
the computed digit online floating point sum

(ﬁc,ﬁm) of (xo,xm) and (yc,ym) as produced by

this algorithm is given by:
(zc’ém)=(mc’xm)$(yc’ym)=

(z 2y ) (y =x )
(max(xe,yc)%c, (zr ° “ #,r )8 +e)=
(z-2) (y-2)
(maz(z 49y # )« » ° e © Cie),
where 3 (xclyc) (yc;xc)
1 if [xmr Y, 2 A
r - A
ﬁc =10 if | xmr( ¢ yc)+ymr(yc xc) <h
lor 0 otherwise
R (-ﬁc)
u =r » and e 1is some constant such that
]el < v, The constants % and # are such that




1zhzhz2r "~ The ambiguity in the definition of
ﬁe is not important for the purposes of this paper.

Without loss of generality it can be assumed that
PN FOREN
u =1 . Hence, (z,3) = (2,8 +e).
e e am e m

Note that in the definition of the computed
digit online floating point sum, shifting of the
value formed by the sum of the aligned mantissas is
limited to at most a right shift of one digit. This
is done to handle mantissa overflow. Further,
since the mantissa is never left shifted, there can
be no attempt at normalization cof the result's man-—
tissa. However, never allowing left shifts mini-
mizes the online delay.

Again, let (xc,xm) and (yc,ym) be possibly

The defini-
(z ,3 )
¢’ “m

unnormalized floating point numbers.
tion for the exact floating point product

of (xc,xm) and (yc,ym) is given by
(zc,zm) = (xc,xm) * (yc,ym) =

]

+ x Y U
mcygﬂdzﬁm%)
(x

+ ]

(xc yc+uc‘xmynf

c+yc_zc)) ,
(-u )

where “, is any integer ana u, = r (ver-

flow of the mantissa is not possible in multiplica-
tion. But, consider multiplying (+12.,+.0234)
and (+14.,-.0534) to obtain:
(zc,zm) = (+12.,+.0834) * (+14.,-.0634) =
(+86.4u _,~.00124956u_)
c m
Note that, if u, = -2,

normalized value (+24.,-.124956).
lized mantissas can once again be
judicious choice of U,

then the result is the

Hence, unnorma-
prevented by a

As in addition, it would be most desirable to
be able to adjust uc, in this case anywhere in

the range of ¢ to -p. But again a lower limit
close to zero must be placed on uc to keep the
digit online delay at a minimum. Also, as in ad-

dition, the problem of rounding must be addressed.
With these two considerations in mind, an al-

gorithm4 has been formulated to perform digit on-
line floating point multiplication. The definition
for the computed digit online floating point pro-
duct (zc,ﬁm) of (xc,xm) and (yc,ym) as pro-
duced by this algorithm is giyen by:

5.3 ) = % =

(ze,z. ) (xc,xm) (yc,ym)

m
-1
2 =10
[
-1 o0r 0
)

and e

o ~ _

(xc1yc+uc,xmymum+e)
-3 )

(xc+yc E

x ty Hi L, Y P
( TY m

+e
c e T’ )5

where

h/r

A

o 5y
if lzy | 2

otherwise

h/r

is some constant such that
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16' £ v, The constants % and h have been pre-

viously defined. The ambiguity in the definition
of ﬁc is again not important for the purposes of

Without loss of generality it can be
Hence, (z ,3)=(8 ,8 +e).
e’ m e’ 'm

this paper.
assumed that U, = ﬁﬁ.

Note that in the definition of the computed
digit online floating point product, shifting of
the value formed by the product of the mantissas is
limited to at most a left shift of one digit.
Hence, very little is done to try to normalize an
unnormalized result. Right shifting is not nec-
essary since overflow can not occur.

An interesting question remains as to the
effects this use of unnormalized arithmetic has on
the suitability of solving problems using digit
online arithmetic units. We investigate these ef-
fects in the next section.

