MULTI-OPERAND ASSOCIATIVE ARITHMETIC

Isaac Scherson and Smil Ruhman
The Weizmann Institute of Science
Department of Applied Mathematics

Rehovot, Israel

ABSTRACT

Milti-operand associative techniques attain their
full power in algorithms where the data may be recast
into disjoint data sets, all acted upon concurrently,
each by a different operand common to the set. But the
multi-operand approach can also serve to enhance arith-
metic operations significantly. The speed-up of associ-
ative multiplication by handling a number of multiplier
bits at a time is described and analyzed, including an
effective algorithm for a limited sum of products. The
most complex process treated is convolution, which
serves to illustrate the enhancement of an extended sum
of products. Any number of vectors stored in memory can
be convolved simultaneously by a common filter vector.
Execution time is 45 milliseconds for 1024 element data
and filter vectors, 2048 element results, and
16-bit precision.

INTRODUCTION

Parallel processing with associative memory has been
the subject of considerable interest and much investiga-
tion for over twenty years [1]. However, fully parallel
associative memory never developed as a standard compo-
nent of high density. A number of efforts to develop a
compact associative cell were reported [2,31, some
resulting in an experimental chip, but most lacked some
essential associative function, and none developed com—
mercially. The only chip to reach the market was a 4x4
array (INTEL 3104), On the other hand, a very clever
idea was conceived for emulating associative operation
with conventional semiconductor memory ({41, and was
implemented in STARAN, the only associative processor to
appear commercially. But enulated memory can access
only a bit-slice at a time, operate on it off-chip, then
return the resulting bit-slice. This leads to a direct
loss in speed, due both to off-chip processing and ina-
bility to perform multi-bit compare and write opera-
tions. Furthermore, emulation limits the scale of inte-
gration to n bits, where n is the required word-length.
In 1980 the authors proposed a partitioned associative
architecture [51 in which many operands act concur-
rently, each on its own disjoint data set. This multi-
operand approach requires fully parallel associative
memory to take advantage of the added concurrency which
is virtually lost in emulated associative memory. Hence
a renewed effort was made to realize fully parallel
associative memory as a high density integrated compo-
nent. The results, which are summarized below, indicate
that a 16K chip with 50 nanoseconds cycle time can be
achieved using current MOS technology. The multi-ope-
rand approach has been successfully applied to such
problems as tamographic back-projection [5,8] which may
be recast into disjoint data sets (pixels 'belonging' to
a given ray), each acted upon by a different operand
(ray attenuation) common to the set. Our main topic here
is the application of multi-operand techniques to
enhance arithmetic processes such as summed multiplica-

CH1892-9/83/0000/0‘123$01.00 © 1983 IEEE

123

BASIC ASSOCIATIVE MEMORY

U'L

IMASK REGISTERm
K~ 0
COMPARAND ¢
r——b to
¥
eyl
STORAGE | |-
J| ARRAY ||E
A S
[+ 4
(L)
g
[
!
p—K — -t

U

Figure 1

tion (extended sum of products). In many problems
offering a limited number of disjoint data sets, arith-
metic enhancement may be combined with concurrent pro-
cessing of the data sets.

VLST ASSOCTATIVE MEMORY

An associative memory is a device in which stored
data words are identified according to their contents,
hence it is sometimes called a content-addressable
memory. Such a memory is to be distinguished from the
more widely used coordinate addressable memories, such
as Random Access Memory (RAM), in which stored data are
accessed by their location or address. An associative

memory accepts as inputs a comparand (or operand) word
and a mask word, searches all stored data locations sim-
ultaneously for a match between the unmasked bits of the
camparand and the corresponding bits in all the stored
words, and identifies matching data words by setting a
marker or tag in a TAG register, Qur basic model of an
associative memory is shown in Figwe 1 and its primi-
tive operations given below.
For all j=0,1,....,J-1 and all k=0,1,....,K-1

