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Abstract Fig.1. The high speed matrix solver in GF(2) is
—_—— required in various application fields of real-
time systems. Concretely the proposed solver is

In this paper a parallel and pipelined fast :pgiiigti;: :gglgggiggﬁion of an encrypted code as
matrix equation solver in GF(2) is proposed where Nt y . _
the elements are 0s or 1s. The solver employing 5 sngr gégg%;?ﬁd xsg%ver consists of n-stage
the iterative logic circuits which are suitable bipe AX - b 9 in GF(2)
for VISI implementation can be realized by the here X is a vect
conventional ~Gauss Jordan Elimination Method, whe X = (Xlgg cooox
O(n) gate stages in the pipeline and O(n?) total . ot . o r
gates are required for solving A X = b where A is A li a regular matrix of nwn, and b is also a
a matrix of n=n, X and b are vectors respectively. vector b= (b - pf

: ; ‘ ; ; : = .

ngs g;g:gfzatlon of the solver is discussed n The organization of the pipelined solver is out-

lined in Fig.l. A single pipe described in Fig.2
is composed of a panel of D Flip Flops, colum ex-
1. Introduction changers, a shuffle memory system, and logic un-
its. 0O(n’) gates required for solving nxn matrix
equations are loyed in the solver. Every solu-
This I presents an ultra high speed tion_of 109-100 pipelined matrig equations can be
solver of p:ﬁz regular matrix equations gn GF?E)* obtglned in lQ nsec Whe? assuming that the propa-
where the elements are 0s or 1s. The parallel and gation delay time of a single gate is 1 nsec.
pipelined solver composed of the iterative logic
circuits  which are suitable for VISI implementa- ) . .
tion can be realized by employing the Gauss Jordan * Note that GF(2) means Galois Field 2.
Elimination Method (GJEM). The iteration of the
GIJEM for solving a matrix equation is shown in
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Fig.1 The Gauss Jordan Elimination Method
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2. Gauss Jordan Elimination Method (GJEM)

The GJEM composed of two processing stages is
discussed in this section. The one is a colum ex-
change stage. The other iz a logic stage. The
number of iterations in the GJEM shown in Fig.l
for solving a regular matrix equation

AX=Db in GF(2)

where A 1s a regular matrix of nsn becomes n.
Hence, the size of a matrix in the ith stage is n
*(n-i+2). When the leftmost element of the (n-
it2)th row in the ith stage is 0, the leftmost
column should be exchanged through a column ex~
changer described in section 3 with another column
where the element of the (n-it+2)th row is 1.

Let us show you the GJEM in GF(2) in a simple
example. Solve (x. X xq‘xlbxsg in a regqular ma-

trix equation 12
101 0 o][x, 0
0111 ofl]x, 0
101 1 1|}x3|=[1
110 1 1f]x, 0
010 0 1|x 1
Solution:
102100 0] 10100 0
011100 ‘R\\ 01110 0|—p;
1011113""000111
110110f>%-—>011110—sr,
01001 1] 01001 1—sP;
P, 101000l 1001 00
011100 01110 0[—=P,
000111 00101 1{—>P,
P, 000010 000010
Pj 00 l\iiixfl__. -—;2‘22E71 11]——P¢
10010 0] 10001 0
P,—>@x010111 010111|—sp,
P 001011 00110 1|—sPg
000010 00010 0|—=pg
Pg—>0>{0 0 0 LJ1£2~=: __ii;l:zi;; 0
10001 0f>p—s1 0000 0]l—sx;
P, 01001 11— 58501000 1—>X,
98%001001 / loo1001|l—sx,
P, 000100 00010 0|—»Xsg
000010 00001 0f—sx3
® : Exclusive OR
x1 =0, x,=1, x3=0, x,=1, and x5 = 0

are obtained by solving the equation.
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3.

Pipelined Matrix Solver

The organization of the proposed matrix
solver for realizing the GJEM is discussed in this
section. In GF(2) the addition and subtraction
corresponds to the function of Exclusive OR logic
and the multiplication to that of AND logic. The
division corresponds to no-operation when the
divisor 1s 1. The organization of the pipelined
solver is described in Fig.l and Fig.2. A single
pipe of the ith stage is composed of a panel of n
*(n-i+2) D Flip Flops, nx(n-i+2) column exchangers,
a shuffle memory system, and n=(i-1) logic units.
A panel of D Flip Flops, a l-detector, a column
exchanger, a shuffule memory system, and a logic
unit of the ith stage are shown in Fig.3, Fig.4,
Fig.5, Fig.6-(a), Fig.6(b), and Fig.7 respective-
ly. The Il-detector in the ith stage detects the
leftmost element to be 1 and produces the row
number of the element for exchanging the leftmost
column with the column of the row number. The row
number corresponds to the output of case i in
Fig.4. The colum exchanger exchanges the required
two colums. The shuffle memory system in the ith
stage shown in Fig.6~(a) and Fig.6-(b) has the in-
formation on the names of columns to be exchanged
by the l-detector. The shuffle memory system is
composed of a shuffle memory and a shuffle circuit
described in Fig.6-(a) and Fig.6-(b). The logic
unit descrited in Fig.7 calculates the arithmetic
operation in GF(2). In order to realize an easy
VLSI implementation, the following items should be