Numerical Problems

The first problem to be considered is the ex-
tended summation given by:

o - b* if =1
bt + s if

- i-1
. 5
it has been shown™,

2<isn

In this case, that under a

. . A AT
fairly easy to meet set of conditionms, (sc,§m)
equals the exact extended floating point sum of

1,1, AT . AT ,
(bc,bm+é ), 1si<n, where the &, Ist<nm,

nry

5
error in the computed digit online extended float-
ing point sum could also be obtained by computing
the exact result where a value no larger than
anve

= has been added to each operand.

are constants such that |&] < That is, the

Hence, it
is said that log =n digits of accuracy are lost
when producing the computed result. Note that the
backward error bound does not depend on the degree
to which the operands are unnormalized and, fur-
thermore, that unless some special ordering infor-

1 R .
mation is known about the b”'s this bound is as
good as (within a constant factor) the bound which
would be obtained even if normalized arithmetic

were useds. Hence, this problem is as suitable for
computation by a digit online arithmetic unit as it
is by a conventional arithmetic unit.
The second problem to be considered is the ex-
tended product given by:
7

pi _Ja 1 =1
a *pi'l for 2sisn
Let ki, l<i<n, be integer constants such that
, 7
r(—l) < la;‘ r(k ) <1
The k“'s are nothing more than a '"normalization

k’b

. . . 7 .
1<i1<n, implies that am z ., Furthermore, since

shift count". The existence of the constants
7 . z . .
lam| <1, 1<is<sn, k 2 0. 1In this case, it has

been shown~ that under a fairly easy to meet set of




conditions that (ﬁZ,ﬁZ) equals the exact extended
i1 (k1)

floating point product of (az,aﬁ+e r ),
. 1,i-1 _ Tl A
I<1<n, where k° L kY, and the &7,
J=1 i 4rve

Isi<n, are constants such that |8 | < -2 |

Note that, unlike the case with summation, the
backward error bound in multiplication does depend
on the degree to which the floating point numbers

(a* al), 1<i<n-1, are unnormalized. Also the
& m

amount of unnormalization which can be tolerated
is greatly restricted. In fact, if

n . 1,11
I T é\LI’(k -f-Z}I > 7
=1
then the magnitude of the error in the computed
digit online extended floating point product is
greater than the magnitude of the exact extended
floating point product itself. However, if the

7
a’'s are normalized then the bound, somewhat as
expected, is as good as the bound which would be
obtained if normalized arithmetic were used.

Hence, if the a 's are normalized, this problem
is as suitable for computation by a digit online
arithmetic unit as it is by a conventional arith-
metic unit.
The third problem to be considered is a sim-
ple first order linear recurrence given by:
R Z .
L = b T =1
z 7 1-1
b” +a'zx

. . 5 .
In this case, it has been shown~ that if the «
are normalized and if certain other easy to meet

for 2<i<n

Trg
- s s NN

conditions are satisfied, that (xa,ﬁm) equals

the exact floating point recurrent of (bz,b;+ét),

R i 1 . z
l<i<n, and (a_,a ), 2s5i{<n, where &
a’ m 3 3 El
i 4nrve
Isisn, are constants such that [8%| <« —& |

While it is possible to relax the assumption that

7
the a’'s are normalized (the
that in multiplication), there
little motivation in doing so.

effect is similar to
is, in practice,
Note that under the

assumption that the az's are normalized, the
bound on the backward error is a good as the error
which would be obtained even if normalized arith-

metic were used. Hence, if the al's are normal-
ized, this problem is as suitable for computation
by digit online arithmetic unit as it is by a con-
ventional arithmetic unit.

The fourth problem to be considered is the in-
ner product given by:

, 1,7
T _}ak

- i1
ab’ +x

i=1

-1 for 2<icn

i i
Note that if a ’s and the b ’s are normalized,

then the products aLbi, I<is<n (as produced by
digit online arithmetic units) are normalized or

very nearly so (the mantissas of the products are
greater than or equal to #). An extension of the
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result for the extended sum problem shows that in
this case, the bound on the backward error in-

1
créeases by only a multiplicative factor of ﬁ .

