CONTINUED FRACTIONS FOR HIGH-SPELD AND HIGH-ACCURACY COMPUTER ARITHMETIC

Robert B

Seidensticker

Aydin Computer Systems

Ft. Washington, PA

Abstract

Continued fraction representation has many
advantages for fast and high-accuracy computatioa
when compared with positional notation. A contin-
ued fraction is a number of the form

Py + q1/(py + qz/(p3 + ..0)),
where p. and ¢, are integers. Some of the benefits
of confinued fraction representation for compute:
arithmetic are: faster multiply and divide than
with positional notation, fast evaluation of trigo-
nometric, logarithmic, and other unary functions,
easy extension to infinite-precision arithmetic,
infinite~precision representation of many transcen--
dental numbers, no roundoff or truncation errors ,
and  improved software transportability because

accuracy 1is not hardware dependent. A unified
system for continued fractiom arithmetic is given
along with an outline of a hardware architecture

for evaluating these functions.

l. Introduction and Summary

Research has been done on the use of continued
fraction expansions of many unary functions for
high-speed computer arithmetic [Tri 77, Bra 74] as
well as functions for implementing binary opera-
tions on continued fractions [BGS 72]. This arti-
cle proposes to use previous results plus some new
work to build a unified system for practical con-
tinued fraction arithmetic. This new work includes
error analysis, expansion and clarification of the
binary arithmetic algorithms, expansion of the
unary algorithms, speed analysis, and a hardware
implementation to exploit the advantages of contin-
uved fraction arithmetic. Because this paper builds
on previous work, some unavoidable recounting is
included.

Continued fraction representation is only one
of many interesting nonpositional representations.
Each of these has its own unique advantages and
disadvantages and its own set of application areas
in which it performs well (discussed in section 2).
The algorithms for conversion between positional,
rational, and continued fraction representations
are simple. These algorithms, the basic continued
fraction identities, and the use of continued frac-
tions in representing numbers are discussed in
section 3, An introduction to on-line arithmetic

CH1892-9/83/0000/0184$01.00 © 1983 IEEE

184

19034 usa

and continued fraction arithmetic, the evaluation
of unary functions (such as sin, tan, 1n, and
sqrt), and the use of floating point are given in
section 4. Arithmetic with continued fractions is
shown to be simple and fast. Section 5 introduces
some application areas; those requiring fast eval-
uation and high accuracy form only one of several
major areas. A hardware architecture is proposed
in section 6. The architecture is non von Neumann
and allows considerable parallelism.

2. Number Representations

Positional notation is the representation of
numbers with strings of digits chosen from a set of
digits, as defined by the base. The position of
each digit determines its value relative to the
other digits, Positional representation with a
base of 10 (decimal) is widely used, and binary is
popular in machine arithmetic. From a computa-
tional-effort standpoint, positional representation
boasts easy multiplication by powers of the base
(shifting), easy comparison and computation of
addition and subtraction, and fairly easy computa-—
tion of multiplication and division., Many other
representations exist [QnA 81), each with its own
advantages. Most use positional notation to some
exteat, but all add to it in some way. Several of
these representations will be introduced below.

Redundant number systems do not have a
representation for each integer. These have been
used, for example, to speed up arithmetic opera-
tions in digit on-line arithmetic [WaE 81] and to
provide fault tolerance in the Fibonacci number
system [LiN 81]. Mixed radix number systems do not
use the same base for all digits. The factorial
number system is an example [Knu 69]. Modular
("residue") representation [Knu 69] uses increased
parallelism to provide faster addition, subtrac-
tion, and multiplication than found with positional
representation, It performs less well with divi-
sion and comparison. Power-of-primes notation [Pra
75] represents a number as the exponents of its
prime factors. Multiplication and division are
easy, analogous to that performed on a slide rule,
but addition, subtraction, and comparison are dif-~
ficult,

unique

Because
addition,

the set of integers is closed under
subtraction, and multiplication, but not

under division, the rational representation [KoM




81] proposes to bypass division by
every number as a numerator/denominator pair, The
four basic binary operations all require about the
same amount of time and inversion is simple. Bit~
vector machines [Pra 75] use extreme parallelism to
calculate addition, subtraction, and multiplication
in time O(log n) and carry-save addition in time
0(1), a speed far better than that of positional
notation algorithms.

representing

This brief excursion into other number rapre-
sentations is intended only to illustrate the wide
variety of alternate representations and the advan-
tages which they can bring to a given problem,.
This paper intends to make a case for the uss of
continued fractions in applications requiring fast
and precise real arithmetic.

3. Primer on Continued Fractions

Continued fractions notation is another namber
representation scheme which has its own advantages
and disadvantages. Continued fractions are nunbers
of the form

p1 ¥ 91 —
P2 v _Go_
P3 * oo = py o+ qi/(p2 + qal{ps + ..0)),
where P; and q, are integers for all (. The frac-
tion can terminate, with qn_]/pn as the last :erm,

but may The characteristics of cont .nued
fractions are described in detail elsewhere [o1d
63, Knu 69, Wyn 64]; the traits most relevant to

computer arithmetic are briefly outlined here.

not .

Research into the theory of continued
tions has been ongoing for hundreds of years.
list of investigators includes the names of
nitz, Euler, Lagrange, Laplace, Gauss, Chebychev,
and Klein. While continusd fractions were used to
a limited extent for the evaluation of constants,
the introduction of the computer has increased
interest in their computational use.

‘rac~-
The
Leib-

In the equation above, if q; = 1 for all 4

the continued fraction is represented as
P3 v pn]-
where 1 < (< p, and Py > 2

=
is called
fraction
fraction.