1. SETAG tj =1

2. SHIFTAG &, 1=t

3. LOAD ¢ C =0, <:k =1, or ck iz ik

4, LOAD m mk := 0, mk := 1, or mk := J'.k

5. COMPARE t,j S tj gmk(ako ck)

6. WRITE a5y = Ej et b (m c, + E}(2 5)
7. READ o, 1= }Etj 81

The symbols +, @ and 2. stand for OR, Exclusive-OR, and

OR expansion respectively., m denotes the camplement of

m. Both WRITE and CQMPARE operate just on masked ON bits
(mk=1) of words (rows) that are tagged (tj=1). Hence

the SETAG operation is required initially to make all
words eligible for processing. Up to fowr operations
may be done concurrently during a given memory cycle:
SETAG or SHIFTAG, LOAD ¢, Load m, and COMPARE, WRITE or
READ, Clearly, any subset of the above may also be con-
current, and vhen registers ¢ and m are loaded from the
inptt bus simultaneously, they must receive the same
data.

To implement these functions, a 12-transistor, 5-bus,
static M associative memory cell was devised, and was
laid out in a 6 micron silicon-gate technology, yielding
a cell area of 78x132 microns. Allowing for peripheral
registers and logic, a 3¥x32 array will fit on a U4x6
millimeter chip. To gauge the performance of such a
chip, a 22 cell array with its bus drivers were simu-
lated at circuit level using SPICE2 [6]). The buses were
represented by lumped capacitances corresponding to a
3¥x32 array. The results obtained were a maximm cycle
time of 100 nanoseconds and a maximum dissipation of 250
milliwatts when operating continously at the full rate.
Scaling down the cell to a line width of 1.5 microns
indicates a capacity of 16K bits per chip and a cycle
time of 50 nanoseconds at the same power dissipation.
It should be noted that only a major operation, COMPARE,
WRITE, or READ, requires the full ecycle time. A hal f-cy-
cle will suffice for a minor operation, or any legal
canbination thereof.

PARTITIONED ASSOCIATIVE ARCHITECTURE

The distinctive associative CQMPARE operation is 1im—
ited to a single camparand. Ligby [7] proposed simul ta-
neous bit-by~bit comparison against a number of compa-

124

[wask REGISTER __Z] | OPERAND MEMORY

[comParaND REGISTER ¢']

! = CONTROL
P | STORAGE ARRAY | |&| F=>b---+
A‘ 2 1
: N , U
C - L 1m
K- o)
{ 1] ¢
— ——
'3 : [a—
PARTITION | DATA AND
E}-E?_% . WORKING AREA
I
MAIN I
MEMORY STORAGE ARRAY
|
J t A Rl
t
; fod
: u
; =
\ 2
' o
! o
I @
| ©
; <
' —
3 h L
o K -

PARTITIONED ASSOCIATIVE PROCESSOR

Figue 2

rands, F, by providing F flags per word and denoting
agreement with any camparand by setting a ONE in the
corresponding flag. When examining a single bit-slice of
the comparands, they all fall into two groups, those
having a ONE in that bit, and those having a ZERO, hence
it suffices to deal with each group appropriately,
regardless of the number of camparands invclved., Refer-
ring to Figwe 2, main memory A contains the data to
be processed and an F-bit flag field. Although the
canparands could be stored in a set of serial registers,
they are shown residing in an awxiliary associative
memory, A'. The flag field is initially set to ONE
throughout A, and the data is processed bit serially.

For any k€ {0,1,...,N-1} we select the data cells in A
having a ONE in bit position k, and wite ZERO in all
flags corresponding to mismatching camperands - those
having a ZERO in this bit position. We do the same for
data cells with a ZERO, and comparands having a ONE in
bit position k. After repeating this process for each
of the bits to be campared, the operation is camplete,

