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Some conditions for distributivity of multiplica-
tion with respect to set addition are determined.
In particular, distributivity holds if positive
numbers are used, but does not hold for negative
numbers in radix complement form. Use of simple
recoding methods to achieve distributivity is not
helpful, since costs of elementary multipliers and
summing networks are increased. Distributivity
does hold for the digit sets used for signed-digit
arithmetic, and the requirement for distributivity
provides guidance for the design of elementary
multipliers.

1. Introduction

The first purpose of this paper is to point
out that multiplication is not necessarily distri-
butive with respect to set addition, and to
determine some of the conditions for which distri-
butivity does hold. The basic question 1s whether
or mot Cx (A+ B) = (Cx A) + (Cx B). A, B, and C
are digit sets, or sequences of consecutive inte-
gers including zero. The parentheses indicate the
order of the operations.

The three conditions of practical importance
for which distributivity holds are these:

1. All digits of both A and B, or all digits of C
are positive cr zero.

2. All digits of both A and B, or all digits of C
are negative cr zero.

3. The digit sets of any two of A, B, and C are
symmetric; that 1s, 1if X is an element of a’

digit set, so is ~X.

Although other conditions fcr which distributivity
holds are known to exist, it should no: be assumed
that distributivity holds in general when digit
sets with both positive and negative values are
involved.

The second purpose of this paper is to relate
these results to the design of array multipliers.
For the purposes of this paper, the simplistic
assumption is made that the array multiplier con-
sists of two more or less independent parts; the
array of elementary multipliers, and the summing
network which converts the array output to the form
desired for the product.
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For the binary multiplier array consisting of
AND gates, distributivity holds if both multiplier
and multiplicand are positive, but does not hold if
negative values are introduced through use of a
radix (two’s) complement representation of oper-—
ands. This provides a partial explanation of the
fact that no reduction in the cost of the summing
network can easily be achieved, even though the
product precision is reduced by one bit. The
simple attempts to achieve distributivity through
recoding are self-defeating, since they require
more complex elementary multipliers, and require a
more costly summing network as well.

For signed digit arithmetic, which requires
the use of symmetric digit sets, distributivity is
easily achieved. The fact that distributivity must
hold for elementary multipliers provides guidance
as to the nature of logical designs which are
permissible.

2. Terminology and Notation

The simplest example for which distributivity
does not hold 1s presented to introduce the termin-
ology and notation. The arithmet18 operations
involve digit sets, for example, a” = {0,1},

al = 11,0}, bl = {1,0,1}, and 42 = {2, 1,0,1,2}.

The set addition bl « al + a° is 1llustrated by

a0 bl bl
0 1 1 1 1 0 1
- - 1 - - 0
al 1|10 2 1|1 1 2 o]o 0
010 1 0 0 0 0 1{1 0
Figure 1. Figure 2. Figure 3.
bl « al 4 a0 bl « al x ! bl « a0 x bl

the addition table of Figure 1. The multiplicative

operations bl* al x bl and bl*-ao x bl are
illustrated by the multiplication tables of Figures
2 and 3. For the example, the addition table

a2 « bl o+ p! (Figure 4) and the multiplication

table b1 «p! x bl (Figure 5) are also needed.




1 01
1 11 o1
bl 0 b! olo 0
1 111 1
Figure 4 Figure 5
d2 « vl 4 bl bl « bl x bl

Consider the operations bl X (aI + ao). If the

A

addition is performed first, the results are b1 «

al + a% (Figure 1) followed by bl « bl x bl (Figure
5). If the nultiplication is given precedence, the

results are bl + b1 < (blxal) + (blan) (Figures 2

and 3) followed by d2 « bl 4+ pl (Figure 4).
Distributivity clearly does not hold.

A digit set is more generally designated by
ZZCEX , and is characterized by two integer
parameters, rhe diminished cardinality § and the
offset w. The digit set is a sequence of
consecutive integers, including 0, ranging in value
from -w to H8-w) . A digit set is called
normalized if w = 0, is called symmetric
if § = 2w, (hence § is even), and is called
negative normalized if § = w., For example, if
8§ = 2, the digit set -0,1,2}, with w = 0, is
normalized; the digit set {1,0,1}, with w =1, is
symmetric; and the digit set {2,1,0} with w =
is negative normalized.

2,

This terminology was chosen because
§ and w are preserved under set addition, for

example, if
w w W
A - A
\ -
then 63 = 61 + 62 and Wy = W, + w,

It is convenient, for digit sets of lower car-
dinality, to adopt a less cumbersome notation by

g)
replacingf lxby a,él\xby b,é\_kby c, etc. The

simplest symmetric digit set bl = {I,O,l} will be
of importance in sections to follow.

It may be noted that many of the structures
for digital computer addition and subtraction, such
as binary full adders and subtracters, conform to
the rules of set addition; the symbol <« is used to
differentiate between inputs and outputs of such
structures.