[p1; p2,
If, in addition, p; > 0, P > 1,

the continued fraction

regular, Any arbitrary continued
can be converted into a regular continued

3.1 Conversion Algorithms

Several simple algorithms exist for the con-
version between continued fraction, rational, and
decimal representations. The following ALGOL-like
algorithm will convert the rational number a/b into
the regular continued fraction form [x1; X2, X3,
oo o x ]

n

X < 1;
do {x, « iat(a/b);
Zemp « b; b« a - bxi; a « temp;

L+ 4+ 1)

185

until b = 0.

The x.s are termed "partial .quotients,” To reverse
£ P q

the process and convert the continued fraction [xl;
X, X3, ees xn] into the rational number a/b,

a-; + 0; ag < 1;
b.p <« 1; by <« 0;
for L <« 1 to n do

{a. +~ x.a. +
A

L A1 by < xb

Qi-7% L +b 3.

i-1 i-2

The a{/bi fractions are called approximating frac-

tions or convergents. The desired rational number
equivalent in value to the continued fraction is
the last approximating fraction, an/bn' The set of

approximating fractions al/bi is the complete set

of best rational approximations, where a "best"
approximation 1is one which comes closest to the
actual value with such a small denominator. Addi-

tionally, all approximating fractions are in lowest
terms (that is, ng(aL’bL) = 1), the fractions

alternate between being greater than and less than
the actual value (when £ is even, the fractions are
high), and every approximating fraction is a better
approximation than all its predecessors. Another
useful function converts a rational number a/b into
its equivalent positional representation
d; .dad3dy ... in number base B:

dy + int(a/b);
a <« (a - dib)B;
if a < 0 then a + -a;
L« 2;
while a > 0 do
<d£ < int(a/b); a « (a - dib)B;

L« 4+ 1),
3.2 Representation of Values

Continued fraction notation represents certain

numbers more easily than can positional notation.
The positional representation of some rational
numbers repeats, while that for others terminates.
The base dictates which numbers terminate. For
example, 1/7 = 0.1428571p, while 1/7 = 0.17. Oune
tenth equals 0.13p, but equals 0.000l1lp. Represen-

ted as continued fractions, rational numbers always
terminate; there is no base to alter the repre-
sentation.  For example, 1/7 = [1; 7] and 31/57 =

0.543859649122807017,4 = [0; 1, 1, 5, 5].

Quadratic irrationalities ("quadratic surds™)
are numbers of the form (a + b//ﬁ)/C, where a, b,
¢, and D are integers, b #0, c #0, D> 1, and D
is not a perfect square, Positional notation rep-
resentations of quadratic irrationalities and all
other transcendental numbers are non-repeating and
non-terminating, but quadratic irrationalities
always repeat when represented as continued frac-
tions and many transcendental numbers are represen-
ted as simple infinite series. For example, /2 =

1.414213... = [1; 2, 2, 2, ...), e = 2.71828... =
(2; 1, 2, 1, 1, 4,1, 1,6, ...], and ¢ = (1 +
5)/2 =1[1; 1, 1,1, ...l. Other simple regular




i
)
:
i

or nonregular continued fraction representations

exist for n, Yn, /e, and e—l/q

3.3 Error Analysis

The error in an approximating fraction compar -
ed to the actual value of a regular continuet
fraction can be computed by noting that, if 4 1is
even--causing the approximating fraction ai/bi to

be high--the value is bounded on the high side by
X1 P s (Y%

b,

xb i-7

. +
LoA-1

b;
and on the low side by

gD v ay %
]
2 b

(x; + Db, , +b

The definition of aX/bi was given in section 3.1,

above. The low bound ai'/bi' is computed by noting

that X; is always slightly low, unless x. 1is th:
A

last term (its inaccuracy is corrected by all ths
succeeding terms xj, where § > (). The error in x.
&

is never greater than or equal to 1. Similarly, if
{ 1is odd, the error is bounded on the high side by
ai'/bi' and on the low side by ai/bi' The magni-

tude of the error is then less than 'ai’/bi' -

a./b.|. By noting that a. = x.a. , + a. dp. =
/bl By gthat a; =xa, , +a, ,and b,
xibi—l + bi-Z’ the error relation simplifies to:
I P .
bL-Z L-1 a&-ﬂb4—1

lerrorl <
(b, +b, )b, .

(-1 Simplifies to bi-4a{-3

This produces a numerator for th2

However, bi-Zai-I - ai~2b

T higbios
error relation of b_jag - ayby = Ix1 - 0x0 = 1 for
4 odd and bpa; - agb; = x;x0 - Ix1 = -1 for £ even.
The error relation becomes:

1
|error] < (b, + b, )b..
4 A-1774
3.4 Basic Unary Functions
Continued fraction representation allows som2
basic functions to be computed with almost trivial
effort, much as positional notation is amenable tn
shifting. The multiplicative inverse 1/Xx is compu-
ted:
1/0x1; x2, «..1 = [0; x1, X2, ...},
The additive inverse -x is computed:
—Ix{xy; x5, X3, «..]
= [-Xl; X2, ~X3, -..]

=[x =131, x5 - 1, xg, ...

We can produce ! - x with

[x15 1, xp - 1, x3, ...].

Multiplication or division by constants is unot
simple in regular continued fraction notation, but,
using nonregular continued fractions,

[py + q1/(py + q2/(p3 + ... ) 1xA
= Apy + Aqy/(ps + qa/(py + ...))

and

[py + q1/(po + qa/(p3 + .. ))]/A
=py + q1/(Apy + Aga/(p3 + ... ).