TABLE 1

Many-to-many Compar ison

TABLE 2

Mul ti-Operand Addition

+

MEMORY A’ g

{STEP| MEMCRY A | MEMORY A | CONTROL | {STEP{ MEMCRY A i CONTROL |
1 0 lemi=d(N,N+1, . N4F=1); {c":=0;m':=d(0); ICNT:=0 | 10 jer=0im:=d(N); .c' Jn':=d(0); iCNT :=0 |
: {SETAG;WRITE ISETAG:CMPARE : | : ISETAGWRIIE {SETAG;COMPARE | :
Vo g m: =d(CNT)3 |) i Pl I_c_::=g(N);SE2TAG ; | i
i {SETAG;COMPARE ! i i + + ‘ +
+ ' + + | 2 im:=d(CNT,N,N+1)+ H i i
12 im=s(t' K-F,0); 1e' s =d(CNT); i i i i s(t' K-F,0); i i
i {WRTTE {SETAG;CQMPARE ' ! ' : COMPARE i ‘ i
13 :g =0;m: =d(CNT)3 ' ICNT:= | i3 ._g::g(cm):wma ' i i
' ISETAG CCMPARE ! I CNT+1{ + +
' + + ! 4 jct=d(CNT,N);] | i
P4 m=s(t' ,K-F,0); je':=0;m':=d(CNT); |If CNTN| i {SETAG;CQMPARE H i i
| {WRITE :SET G;COMPARE fgo to 1} + ' : +
+ + + } 5 let=d(N); ic':=0; i t
i | WRITE ISETAG;COMPARE 1 i
aK—‘I M3 LS + + + +
4 ; + | 6 |c:=d(CNT);SETAG ! H |
la a, la a. | ' + - ' +
Ll NN S, {7 lm=d(CNT,N,NeT)+ ! ! !
F-bit flag N-bit data i ! s(t! KF,0); i i
' | CO(MPARE i | H
Main memory format + + + +
i 8 lci=d(N);WRITE i i i
P9 ici=0; i i i
and every cell is labeled with the comparand it matches. i {SETAG;CQMPARE i i i
Cells not matching any comparand will have an all-ZERO + + + + +
flag-field. Clearly, if the comparands are distinct, no ! 10 {c:=d(CNT);WRITE ic' m':=d(CNT+1); ICNT:=CNT+1]
cell can be labeled in more than one flag position. i H {SETAG;CCMPARE 1If CNTN |
i ' i igo to 1 i
This 'many-to-many' algorithm, in which "many' campa- + + 4
rands are concurrently matched against 'many' data
words, is detailed in Table 1. In describing associa- ay_4 ay ¢ MS IN]
tive algorithms it is convenient to define two binary - + + +
vector operators which can only appear in assigmment =aN+F—1 Ne2 ,}.aN”IaN }aN_1 aoi
statements and assume the length of the vector being + + + +
assigned. The d operator is akin to Kronecker's delta, F-bit flag Cand. Carry N-bit number
mark

Alipig e d) 32> dost Wity

dj=0 V-33’11, . 'in

where the i's are integral constants, expressions, or

symbols. The other is a shift operator,
s(t',N,B) ==> vector t', initially assumed right
Justified, is shifted left N places

padding with ONEs or ZEROs as indicated
by Boolean B, and is truncated or
extended by padding on the left to the
required length.

The algoritlm executes in 4 cycles per bit and offers
little advantage in emulated associative memory where
writing is bit-serial. For cur parallel memory, and a
data field-length of N, an appreciable advantage may be
gained when F>2N. Unfortunately, efforts to extend the
many-to-many idea to other useful algorithms were not
successful .

125

Main memory format

The authors introduced 'multi-operand' algoritims [51]
operating in the ‘'partitioned' architecture shown in
Figure 2. Main memory A is dynamically partitioned into
F disjoint subsets by an F-bit flag field, thus enabling
F operands, stored in memory A', to act concurrently,
each on its own distinct swset of data in A, To illus—
trate this idea, consider mul ti~operand addition.
Memory A' holds the F addends, and its tag output is
routed to the flag-field of the mask register in memory
A, permitting the flag-field to be masked with a bit-
slice of the addends (or their complement). Each one of
the F data sets in memory A is distinguished by setting
the flag-bit corresponding to its addend. Elements in
memory A not belonging to any one of the F data sets,
and not to be involved in the operation, are distin-
guished by a ONE in the candidate mark. The algorithm is