discussed;
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Fig.2 A single pipe of GJEM
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Fig.3 A panel of D Flip Flops of the ith stage
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Fig.5 A column exchanger of the ith stage
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1. a high reqularity for shortening | the re-
quired period of the VISI design,
and 2. a tlexible expandability toward the in-
Crease of the matrix size.
The good VLSI algorithms should satisfy the items.
The proposed solver which is suitable for
VLST implementation can be easily realized by the
high regularity of the iterative logic circuits.
However the organization of the solver does not
have the flexible expandability as a drawback.
The number of required gates for organizing a
solver vs. the size of a matrix and the number of
gate stages in the pipeline vs. the size of a ma-
trix are listed in Fig.8 and calculated inTable 1
A pipelined matrix solver of 3«3 as a simple exam-
ple is shown in Fig. 9 -20.
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Fig.6-(a) A shuffle memory system of the ith stage
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4. Application of Matrix Solver

The proposed solver can be applied to the de-
cryption of an encrypted code. Consider multiresi-
due codes 1n a polynomial ring as a cipher code.
Conversion from multiresidue code to a polynomial
corresponds to the function of the decryption. In
a polynomial ring a new conversion scheme has been
developed in our former paper {1],[3] which
corresponds to the conventional Chinese Remainder
Theorem [2],(4] or the Mixed Radix Conversion
scheme in a number ring {2],[4].

Let us show you our scheme in a simple exam—
ple. Find a polynomial t(x)
x) = £, x™ tox& x5ty xH
+ E3X3 x4 i x + 4
for
£.(x) = x2+ x + 1 mod (x*+x+1)
£,(x) = x5+ 1 mod (x*+x¥1),
aj2 a‘i3 a‘m . s e a‘im
! &lﬁ l g
< aj2 a3 dia éjjm
ﬁ%g i
a,'z 333 354 o e a}m
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? k=2, 3, , m
m=mn - i+ 2

Fig.7 A logic unit of the ith stage
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Fig. 8 Evaluation of the matrix solver

Table 1 The number of required gates of the matrix solver
AN D ) R NOT X 0 R 0 F.F
Paner ofF
bE 0 0 0 0 ni
1-pETECTOR Ll 0 [ 0 i]
CoLumn ) 0
EXCHANGER naos o abon 0 0
SHUFFLE (-2
n-2). (In-1)s
MEMORY
avsren int(log,n) irt(log,n) 0 0 naxint(logyn)
Losic
(n-1)(i-1
e ) 0 0 (n-1)(i-1) 0
fani-3n) (Zn1-n)
Torvat J s )
(3n-7). -1k [ fn-11-(n-1) nie
int(log.n) int(log,n) axinc(log,n)
The number of required gates = 17-'3,\3 . 2!3_112 . 1_75“ P
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Fig.17 A panel of D Flip Flops of the 3rd stage

Solution :
£(x) = £(x) = £a(x)
£.(x) = Q (%) « (x 4x+1) + (x2+x+1)
£,(x) = Q (x) - (x™x341) + (x341)
where Q. {x) = a;x3 bx% cx + d;
Q,(x) = a,x¥% bx% cyx +d,

In order to tind f(x), we should detemine Q
(x} or Q,(x). To determine Q;(x) or Q,(x), the

equation
Ei(x) + £o(x) =0 in GF(2) (1)
is employed where the equation is always satisfied

in GF(2). Hence, equation (1) presents the fol-
lowing matrix equation:
10001000|[a;] Jo]
010011001{/by| |0
00100110} 0
10010011} gl={0
11001001} ay 1
01100100{ by |1
001106010} ¢y 1
(00010001 ay |0
a;=0,b;=1,¢c;=1,d;=0
a,=0,by=1,cy=0,anddy,= 0 are ob-
tained by solving Eq.(2). We can obtain £(x);

f(x) = (x2+ x ). (x%+ x + 1)
+ (x2+ x + 1)
=x6+ x5+ x34+x2+1 .,

5. Concius ion

A fast matrix solver for solving AX =b in
GF(2) is discussed from the viewpoints of the
speed of the solution and the number of required
gates through considering the parallel and pipe-
lined organization.

O(n) gate stages in the pipeline and O(n3)
total gates are required for solving A X = b where
A is a regular matrix of n n. The decryption of an
encrypted code as an application of the proposed
solver is shown in this paper.
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