These basic functions are computationally very
simple. A correspondingly simple positional nota-
tion operation might be shifting.

4. Arithmetic on Continued Fractions
4.1 On-Line Arithmetic

"On-line" arithmetic {[TrE 77] computes the
standard arithmetic functions but requests the
operands in pieces or outputs the result in pieces,
the most significant piece first, If a function
requests the inputs in pieces, it is on-line with
respect to input; if it outputs the result in
pieces, it is on-line with respect to output.
Classical positional arithmetic algorithms are not
on-line with respect to either inputs or outputs.
In digit on-line arithmetic [WaE 81, Owe 81], the
numbers are represented with positionmal notation
and the binary operators (+, =, X, i) request the
inputs one digit at a time and output the result
one digit at a time. Digit on-line algorithms have
been developed for the four basic binary operations
and many unary functions. This arithmetic 1is
attractive because it allows increased parallelism
in a hardware implementation when compared with
standard positional notation arithmetic.

Approximations to positional notation values
(i.e., only the first p digits of an n + m digit
number ) are always low; for this reason, redundant
number systems are used to allow digit on-line
arithmetic algorithms to be on-line with respect to
output. Approximating fractions of a continued
fraction, on the other hand, alternate between
being too high and too low. Arithmetic functions
are able to output continued fraction terms on-
line, after the input of a few terms of the argu-
ments, with no need to ever retract them.

4.2 Binary Operators

Binary coutinued fraction arithmetic has been
researched by Gosper; much of this topic is deve-
loped in [BGS 72]. Suppose that z(x,y) = x + y
were to be computed, where X and Yy are non-regular
continued fractions. The terms of X and y will be
requested in an on~line manner, and will be of
successively less significance. Given a few terms
of X and ¥, we need state variables in z to record
its magnitude so that an occasional on-line output
term can be generated. To input a term of X, for
example, we can calculate the first term pair (1,
q1) and substitute P) + ¢1/%' in place of X in the
expression for Z. Unfortunately, when this substi-




tution is made, Z simplifies to (X'Yy + px' +¢q)/x"',
which is not of the same form as the original z = X
+ Y. A more satisfactory and more general function
is

Z(x,y) = (axy + bx +cy +d)/(exy + fx +gy + 1),

represented as (@ b ¢ d)(e § g h) for convenieace.
After substituting X =p + ¢/x' into z, we have

Z(x'y) = (pa +c)xy + (pb + d)x + qay + gb
(e + gy + (pf + h)x +qey + qf

or, equivalently,
(pa +c¢ pb +d ga qgb)pe +g pf +h qe qi)d.

The form of 2z is preserved after the substitution.
Similar reasoning and similar algebra produce

Z(x,Yy') = oa +b gqa pc +d qc)
(pe +§ qe pg +h qg),

the form of Z after the input of the next term from
y. One boundary condition must be noted: substi-
tuting P + ¢/X' for X is valid except when (©,q) is
the last term and there is nothing left of X t» be
called x'. In fact, ¢ itself is meaningless hare,
since it is a numerator without a denominator. A
more accurate equality for the last term is X =P =

P +G/o. The substitution for z(x',y), above, is
then accurate except for the substitution of the
last (p, g) term. 1In this case, use
2(~,y) = (0 0 pa +c pb+ d)
(0 0 pe+g pf+ h).
For inputting the last term of ¢,
2(x,=) = (0 pa+b 0 pc+ d)
(0 pe+ 4§ 0 pg+ h).
It 1is not unreasonable for one operand—-X, for
example--to terminate before the other. In :his
case, use the z(-,Yy) substitution for the last :erm
of X and continue requesting terms from ¢ alone,

using z(x,y'), until ¢ also terminates.

The state variables of Z hold an approxima:ion
to the next term of the continued fraction resre-
sentation of z. At any time, the approximation is
int[(a + b +c+ d)/(e+ £+ g+ h)]. However, Z
should not output a continued fraction term fpé,
qi) until there is confidence that future terms of

X or y will not change its value. Actually, z
could be premature and output a close approximation
to the proper term, using the fact that

O) X/(:+3, ---]
ool

0 Xt

Y Xie3e
words, by using mnon-regular contiaued

an error in an output term of 2z is not
disastrous; the continued fraction representa:ion
can recover, due to the fact that non~-regular :on-
tinued fractions are not unique representations of
real numbers. This is somewhat akin to the effect
of using a redundant number system in digit on-line

In other
fractions,

187

arithmetic. The use of non-regular continued frac-

tions of this sort, however, loses the pleasing
property that every term of a regular continued
fraction invariably produces a more  accurate

approximating fraction. Fortunately, it turns out
that z can output regular continued fraction terms.
The question to be asked of Z is: Does Z now have
enough information to output a reliable term? To
answer this, anticipate the changes to Z caused by
the next term of X and Y being either very high or
very low. If the unread terms of X and Y, even at
their extrema, can not affect the integer part of
Z, then Z is ready to output a term. The lowest
value of (P, @) (that is, closest to zero) is (O,
0) and the highest is (®, <), If the next term
from x was (0, 0), the value of z would become (¢ +

d)/ g + h). If the next term were (®, =) (these
terms should really be thought of as very large
numbers, rather than infinity), 2 would be (@ +
b)/Ce + 4). If the integer parts of these two
terms match, then 1) future terms of x can not
affect the next term of z and 2) we know the
regular continued fraction value of that next =z
term. The boundary tests for y are (b + d)/(§ + h)
for the next term of y being at the low boundary