Hence, this problem is as suitable for computation
by a digit online arithmetic unit as it is by a
conventional arithmetic unit if the operands are
normalized,

The previous four problems lead to several ob-
servations. Note that the inner product operation
can be performed as accurately by a digit online
arithmetic unit as by a conventional arithmetic
unit. Since the inner product operation is basic
to several methods used to solve many vector-vector
and matrix-vector problems, these problems can be
solved by digit online arithmetic units if the in-
put data is normalized and an appropriate algorithm
is used. The following section discusses two sig—
nal processing problems which can be solved using
digit online arithmetic units.

Networks for Digital Signal Processing

Most of the major computational requirements
for many important real-time signal processing
tasks can be reduced, perhaps after some effort, to
matrix computations. These include matrix-vector
multiplication, matrix-matrix multiplications and
additions, matrix inversiomns, the solution of lin-
ear systems, eigensystem solutions, etc. The prob-
lems are made interesting, from the point of view
of computer designers, by the demands of real-time
computation and the sheer volume of input. Two
digit online networks, one for digital filtering
and one for discrete Fourier transform, are pro-
posed in this section. Each is suited to VLSI
implementation on a chip or several interconnected

chips2 The argument is made, based on the results
from the previous section, that these networks pro-
duce as accurate results as conventional networks
but with improved speed.

First consider solving the discrete Fourier
transform. An #n-pont discrete Fourier transform
(DFT) problem can be reduced to the following
matrix-vector multiplication:

. Nel . ..
mt = 2 aJw(ia)
J=
. th .
where w is and = root of unity and
0 1 n-1 .
a, a, ..., a are given constants.

A linear digit online network for solving the DFT
recursion can be defined as in Figure 1. The in-
puts are provided to the network in a digit serial,
most significant digit first mode. As the digits
are being input, digit online processing is also
in progress. As a specific illustration, consider
a DFT for the case of 7 = 5., The five-point DFT
consists of evaluating the polynomial

a4y(4) - a3y(3) " a2y(2) " aly . a0
w(g), w(3), and w(4) where w
Horner's rule evaluation

at y =1, w,
is a fifth root of unity.
of this polynomial gives

x0=(((a4*1+a3) *1+a2) *1+a1) *1+a0
x1=(((a4*w+a3)*w+a2)*w+a1)*w+a0

x2=(((a4*w(2)+a3) *w(2)+a2} *w(‘g‘) (2) 0

+al)*w +a




[at] [a?] [a?| [al] [a®]
I L N A sk
> -> ->| -> [-->] -> ->| ->| f---
. + | » + | * + | * [+ | |
> > >| -> |--> > -->| o1 |
| ¥
y stream x stream

where the y stream inputisy®=1,y'= w, ¥y = 0@, y? = o, and y* = w{* and

the x stream output is z°, =

Figure 1,

(3)
(4)

(5) 23403 102,

(4)+a3 (4)

(3)+a0

(4)+a0

+a1) A
+a1) AW

x3=( (( cz'4”‘w *w

x4=( (( a4*w

) *w +ad)*w
The xi's can be computed by a one-dimensional,
linear digit online network, shown in Figure 1.
Each of the processing cells in Figure 1 is
either a digit online adder or multiplier. The
top output line is the product or sum of the two
inputs to the cell, while the lower input is routed
through to the lower output. The indicated reg-
isters are digit-by-digit circular shift registers
which have been preloaded with the appropriate con-
stants. The Yy stream is input one digit at a
time, most significant digit first, and the «x
stream is output one digit at a time, most signif-
icant digit first, after a start-up delay of

(2c + k)td where ¢ 1is the number of digit cnline
processors or cells, k is the online delay, and
t is the processing time for each cell. This is

d
assuming that the digit online delay of all of the
cells in the network are the same. If the digit
online delays of the cells are not alli the same,
buffering must be provided between adjacent cells

inputs network outputs
| ¥ ‘ —
| [Buf |5 ->| at |->| |
............ ———— . | L] |---..----_'
y=> |zt |->] 2t |3 2t > 2t > I
stream ----—- @ --—-- e |
I
I
|
- |
Buf |-> -->] | zt
---------- —me—— —— ] 4 |y
i=> | a® -3 a! |-->] af [->] @3 |->___| |
! ............ — S }
|
I
I
|
4
X
stream

Figure 2,

Recursive Digit Online DFT Network

1 g2

3, and z*.