TABLE 3

Addition Truth Table

' IN ' our | Order of |
! Addend Carry acyT : Carry anm LExecutioni
| o] 0 0 i 0 0 i - i
i 0 0 1 i 0 1 i - 4
10 1 0] 1 i 1 |
H 0 1 1 ! 1 0 i 2 |
oo 0 0 i 0 T 4]
[1 0 1 H 1 0 H 3 i
' 1 1 0 1 1 0 i - |
i 1 1 1 ! 1 1 i - '

carried out sequentially by bit and is detailed in Table
2. The truth table for serial addition into an accumula
tor, shown in Table 3, 1lists four cases requiring
action, and gives a valid order for their execution.
Word-format in main memory assigns bit N to store the
sequential carry, which is initially set to ZERO (step
0). Steps 1to 5 operate on data sets belonging to ope-
rands whose current bit is ZERO. The current bit-slice
in operand memory A' is obtained by executing a COMPARE
to ONE (step O or step 10), and is applied as a mask to
the flag field of main memcry A (step 2). A CCMPARE
against ZERO in A (step 2 and step 4) will then select
only cells whose flags correspond to operands with a
ZERO in the current bit position. Similarly, steps 6 to
10 operate on data sets belonging to operands whose cur-
rent bit is ONE. After repeating steps 1 to 10 for each
operand bit, the process is camplete and each operand
has been added to its corresponding data set. It should
be noted that this algorithm requires a multi-bit com-
pare to achieve any speed-up, but also takes advantage
of a multi-bit write. With the fully parallel associa—
tive memory assumed here, execution time is 9 cycles per
bit.

Multi-operand subtraction in two's compl ement nota-
tion, with the "difference” replacing the "minuend", can
be implemented in a similar manner and executes in the
same time. Hence multi-operand multipl ication and divi-
sion follow directly by successive application of addi-
tion and subtraction. Consider mul ti-operand multiply,
with main memory partitioned into F disjoint sets of
multipliers, and F multiplicands stored in operand
memory. The word format in main memory is as shown
below,

i F N N ! M+
Part.flag Cand. Carry Miltiplier
mark

4+ — 4

Product

where each N-bit multiplier cperates on the M-bit mul-
tiplicand belonging to its set, and the full (M«N) bit
produwct is formed in a field aijacent to the mul tipl ier.
The algorithm consists of N successive mul ti-operand
additions, one for each bit of the mul tipl ier, starting
with the least significant; addition of the appropriate
multiplicand is conditional upon the candidate mark and

current multiplier bit, The multiplier bit 'and the
starting bit position for addition are incremented at
each iteration., Execution time in memory cycles will be
N(9M+2.5)249MN, where the added 2.%N cycles are due to
one plece carry propagation after each addition. At a
modest cost in [rogram complexity, word-length in main
memory can be reduced by N bits if the multiplier may be
overwritten as the product is formed. Multi-operand
mil tipl ication can be viewed as a vector-scalar product
for a number of vectors and scalars simultaneously. It
should be noted that the vectors may be of different
length, and their elements may be arranged in any order
and intermingled in any fashion.

In camputations requiring a single vector-scalar mul-
tiplication, this simple successive addition method will
run about twice as fast as the multi-vector case,
because the additions are now conventional rather than
mul ti-operand. Execution time is now N(9M+5)/2=2 QMN/2.
Nevertheless, it is possible to speed up single vector-
scalar multiplication significantly through the multi-
operand approach by using it to handle several bits of
the multiplier at each iteration. let b denote the num-
ber of bits handled at a time, then auxiliary memory is

loaded with the binary codes 0 to 2b—1, alongside the
corresponding multiples of the common multiplicand. The
number of iterations performed is now N/b, and each
iteration starts with a many-to-meny camparison to par-

tition main memory into 2]b disjoint sets according to
the b-bit multiplier code being handled. This is fol-
lowed by a multi-operand addition in which each multiple
from auxiliary memory is added into the product field of
the corresponding set of multipliers. The starting bit
position for addition is incremented by b at each itera-
tion. Execution time now becames,