and (@ + c)/(e + g) for the next term of y being at
the high boundary. Of course, if x has terminated,
it 1is unnecessary to speculate on further terms of
x and, 1instead, only the boundary tests for y are
performed; the reciprocal argument for a terminated
y also holds. The complete algorithm for determin-
ing when and what to output (it is simpler than it
looks) is:

if X is terminated
then if Y is terminated
then Z is complete. Turn
the rational number
(@ +b +c+d)j(e+f§+9+h)
into a continued fraction
else if int((b + d)/(§ + h)) =
int((a + ¢)/(e + g))
then 7z wants to output
(int((b + d)/(§ +
else 7z is not ready to
else if y is terminated
then if int((c + d)/(g + h)) =
int((a + b)/ (e + §))
then z wants to output
(int((c + /(g + b)), D
else z is not ready to output
else if int((c + d)/(g + h)) =
int((a + b)Y/ (e + §)) =
int((b + d)/(§ + h)) =
int((a + ¢)/(e + g))
then z wants to output
(int((c + d)/ (g +

else z is not ready to

h)), 1)

output

h)), 1)
output.

If z is not ready to output a term, the computation
of the influence of the unused terms of X and Y on
z is still helpful in determining which operand
should be next consulted for a term. z need not
output the terms of a regular continued fraction;
however, this seems to be the easiest approach.
The term (p, ¢) to be output is given in the above
algorithm. z must be modified to reflect the fact
that it has output a term. Noting that =z = p +
g/z', we can solve for z':




z2'(,y) = (qe qf qg qh)
(@ -pe b-pf c-pg d- ph.

The choice of initial values for the state
variables 1in =z produce different operations on x
and y:

for x + ¢, initialize z to (0 1 1 0)
(0 0 o0 1),
for x =y, z+ (0 1 -1 0)0 0 0 1),
for x x y, z<+« (1 0 0 0)0 0 0 1),
for x + ¥y, z+ (0 1 0 00O 0 1 0),
for x xa, z+« (0 a 0 0)0 0 0 1),
for x 2,2z« (0 1 0 00 0 0 a), and
for x, z<« (0 1 0 0)o 0 O 1).
The identity fumction z(x,y) = x can be useful for

converting a non-regular continued fraction into a
regular representation. More complicated expres-
sions can be computed as easily as a single binary
operation. To compute (5xy - 6)/(3x - 2y + 1), for
example, we initialize z to (5 0 0 -6)(0 3 -2
1). Whatever the choice of initial values, the
computational effort in producing the terms of 7 is
the same. This 1is an interesting contrast to
arithmetic in positional notation, in which addi-
tion and subtraction are faster than multiplication
and division and considerably faster than the com-
putation of simple equations.

For some unfathomable reason, most (if not
all) computer hardware uses positional, instead of
continued fraction, representation, The functions
in section 3, above, allow conversion between con-
tinued fraction and ratiomal representations ani
between rational and positional representations.
To output positional numbers directly from 2z, us:
the same boundary checks and output the same p a3
the next digit, except use

z'G,y) =
(B(a - pe) B(b - pg) Blec - pg) B - ph))
e ¢4 g h),

where B is the number base of the positional repre-
sentation.

The eight-variable representation of z(x,y) is
adequate for all arithmetic functions, since zs can
be combined to produce arbitrarily complex equa-
tions. However, it is not unique in maintaining
its form after substitution; 2z(x) = (ax + b)/(ex +
d) will work and requires only four state vari-
ables, as will z(x,y,z), which requires sixteen
variables.

4.3 Comparison

One final binary operation--that of compar--
ison--should be dealt with. Regular continued
fractions have the valuable property that they each
uniquely represent a real number. Positional nota-
tion is not unique in its representations; for
example, 7.4;5 = 7.39. The value 8/3 in rational
notation could equivalently be represented as 16/¢6
or 32/12, to list only two of an infinite sequence
of representations. However, 8/3 can only be rep-
resented as [2; 1, 2] in regular continued fractior
notation. This trait of wunique representatior

188

coupled with the fact that regular continued frac-
tion terms are successively less significant gives
this simple comparison algorithm for a vs. b:

a <« 0;

while ai = bi do {L « 4 + 1)

if ({ is odd and a. < b.) or
L 4
(i da. >b.
(L is even an a; b&)

then b is greater
else a is greater.

The output of the binary operator z(x,y), described
above, can produce regular continued fraction
terms, which makes it amenable to this kind of
comparison, Another valid method which works for
all continued fractions and is a common technique
for comparison in positional notation, is to sub-
tract the two values and examine the sign of the
result. Only one continued fraction output term
need be generated,

A list of some of the advantages of continued
fraction notation over positional notation for
arithmetic would include:

- infinite-precision representation of many
transcendental constants

- easily extends to infinite-precision arithme-
tic. Multi-precision positional arithmetic
slows as precision increases

- roundoff or truncation never happen

~ accuracy is not hardware dependent with con-
tinued fraction machines and the word size is

hidden from the user, thus eliminating the
source of two common software transportation
problems

- an estimate of the error of a truncated con-
tinued fraction can be given and, if some
operands are known only imprecisely, the one
which limited the significance can be identi-
fied

- no calculation is performed unnecessarily,
such as the computation of a value being mul-
tiplied by zero or the computation of a value
to a precision greater than required.

- because the operators are on-line, many opera-
tions can be in progress concurrently; this
leads to a very efficient wuse of parallel
resources.