/o
/A

3. Basic Derivations

For the investigation of the existence of

distributivity, define
w w » W,
A AT AT A

Z{j§§“3 y Z{g}x“1
x /AN

in which, for example, the product set

ii “3 “1
5,& x is found by
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3
w500 1,0,1,.00,8, —wl}

{"w3, + 1,...T,O,1,...,63 -w3} X

= {-max [, (85 =), wy (8, =0)],...,T,0,1,...,

mex [w wy, (8 -w) (8, —w3)]}
Note that, in general, a
necessarily a digit set,
values may be included.
set {0,1,2} x {0,1,2} =

product set is not

since not all consecutive
For example, the product
{0,1,2,4}.

The definition of distributivity employed here
is that the most negative and the most positive

values of the sets f t and Z{iéﬁ 3

shall be
identical, or that w = 3.3
54 - “4 = 65 - Y,
It is easy to determine that
W, = max [w3 (61 -0 + 62 - wz), 3.4
(53 - @) (wy + w)]
Ug = max [w3 (61 - wl), ) (63 - w3)] + 3.5
max [w3 (62 - wz), W, (63 - w3)]
64-w4 = max [w3 (wl + wz), 3.6
(63 - w3) (61 - wl + 62 - wz)]
és—ws = max [w3 ), (63 - w3) (61 - ml)] + 3.7

max [0y @y, (85 - wy) (8, = w))]




4., Some Specific Conditions for Distributivity

4.1, Introduction

The three specific conditions which appear to
be of greatest practicality will be digcussed
first. These are that distributivity exists if any
two of the three digit sets

AN AT e AT
R , Or are symmetric, or
“1 i; )

if and Zﬁ are both normalized or

W
both negative normalized, or if idé 3 is either

normalized or negative normalized. {t is suffi-
clent to show that symmetry applies simultaneously

) wq
to and éél , since commutativity of

set addition then implies that the result will hold
Y2 “3
$ .
for and /0N

4.2 Other Conditions for Distributivity

A number of other conditions for distributiv-
ity have been found, primarily by a systematic
search of examples, after elimination of cases
previously found. These include:

w 2
o/ - /A
LL)I w3
b) = - Zigéﬁ if either w = 0 or m3= 0
o w
1 3
ARV
[ - =
if 1 wl > 0 and (61 wl) (62 wz) > wl )
or W

> Gl - wl and wl w2 > (61 - wl) (62 - wz)

d) 63 = Zm3 if 61 - W > Wy and 62 -, > w,

or w

1 - w and w, > 6 - w

> 61 1 2 2 2

e) §. + 6

1 p =0or 8§, =uw

= 2 (ml + w2) and w3 3 3

It is anticipated that a continuation of the
systematic search will reveal more examples, with
increasingly complex conditions for their appli-
cability. Whether the results will be merely an
intellectual curiosity or of practical value is yet
to be determined.
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Examples of Simple Array Multipliers

A set of simple examples of array multipliers
indicates the nature of the problem in a practical
situation. Consider first the multiplication of
the 3 bit positive multiplicand 4x2 + 2x) + x5 by

the 3 bit positive multiplier 4y2 + 2y1 + Yo with

the multiplier and multiplicand each ranging from O
to +7. The product set will range, as expected,
from 0 to 49, and may be formed by summing the
properly weighted outputs of a 3x3 array of elemen-
tary multipliers, which are AND gates, as indicated
in Figure 5.1.

4x, 2%y X
4y,
16 8 4
2y,
8 4 2
Ya
4 2 1
Figure 5.1 Weights for a 3x3 positive

array of AND gates

It is easy to verify that the maximum sum is 16 +
2(8) + 3(4) + 2(2) + 1 = 49 as expected.

Alternatively, consider the 3x3 array multi-
plier when a twos (or radix) complement represent-
ation 15 employed, {.e., the multiplicand is —4x2 +
2x; + x5 and the multiplier {is —4y2 + 2y
+ ¥pe Each operand ranges from -4 to +3, hence the
product set
Figure 5.2,
gate array.

should range from =12 to +16. Consider
indicating the weights for the 3x3 AND

— b4xq 2x Xq

— 4y,
+16 -8 -4

2y,
-8 +4 +2

Yo
-4 +2 +1

Figure 5.2 Weights for a 3x3 radix

complement array of AND gates




The summing network must be able to accommo-
date values ranging from the most negative value
~8 + (-8) + (-4) + (-4) = -24 to the most positive
value 16 + 4 + 2 + 2 + 1 = 25. Obviously, distri-
butivity does not apply.

6. Implications on the Design of Array
Multipliers for Radix Complement Representations

A radix complement representation can be
transformed into a symmetric representation by a
generalization of the Booth (or differentiating)
recoding.

Let y = =2%y5 + 2% + 2%y, + 22y, 4 29, + y,.

Then 2y = —26y5 + 25y4 + 24y3 + 23y2 + 22y1 + 2y5 +
y_1, with y_; = 0.