Linear Digit Online DFT Network

and the maximum %k used in the above timing equa-
tion. The indicated digits stream between the
interconnected processors allowing concurrent op-~
erations by all processors. Since the DFT recur-
sion can be reduced to the inner product problem
in the previous section, the digit online network
for solving the DFT will give as accurate a result
as the more conventional network with a significant
speed improvement,

Yet another digit online configuration for
solving the five-point DFT recurrence is shown in
Figure 2 using only two digit online processors.
The shift registers in Figure 2 supply one digit
starting at the most significant end of the appro-
priate operand at the beginning of each time step.

They are initially loaded with a4, a3 through
ao, and four copies of yl = yo = 1. The y
1

stream consists of four copies of each of

Y

through y4 which are shifted into the registers
feeding the digit online multiplier along with the

appropriate digits of xz. With this configuration,
O(n) processing time can still be maintained even
with only two digit online processors, as long as
a sufficient number of shift registersare provided.

Another frequently performed signal processing
computation is that of digital filtering. The
filtering problem can also be reduced to that of
matrix-vector multiplications. The Infinite Impulse
Response (IIR) filter can be described by the fol-
lowing recurrence.

. . k...
y° Yroz oyt
J=1

where wo,wl, .. .wh and rl, r2, ..
weighting coefficients,

Z:wa$°
J=0

K

., are

- ~k+ -

k, K 1,...,y 1 are initial values, and
-h ~h+
x ,x h 1,...,:80,.’1.‘ ,...,:cn is the input
sequence.

Each summation in the above recurrences has the
form of a Finite Impulse Response filter (FIR).

A digit online array network can also be de-
fined for the filtering problem, but with a dras-
tically different configuration from the previously
considered networks. Consider the case when

h =k =2, The array must be designed to evaluate
the following

yo =% ol £ WPt rly_z + poy?

yl - wal " w1m0 " w2x—1 " rlyo + r2y-1




2 0 2 11

Yy =wxr +wx + w2x0 + rlyl + rzyo

The yl's can be computed by a digit online array
network as shown in Figure 3,

y stream
b
ty =
|
|4|“| |1 Lol
! |-->=U > }—i > |+ |
T - T
|
Iy / |
T 7 T
e Il e il >
T T
a |
| l'L"| I—LI
R R R B
B I B e
p s BN
] | I_
X jw? | jw? | Jw? |
stream
Figure 3. Array Digit Online Filter Network

The interconnected shift registers in Figure 3
are preloaded as indicated and then supply one dig-
it of the appropriate operand at the beginning of
each cycle, The input & stream must match the
output pace of the y stream, since the generated
Y values are reused by the network. Once again,
buffering would be necessary if the digit online
delays of the processors were not the same. Such
a network would satisfy the VLSI constraints of a
few types of relatively simple cells, simple and
regular data and control flow, concurrent use of
the cells in the network to provide a high compu-
tation rate, and multiple use of each input data
item to reduce the demands on the bandwidth be-
tween network and host. Since the filtering re-
cursion can also be reduced to the inner product
problem in the previous section, the digit online
network for solving it will give as accurate a
result as the more conventional network with a
significant speed improvement.

Conclusions

We have shown that there exist methods by
which some vector-vector and vector-matrix problems
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can be solved as accurately by a digit online net-
work as they can by a more conventional network.
Furthermore, the properties which made the digit
online network preferable to the more conventional
network are retained. It would be nice if we
could be as conclusive or positive about all such
algorithms. But this is not the case. Consider,
for example the problem given by:

IO if i=1
s¥ 1 b 1 gY) if 2sisn

) A 7
Note that the result of each of the sums 2 + a,

1<1<n may not necessarily be normalized. Hence,
it would be disastrous to try to form their product
using digit online operations.

An interesting open question is whether the
FFT can be solved as accurately by a digit online
network as it can by a more conventional network.
Since the FFT is central to many algorithms used
to solve some vector-matrix problems, it would in-
deed be most rewarding if it were.
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