4.4 Unary Functions

Many important unary functions can be directly
represented as continued fractions {Wyn 64, o0ld
63]); among these are sin, arcsin, tan, tanh, arc-

in, X e_,/n

tan, e, , and Vx (see Appendix). Tan(x),
for example, is represented as

/(1 = x2/(3 ~ x2/(5 - ...))).

These functions accept integer arguments very well,
but have difficulty with continued fractions as
arguments. The problem is that after substituting
the continued fraction representation in place of
the first instance of x, the first term can be
output, but the function becomes the product of the
remainder of itself and the remainder of the con-




This creation
X only has a

tinued fraction representation of x.
of products is merely a nuisance when

few terms or if the required precision of the
result is modest, because the total number of >n-
going continued fraction multiplications remains
low. If X has an infinite number of terms and :he
required precision is large enough, however, :he
unary operator will eventually consume all :he
resources available to it. Using a Taylor serles
representation of the desired function does ‘10t

bypass this problem and would be useful only if it
converges faster. One simple technique which
widens the useful range of the functions is the ‘1se
of a scaling factor. For tangent, this gives

tan(ax) = X
a ~ X2
3/a - xZ
5/a - .. .
Letting a = 1075, for example, we can compute rhe

tangent of a wider range of real arguments, and vet
continue to operate with integers.

One well-known method for computing
which does not expand into products of
tinued fractions is known as Newton's method. It
is a successive approximation ("recurrence reia-
tion") technique and computes a better guess to the

squire

roots con-

actual value of the square root with each itera-
tion. The next approximation for VX is:
o' « o - x/o
2 3
where @ 1is the current approximation and @' is the

next approximation. After the error becomes less
than one, this technique is quadratically conver-
gent (i.e., the number of accurate positional nota-
tion digits doubles with each iteration). The
recursion 1in this form can be contrasted with the
recursion in a continued fraction. A continued
fraction can be defined as x = p + ¢/x', where the
recursion is in the x' term, a value to be expanded
in the future. In contrast, Newton's method has
the recursion in the o term, a value which has
already been computed. This interesting difference
makes Newton's method an excellent technique for
producing square roots of continued fractions [BGS
72, RaE 81]. It works in a way strangely analogous
to that of solving differential equations on an
analog computer, which uses integrators and multi-
pliers as some of its building blocks. Given the
equation dx/dy = 10y, for example, the equation is
solved on this computer by first assuming the exis-—
tence of dx/dy. This is integrated (giving y) aad
multiplied by 10 (giving 10y), which equals dx/dy,

from the original equation. Now that dx/dy is
known, it is fed back into the input of the inta-
grator and the task is complete. Newton's method

works with continued fractions by providing at each
iteration more terms than were available after tae
previous iteration. Since 1) the equation for

at each iteration is a function of a--which is a
less accurate version of g'~-and x, and 2) sin:e
both o' and o are on-line with respect to outpu:,
it becomes possible to use the output of o' as the
ionput for «a. The resulting feedback of data is
similar to that in the analog computer. Of cours:,

189

of a
be

consisting
will

an initial approximation to VX
small number of continued fraction terms
required to provide the first terms for a.

The Newton-Raphson method, of which Newton's
method for square roots is a special case, allows
the computation of roots to more general equations.
The general approximating equation is

where f(a) is the function. To use this technique
to find & = VX, convert the equation into a value
equal to zero (f(a) =a2? - x = 0), take the deriva-
VX produces

tive to find f'(a), and simplify. o =
the approximation
, n-1
a' «aln = 1) - x/a"
n .

This technique can be used to find roots to other
equations, although it should be used with care.
The function n/—, having only one root and being
monotonic, produces no problems.
4.5 Speed of Operations

Multiplication and division with continued
fractions can be done faster than that with posi-

The value of the next continued
but
term

tional notation,
fraction term can be stated probabilistically,
it can be any number. The probability of a
being 1 is 0.41, of it being <= 13 is 0.9, and of
it being <= 100 is 0.99 [Knu 69]. Despite this
tendency toward low values, the expected value of
the next term is infinity; this complicates the
calculation of the effort involved with continued
fraction arithmetic. The following theorem assists
the comparison.

multiplication,
notation are
positional

Theorem: Addition, subtraction,
and division in countinued fraction
performed faster than multiplication in
notation.

The effort involved in positional notation
multiplies 1is a function of the length of the
operands, which 1is the logarithm of the operands.
Instead of a value with a single length, continued
fraction notation breaks the value into many smal-
ler wvalues with small lengths. By comparing the
length of a positional notation value @ with that
of a continued fraction [py; Py, ... pn], it can be
shown that

Proof:

it 1S

) log Pi <2 loga

L =1 =2 log(py + 1/ (pp + ...)).
The important fact about this inequality is that
the sum of the lengths of the continued fraction
terms is proportional to the length of the equiva-

lent positional notation value, Each continued
fraction term triggers a fixed number of multiplies

in the z(x,y) binary operator discussed above.
However, by breaking the large value a into the n
continued fraction terms Pis the multiplication




effort is reduced even though the total length is
more than  the length of the positional notation
value, As an example, cgnsider positional notation
multiplication being 0(n™~), where n is the length
of the operands. If there are 2m continued fr:ac-
tion terms, each with a length of m/m, the ratio of

the effort with continued fractions to that with
positional notation is
n/m* = m! 7%,

n

proportional to the number of contin=-
ued fraction terms, is a function of N--the larger
the value, the more continued fraction terms. Hcw-
ever, this relationship is difficult to establish
because of the probabilistic nature of the terms.
Knuth gives O(n log M) as the fastest multigply
algorithm [Knu 69]. The ratio using this algorithm