(N/b+9N/2)+9N (M+b) /b = N{IM+1)/D+2TN/2 = MN/D+2TN /2
where the first expression in parenthesis accowunts for
many-to-many camparison. Multiplication time is plotted
in Figure 3 for M=N=60 and b ranging from 1 to 6. The
valve plotted for b=1 is that for conventional associa-
tive multipl ication by a constant, N(9M45)/2. The word-
length was chosen to be the least cammon multiple of
b=2,3,4,5,6. As was to be expected, mul ti-operand
enhancement of multiplication starts paying off at b=3.
The speed-up factor here approaches b/2=(log2F)/2, whe-

reas an algorithm directly fitted to the mul ti-operand
model would yield a factor of F/2.

An interesting variation of mul ti-operand mul tipl ica-
tion enhancement arises in extending it to a limited sum
of products. Such an expression occurs frequently in
coordinate transformation of an image or body represen-
tation. A simple example is two-dimensional coordinate
rotation, where the new abscissa is given by,

x'=xcos6 + ysiné
The angle of rotation is cammon to all elements in the
image, and so are the trigonometric multipliers applied.
Assume main memory contains a description of the image
and its word format is as follows:

P2 N N 1 M +1

Part. flag X y

-+

Carry x!

As before, we treat x and y as multipliers, cos® and
sin® as multiplicands. A straightforward approach to
enhancement might be to multiply cosé by field x, then
sin6 by field y, in both cases summing into field x' and
handling b bits of the multiplier at a time. A better
idea, however, is to handle one or more correspond ing
bits of x and y simultaneously. Assuming two bits of
each at a time, the 16 precomputed multiples stored in
auxil iary memory A' are:
0,sin6,2sin6,35in8,cos0,3inb+cosH 5+ . 535in6 +3cosH.
The resulting zlgorittm is simpler and appreciably
faster, its execution time being given by,

4, STN-N (M43 T1og T 2%-1)143.5) /b

where T is the number of products summed, and b is now
the number of bits per multiplier handled at a time.
Appropriate cases are plotted in Figure 3 for canpar ison
against multi-operand enhancement of a single prodwct.
Enhancement of an extended sum of products will be
treated under convalution below. It should be noted that
all owr expressions for multiply execution time have
assumed the product field to be initially cleared. As a
consequence, some Iimprovement in speed may be achieved
by executing the first iteration as a copy (rather than
add) operation. The speed advantage grows with decreas-
ing multiplier precision N and increasing number of mul—
tiplier bits handled at a time (b or Tv).

CONVOLUTION

Milti-operand enhancement of campownd associative
arithmetic operations will be discussed with reference
to convalution, a function much used in signal and image
processing. Let Jg:[pi] be the data vector and Lr—-[}hiJ

the filter vector, both of length P. The discrete convo-
lution of p by h is defined by:

* =
(h¥*p), ? B3R ;

where k=0,1,...,2(P-1). Or in matrix form,
he 0 wevee. 0 1p
0 0
h1 hO cenaas 0] p1
PSP__1 h... PN :O Pp_q
p_q srresees By

0 0 """""hP

L g

Note that every element of P is multiplied by every ele~
ment of h. The resulting products are added up to form
the convolution vector whose k-th element is the sum of
all hipj such that i+j=k. Let us examine the h-matrix:

its non-zero elements occupy the central parallelogram
consisting of full diagonals, each diagonal filled with
a cammon h, starting with h_ in the first diagonal and
continuing top to bottom in increasing order of h sub-
script to the last diagonal which is hp_1. This fact

127

TABLE 4

Convalution Algorithm

PHASE OPERATION
1 Initialize convolution:
Read in p's and set their markers;
zero hp field and carry (TMP) column.
Load b-bit code sequence in memory A'.
Zero vector element count, EC := 0,
2 Initialize major loop:
Load multipies of h_, into memory A'.
» Zero bit-group cownt, BG := 0.
3 Partition memory A according to current BG of
s P-fleld using many-to-many compare.
4 Per form multi-add from memory A' into hp-field
s Of memory A starting at bit-position b(BG).
5 Propagate resulting carry through bit-position
M +[1og_P].