Also —25y5 = --26y5 + 25y5“

y = 25y = 28 (oyg + vs) + 2% (y, - ¥s)

+ 28 (y3 = y4) + 23 (y9 = y9) + 22 (yy - vy

+2(yp -y + vy - oy

In the binary form shown, the resulting recoding is
the Booth or differentiating recoding, and trans-
forms each binary digital position into a redundant

symmetric digit set bl = {I,O,l}.

The above formulation may also be written as
24 (=2y5 + y4 + y3) + 22 (=2y53 + v, + yp)
+20 (=29 + v + y_p)
Each radix 4 digit is then a member of the
symmetric digit set a2 ={:5,I,0,1,2}.

From a theoretical point of view, the use of
symmetric digit sets is apparently advantagous.
First, distributivity is preserved, as indicated in
section 4. Second, for a normalized digit set of
diminished cardinality 6 (6 even), ,the diminished
cardinality of the product set is 6". 1In contrast,
for a symmetric digit set with & = 2w, the product

2 2
8§
set ranges from - /4 to /4, with diminished
2
cardinality s /2.

For the purposes of this paper, an nxn array
multiplier will be considered to corsist of two
parts; an array of elementary multipliers, and a
summing network which converts the weighted outputs
of the multiplier array to the desired weighted
binary product.

Current practice 1s to use an array of a? AND
gates for the elementary multipliers, with each AND
gate performing an elementary multiplication of

one of the types af « a? x a0 = al x al, or

al «al x a0 = 20 x al. The diminished cardinality
of the weighted sum of the AND gate array will

always be 220 _ ontl 1.

Although the use of symmetric digit sets
appears to be theoretically attractive, the recod-
ing procedures necessary to achieve them increase
the information content. For example, for the
Booth recoding, each digital position requires a

type b! digit set, and each element of the multi-

plier array performs the operation bl «pl X bl, at
a cost roughly equivalent to a half adder. The

information from each of the n2 elementary multi-
pliers is also doubled, which increases the cost of
the summing network as well. Thus, use of the
Booth recoding is clearly not cost effective.

Use of the radix four symmetric digit set

2al + p0 requires the use of n /A elementary multi-

pliers of the form 4al + 2a0 + b0 « (2a1 + bO) x

(Za1 + bo). The output requires 4 bits, so that
the information presented to the summing network is
2
4(n /4) = n2, which i1s the same as that of the
conventional array. Thus the summing network
should require roughly the same amount of hardware
as the conventional array, but each elementary
multiplier is more complicated than the four AND
gates of the conventional array that it replaces.

It is also possible to compare the array
version of the serial multiplier used in I[1liac TI
and Illiac III. The multiplicand

n-2
+ I 2j x. was left in
3=0 ’

n-1
x

x = =2 1

conventional form and the multiplier y was recoded
radix 4, with each digit of the form

a% =12,1,0,1,2} .
1/2(n-2)

Lo Bagag ¥y ¥ Yyp)s wthy ) = 0,
The recoded digit of the form a? controls a condi-
tional complementing and doubling circuit.

Thus y = 2y-y =

Without going into the design details, the
order of magnitude costs are about the same as

those of the conventional array of n? AND gates.




The reduced cost of the summing network approxi-
mately compensates for the additional costs of the
multipliers and the conditional complementing and
doubling circuits.

7. _Conclusions

For conventional representations of numbers,
the results obtained are disappointing. TFor the
standard nxn array of AND gates, the ciminished
cardinality of the array output remairs invariant
when the weights of some of the digits are made
negative, and no advantage can be taken of the
reduced cardinality which theoretically could be
achieved.

Attempts to convert from conventional to sym-—
metric digit sets are self-defeating, because of
the increase in information content ard because of
the increased complexity of both the multiplier
array and the summing network.

The technique of recoding the multiplier radix
4, with conditional complementation and doubling,
appears to deserve further study in detail, since
the order of magnitude calculations indicate that
it is cost competirive with the convertional nxn
AND gate array.

For signed-digit arithmetic, the results
obtained reinforce the desirability of using sym-
metric digit sets. ©Not only are symmetric digit
sets advantageous for subtraction, since x and ~-x
are always members of the set, but the results
indicate that symmetric digit sets are most effic-
ient for multiplication.

For symmetric array multipliers, the tradeoff
between the cost of the elementary multiplier array
and the cost of the summing network deserves in-
vestigation. It appears to be advantageous to

2

use /, elementary multipliers of the form
2al + b0 « bl X (2a1 + bo) rather

2

than n“ multipliers of the form bl « bl x bl,

because of the reduced costs of the summing
“»
2
n
Use of

network. /4 elementary multipliers of the
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form 4a1 + Zao + b0+-(2a1 + bo)
X (2a1 + bO) should also be investigated.

Note that the designs of elementary multi-
pliers must be logical designs. For example b~ x

(2a1 + bo) should not be designed as (bI x Zal) +

(b1 X bo), since distributivity does not hold.
results obtained thus indicate which algebraic
manipulations are permissible for efficient multi-
plier design.

The
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