The value m,

is
m(n/m) log (n/m) = 1-log(m/n).
n log n
Computation of wunary functions of scalars,
described in section 4.4, above, operates
similar to that of the binary operators. However,

the comparison is made more difficult by the fact
that some unary functions have increasing, not
random, terms. Positional notation must use Taylor
series expansions or other techniques which con-
verge fairly slowly. One benefit of continuzd
fractions from a speed standpoint is that opera-
tions can be easily pipelined. Concurrency in
positional notation arithmetic is accomplished only
after much more effort,

4.6 Floating Point

Continued
ranges {-1,

fractions best represent numbers in

-%) and (%, 1}, With numbe:s
than one, the first term, pj, becom:s
since it holds the integer part of the
Large values can be inverted, but that pu:s
them in the range {% -%), which simply shifts the
large term from py to p,. As described above,
large terms are rare with continued fractions in
the proper range. The low typical term value redu-
ces the load on arithmetic operators. A method for
representing large numbers > 1 is to borrow the
concept of floating point from positional notation
and maintain an exponent where needed. Using this
technique, a binary or unary operator which is
outputting a first or second term significant .y
outside the optimum range (perhaps > 100) cou'd
multiply or divide the entire value by a suitabie
power of the base (the use of an exponent requirns
the selection of some base). This is accomplished
by examining the first and second terms, choosing
an appropriate correction term, and feeding tte
stream of terms through a binary operator which
performs the correction. The exponent must, of
course, remain attached to this new value.

the
greater
large,
value.

Every regular continued fraction maps uniquely

to a real number and vice versa. Some regulgr
continued fractions have unpleasantly large terns
(e.g, 2318,59 = [2318; 1, 1, 2, 3, 1, 3]. The use

of an exponent can be thought of as a simple way to

190

get around the unique representation restriction:
if we do not like a continued fraction representa-
tion, a different exponent allows us to pick anoth-
er one. We can represent 2318.59 as 2.31859x103 =
(2; 3, 7, 4, 1, 12, 2, 2, 13]x103.

Arithmetic on floating point continued frac-
tion values must be modified to accept the concept
of exponents. Little modification need be made for
multiplication and division: for multiplication,
the new mantissa is the product of the old mantis-
sas, without regard to the exponents and the new
exponent is the sum of the old exponents. Division
is also computed similar to that in positional
notation. Addition and subtraction, as with posi-
tional notation, require the alignment of one value
to match the exponent of the other. The procedure
for this can best be illustrated with an example.

Consider the sum xx10° + yx10!3, where x and y are
continued fraction values. The larger is aligned
to the exponent of the smaller: y><1013 becomes

(108y)x105, value 1084 can be computed with
Y

the identity

The

[p1 + q1/(pa + ...)IxA = Apy + Agy/(py + ...).

This will produce a very large first term for gy
which reflects the difference in magnitudes between
X and Y. The state variables in z, the result,
will also output a very large first term (on the
order of 108) which must be noticed and reduced to
a more reasonable magnitude by modifying the output
exponent, Since the difference in the magnitudes
of the two powers is known, in this case 10°, this
factor might be used to initialize the appropriate
state variable in z to allow Z to output terms of
an appropriate magnitude. In this example, Z could
be initialized to (1 0 0 0)(0 0 0 10%). With this
initialization, Zz both computes the floating point
sum or difference, and corrects the output magni-
tude of z. There is no floating point continued
fraction analog to normalization, since there is no
finite word size to be conserved.
5. Applications

The most obvious application areas for a con-~
tinued fraction machine are those requiring high
speed, high precision, or both. Many scientific
characteris-

in linear algebra are often very
Quite a lot has been written on

mathematical areas exhibit these
Problems
sensitive.

and
tics.
error

error analysis and its importance [Bar 81, CHH 81,
Dem 81]. Those fields requiring unusually high-
precision computation with reasonable speed are

rare enough that the most popular mainstream compu-
ters have failed to provide satisfactory results;
these fields might find satisfaction with a machine
operating with continued fractions. Some applica-
tions make heavy use of transcendental numbers and
elementary functions and might appreciate the infi-
nite precision and fast evaluation provided by
continued fractions.

Software transportability is another important
consideration, Having a type of arithmetic which
has no perceptable word size, introduces no error,
and produces the same result to arbitrary accuracy
regardless of the manufacturer of the computer is




In applications where only ac:zu-
not speed, is important, these simple algor-
ithms are easily implemented in software.

of great value,
racy,

Before the age of computing machines, mathena-

ticians imagined the exact value of equatious, but
some of these equations could not be even approxi-
mated because of the difficulty in doing so. At

that time, mathematicians dealt with the set of all
real numbers. With the availabilty of computers,
mathematical models are still built, but there i3 a
new tool to work with. While the computer op:ns
many new doors, computer-assisted mathemati:al
speculation is burdened with new constraints: {ow
long will this algorithm take? What will be the
error in the result? What can be done to approxi-
mate or reduce the error? New techniques for
speeding calculations and reducing the effect of
computer imprecision have improved its usefulness,
but computer scientists are obliged to work with
discrete numbers, which are only approximations to
real numbers. Hardware to evaluate continued frac-
tion expressions, while not able to evaluite
infinite-precision results infinitely quickly,
could be a large step in making computer arithme:ic