6 Increment™BG; if b(BG)XN, go to 3.
T Increment EC; if ECOP, exit.
8 Shift p-field and marker down. Go to 2.
1 1
i flag ' p 1 1 hp H
2P N Meli+[1og, P

M T
R M
K P
Main memory format

*
Phase operates on 'marked' elements only.

I. S\ngfe product

I I. Extended sum of products
25 M=N=60
204 \
/_g\\
7 Te2

Nz30

N=29

Execution time in 10° memory cycles

'S
N2fs rf‘
s : t
/ N2 re
- Nz 10
o Limited sum of products
0 1 2 3 4 s 9

Muitiplier bits per iteration

Milti-operand enhanced associative mul tiplication
Figure 3

TABLE 5

Carry Propagation

STEP OPERATION
0 BCT := 0

1 m := d(b(BG+1)+N+BCT, MP); SETAG

2 © 1= d(TMP);CQMPARE

3 € := d(b(BG#+1 }+N+BCT);WRITE

4 < := d(b(BG+1 }+N+BCT, MP); SETAG;CQMPARE
5 := d(TMP);WRITE

6 BCT :'= BCT+1; 1f b(BG+1)+N+BCT<@N+ 1og, P

go to 1, else exit.

suggests a simple shifting algorithm summarized in Table
4, which includes the word format. The p's are entered
in order and their marker bits set; a gap of P-1 words
(or greater) is provided below the p vector to develop
the last terms of the hp vector. We start by multiplying
the elements of p by hO' sum the product into the hp

field and shift the data vector down together with the
marker. This cycle is repeated for each successive ele-
ment of h, At the end of this process, the resulting
vector will be sitting in proper order in the hp field.
Note that the marker was used to limit arithmetic to the
elements of p, regardless of their location in a given
cyele. Returning to Table 4, the extended sum of pro-
ducts, hereafter referred to as 'summed multiplication',
is described in phases 2 through 6 and is speeded up by
handling b multiplier bits at a time. The sub-algor—
ithms of phases 5 and 8 are detailed in Tables 5 and 6
respectively. We now write expressions for the execution
time of significant phases of the algorittm, given in
memory cyles per vector element.
Phase 3 : N/b + 9N/2

4 : WN(M+b) /b

5: NN + 2[20g.Pl-b) Ab

8 : S5(N+1) 2

We pause here to focus on summed multipl ication and
compare its performance with that of the multiplication
algorithms discussed earlier. The execution time of
sumed multiplication is given by that of phases 3, 4,
and 5; adding and simplifying we obtain:

N(9M+1)/b+ON (N42 |‘1og2P1 45b) Ab

where b>1, N is the precision of pi. and M the precision

of hi' For direct comparison, summed multiplication time
is again plotted in Figure 3 for a 60-bit wordlength and
b ranging from 1 to 6. As before, the value plotted for
b=1 is that for associative summed multipl ication with-
out enhancement:

N (oM +2[lqg',zﬂ A

It is interesting to note that multi-operand enhancement
of summed multiplication pays off even at b=2. We deli-
berately chose one of the simplest compownd arithmetic
operations to illustrate this point.