more like the continuous mathematics it of:en
attempts to represent.
6. Hardware Architecture
for Continued Fraction Processor
Most present-day computers are von Neumann

machines, characterized by a single program count-
er, globally-addressable memory, and several other
traits., These can also be termed 'control-flow"
computers because the elements making up the compu-
ter--memory, registers, arithmetic units, etc,--
operate after the arrival of control information.
This type of operation implies close synchroniza-
tion among elements. In 'data-flow" computers [agA
82], on the other hand, components await the arri-
val of data before performing an operation. While
data-flow machines are data driven, ‘'reduction
machines" are demand driven; where the data-flow
machine uses the arrival of data to drive computa-
tion, the reduction machine uses the need for data
to trigger a search for it, Either type of inter-—
component communication seems to fit the needs of a
continued fraction computer better than that in a
von Neumann machine, The unary and binary opera-
tors are executed by components of the form shown
in figure 1. Each component can be controlled by a
von Neumann processor, although an all-hardwsire
implementation would speed operation considerably.
Two operands are received from an external source
(although only one would be used in the computation

of a unary function) and operated on internally;
the result terms are output as soon as possible.
Due to the small expected value of the terms, the
processor will typically operate on very smszll

numbers (90% of the terms will be 13 or less).

On-line functions of this sort typically
experience an "on-line delay" which is the numter
of input terms required from each operand before
the first output term is available. The binary
algorithms presented have a typical on-line delay
of 2 - 4.

191

r-— - - - = -
| |
| REGISTER STACK |
ARRAY ]
|
| {
I
1
OPERAND 1 !
RESULT
PROCESSOR >
OPERAND 2
{
|
|
! I
I
| f
TEMPORARY PROGRAM
! STORAGE MEMORY |
I
e o e ]
Figure l: Continued Fraction Processing Elemeant
Figure 2: Tree Structure of many Processing

Elements

A typical computer might be composed of many
processing elements, possibly connected in the form
of a tree, as shown in figure 2. The tree struc-
ture imitates the form of an equation, to easily
represent an equation and maximize the time each
processing element is used. The tree structure
expands gracefully and easily accepts extra proces-
sing elements to fit the needs of the application.
If too few processing elements are present to serve
the task, each element can expand into a virtual
subtree, mimicking a tree with many processing
elements, The subtrees fit together to form a
virtual tree large enough for the eatire task. The
state variables of many different virtual proces-
sors can be stored in the register array and the
stack controls recursion to the different func-
tions. The register array and the stack control
communication between the potentially many virtual
elements in one physical element.




Memory for the storage of results is not used
in the same way as it is with control-flow compu -
ters, In fact, data flow computers prohibit side
effects. Pure LISP is one computer language which
has no side effects, The FORTH language without
variables communicates via a single stack and also
has no side effects. Allowing side effects has a
debilitating effect on some control-flow SIMD and
MIMD (Single/Multiple Instruction stream, Multiple
Data stream) processors, Typically, wmany proces-
sors and many memories need to communicate in a
flexible way. Crossbar switches and banyan net-
works are two of perhaps a dozen popular intercon-
nection strategies. The I/0 problem is so char-
acteristic, however, that systems of this sort
which become I/0 bound are said to be battling the
"von Neumann bottleneck." The machine proposed
here uses a compromise between the attitudes toward
memory of the von Neumann and data~flow schools of
thought.

It has been said that data in transit is no
different from data stored in memory--each looks
like a communication stream relative to the other
and sees itself as memory. This is basic to the
philosophy of the data-flow machine. While a von
Neumann machine might create five temporary vari-
ables before generating a useful result, a data-
flow machine would calculate the result directly
from the inputs without the use of temporaries.
This philosophy works well for the proposed contin-
ued fraction machine, However, many applications
need to store a value in coutinued fraction forn
for use at a later time just as the LISP and FORT{
computer languages can be benefitted by the use of
variables, The variable-length continued fractioa
can be stored as a linked list made of small memory
words, capitalizing on the fact that the terms ar:
usually very small. Storage of values is a vo1
Neumann operation so, to avoid the von Neumana
bottleneck, storage for values is put with each
processing element, This can never cause communi -
cation bottlenecks and does not limit the expansion
of the tree of processing elements.

As discussed above, the binary operations ar:
performed very quickly. Both binary and unarvy
operators produce a fast stream of continued frac-
tion terms which allows for considerable concur-
rency. Additionally, unlike some dedicated paral-
lel processors, this hardware is very flexible ani
can compute different expressions with little
reconfiguration effort. As in other data-flow
machines, repeated and vector operations are
encouraged, since they often maximize the usage oF
the hardware.

The computational elements (the nodes of the
execution tree) are simple enough and have suffi-
ciently limited I/0 to be considered for VLS
implementation. A VLSI continued fractiom proces:-
sor node could be small and inexpensive. A proces-
sor formed from a tree of such nodes would have two
main uses: it could be the arithmetic unit of a
stand-alone processor (either von Neumann or data
flow) or it could be a processing peripheral to
von Neumann machine, much like an array processor.

This design exists only on paper; howe?er, its
benefits appear to merit further study.

7. Summary and Suggestions for Further Work
fraction

The advantages of the continued
arithmetic system described here are:

- infinite-precision representation of many
transcendental constants

- exteansibility to infinite-precision arithmetic

- no roundoff or truncation errors

- superior software transportability

- excellent control of errors

- multiply and divide faster than with positional
notation

- computation of trigounometric,
exponential, and other functions
quickly

- highly parallel hardware implementation.

logarithmic,
simply and

The attempt was made here to merge the useful
traits of continued fractions from wmany sources
along with some new contributions into a wunified
system for mathematical computation. One gap in
this system 1is the lack of unary operators which
easily take continued fractions as arguments. The
successive approximation techniques work very well;
perhaps more of such methods can expand the collec-
tion of useful functions. A more detailied identi-
fication of the application areas is also called
for.

Continued fraction unary functions have been
developed which replace multiplication with shifts
[Tri 77, Bra 74}. A similar speedup for binary
operations would be a significant improvement.

The particularly fast operations of a given
number representation are exploited by some algor-
ithms to produce unusually fast results. The
CORDIC technique [Wal 71}, for example, uses the
fact that shifts and adds in positional notation
are typically much faster than multiplies and
divides; the resulting algorithm is simple and
produces very fast computation of elementary func-
tions. The peculiar traits of continued fractions
hold promise for some equally valuable new algor-
ithms.

A unified and coherent arithmetic has been
presented here. Arithmetic on continued fractions
is practical; in fact, the algorithms are very
simple. The unique benefits of this representation
justify more research into analysis of algorithms
and the hardware implementation.

8. Acknowledgements

I wish to thank Jeff Rosenthal of Aydin for
considerable assistance with some parts of this
research and 1 appreciate the referees' help.
Additionally, I would like to applaud MIT's Al memo
#239, "HAKMEM," as a compendium of unusual and
valuable concepts, including (of course) continued
fractions.




[AgA

[Bar

[BGS

[Bra

[CcHH

[Dem

[KoM

[Knu

[LiN

[01ld

[onA

[Pra

5 [RaE

[TrE

[Tri

82}

81]

72]

74]

81]

81]

81]

69]

81]

63]

81]

751

81]

77]

771

9. References

T. Agerwala and Arvind, "Data Flow Sys-
tems,'" Computer (Feb., 1982), pp. 10-13.

J. Barlow, "On the Distribution of Accu-
mulated Roundoff Error in Floating Point
Arithmetic," Proceedings of 5th Symposium
on Computer Arithmetic (May, 1981), pp.
1060-105.

M. Beeler, R. W. Gosper, and R. Schroepp~
el, T"HAKMEM," Al Memo #239 (MIT, Tteb.,
1972), pp. 36-44.

A. Bracha-Barak, "Application of Cortin-
ued Fractions for Fast Evaluatior of
Certain Functions on a Digital Computer,"
IEEE Trans. on Computers (March, 1974),

pp. 301-309.

M. Cohen, V. C. Hamacha, and T. E. Hull,
""CADAC: An  Arithmetic Unit for (lean
Decimal Arithmetic and Controlled Preci-
sion," Proc. of 5th Symp. on Comp. Arith-

metic (May, 19817, pp. 106-112.

J. Demmel, "Effects of Underflow on Solv-
ing Linear Systems," Proc. of 5th Symp.
on Comp. Arithmetic (May, 1981), pp. 113-
119,

P. Kormerup and D. W. Matula, "An Inte-
grated Rational Arithmetic Unit," Proc.
S5th Symp. on Comp. Arithmetic (May,
1981), pp. 233-240.

D. E. Kruth, The Art of Computer Program-—

ming, vol, 2 (Addison Wesley, 1969).

P. Ligomenides and R. Newcomb, "Com>le-
ment Representations in the Fibonacci
Computer," Proc. 5th Symp. on Comp.
Arithmetic (May, 1981), pp. 6-9.

C. D. Olds, Continued Fractions (Random
House, 1963).

S. Ong and D. E. Atkins, 'Towards Quanti-
tative Comparison of Computer Number Nys~
tems," Proc. of 5th Symp. on Comp. Arith-

metic (May, 1981), pp. 21-33.

V. Pratt, Course Notes for 6.046 (MIT,
1975).

C. S. Raghavendra and M. D. Ercegovac, "A
Simulator for On-Line Arithmetic," Proc.
of 5th Symp. on Comp. Arithmetic (May,

T§8TST pp. 92-98.

K. 8. Trivedi and M. D. Ercegovac, 'On-
Line Algorithms for Division and Multip-
lication," IEEE Trans. on  Computers
(July, 1977) ) T

K. 8. Trivedi, "On the Use of Continued
Fractions for Digital Computer Arithme-

tic," IEEE Trans. on Computers (July,
1977), pp. 700-704.

[WaE 81] 0. wWatanuki and M. D. Ercegovac, "Float-
ing-Point On-Line Arithmetic: Algor-
ithms," Proc. of 5th Symp. on Comp.
Arithmetic (May, 1981), pp. 81-86.

[Wal 71] J. S. walther, "A Unified Algorithm for
Elementary Functions," Proceedings  of
AFIPS 1971 Spring Joint Computer Confer-
ence (1971), pp. 379-385.

[Wyn 64] P. Wynn, "On Some Recent Developments in
the Theory and Application of Continued
Fractions," J. SIAM Numer. Analysis
(1964), pp. 177-197.

Appendix

Some useful unary continued fraction fumctions
follow:

VaZl ¥ b =g + b _
2a + b _
2+ ...
sin X = X
1+ (2

X
(2x3 -2 ) + 2x3x?
(4x5 - xZ) + ...

tan x = X
1 - x2
3_—-__£———
5 - ..
tanh x = X
1 + xz
3+ Y
5 +
arctan x = X
1 + Ixx2 o
3+ b4xx
5+ _ 9xx?
7+ .
In (1 + x) = X
1 + IZX o
2+ IZ%____
3. 22x__
4 + ...

193