Returning to convalution, from the phase execution
times given above we obtain the following expression for
the total convclution time in memory cycles:

PN (9M+1) /b+9N (N+2[20g, P45 b) A bess (N+1))

TABLE 6
Shift Field

FB=first bit of field

0 BCT :=0

1 ci=0,m: d(TMP) SETAG;WRITE

2 eum 1= d(B4BCT); CCMPARE

3 ©um := d(FB+BCT, MP);SHIFTAG;WRITE

4 < :=0,m := d(TMP);SETAG;CQMPARE

5 m := d(FB+BCT);WRITE

6 BCT := BCT+1; if BCTN go to 1, else exit

This may be approximated by,
9NP(N+2['log2P']+5b)/llb + NP(9M45D) /b

Exanination of the main algoritim reveals the memory
utilization factor during processing to be 50 per cent
(neglecting shift). Hence there was no point in looking
for a possible partitioning into disjoint data sets that
might be processed concurrently, and multi-operand
enhancement was applied to the arithmetic instead. If
vector and filter have 1024 elements given to 16-bit
precision, and the multiplier bits are handled 4 at a
time, then convcalution will execute in 60 milliseconds.
Both the wordlength and execution time can be reduced
considerably if the hp field is shortened to 28 bits and
canputation truncated accordingly, still producing the
full attainable precision. In that case, convalution
requires 8 chips of main memory per data vector to sim-
ultanecusly convcolve any number of data vectors by a
camon filter in under U4 milliseconds. For camparison
we list some current cammercial machines [9,10,11], giv-
ing their approximate convolution time for two 1024 ele-
ment vectors yielding a 2048 element result.

CQYPANY MODEL CONVOLUT ION
Time - sec.
Digital Equipment VAX-11/780 1.5
Floating Point Sys. AP-120B 0.4
Cray Research CRAY-1 0.1

The VAX is representative of general purpose sequential
machines. The Floating Point AP-120B is an array proces-
sor especially designed for problems like convalution.
Architecturally, it employs a pipeline to achieve paral-
lelism in vector processing. Even the CRAY-1, a super
canputer with a pipeline architecture, takes more than
dowle the time to execute convalution. Moreover, an
associative convolver can filter many data vectors in
parallel at a cost of 8 memory chips per additional 1024
element vector. Thus, for a main memory capacity of
GUKx6U4 bits (256 chips) the processing rate will be one
vector every 1.4 milliseconds.

REFERENCES

C. C. Foster , "Content Addressable Parallel Proces-
sors" , Van Nostrand Reinhold Co. 1976.

J. T. Koo, "Integrated Circuit CaM", IEEE J, of
Solid State Circuits, -5, 1970, pp. 208-215.

J. L. Mundy, J. F, Rurgess, R. E. Joynson, "low Cost
Associative Memory", IEEE Journal of Sol id-State
Circuits, Vol. -7, No. 6, 1972, pp. 364-369.

K. E. Batcher, "The Miltidimensional Access Memory
in STARAN", IEEE Transactions on Computers, C-26,
1977, pp. 174177,

I. Scherson, S. Ruhman, "Many-to-many Arithmetic in
Associative Memory and its Application to Tomo-
grarhic Back-projection", Report No. ISR1, Weizmann
Institute of Science, March 1980. Also in Proc.
1980 IEEE Int. Conf. on Circuits and Computers, pp.
1421495,

129

7

.

1.

L. W. Nagel, "SPICE2: A Computer Program to Simulate
Semiconductor Circuits", Memorandum No. ERL-M520,
University of California, Berkeley, 1975.

D. W. Digby , "A Search Memory for Meny-to-Many Com-
parisons", IEEE Trans. on Computers, August 1973,
pp. 768-772

S. Ruhman, I. Sclerson, "Associative Processor for
Tomographic Image Reconstruction", Proc. 1982 IEEE
Comp. Soc. Int. Conf. on Medical Computer
Sc./Computational Medicine, pp. 353~358.

"VAX Teclnical Summary", Digital Equipment Corpora-
tion, 1982,

A. E. (harlesworth, "An Approach to Scientific Array
Processing: The Architectural Design of the
AP-120B/FPS-164 Family", IEEE Computer, Vol. 4, No.
9, September 1981, pp. 18-27.

R. M. Russel, "The CRAY-1 Computer System", Comm.
ACM, Vol. 21, No. 1, January 1978, pp. 63-72.

