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ABSTRACT

The ELXS! System 6400 is a new B84-bit
general-purpose mainframe compuater [1].
This paper decribes its arithmetic instruc-
tion set architecture and the organization
' of the arithmetic processor. The ELXSI
instruction set supports a complete imple-
! mentation of the proposed IEEE floating
; point standard [2], plus integer and
| decimal arithmetic. The System 6400
; arithmetic processor uses ECL gate arrays
! to execute these instructions at high speed
using a single board of hardware.

1. Introduction

D The ELXSI System 6400 is a multiprocessor built
around a central system bus (Figure 1).
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Figure 1. -- ELXSI System 6400 Block Diagram

The bus and most CPU data paths are 84 bits wide. The
expansible system of one to ten processors is designed
to be transparent to user software. The system behaves
as if there were an independent server for each of multi-
ple queues of processes ready to run. Any combination
of seven CPU’'s and 1/0 processors plus 92 megabytes of
main memory fits in a single standard cabinet. Two such
cabinets may be connected to form a larger system.

—_— .
* Thig Teport was prepared on equipment supported by the U. S, Depart-

ment of Energy under contract DE-AT03-76SF00034, Project agreement
DE-AS03-70ER10358,
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The processors share main memory and I/0
resources. The GIGABUS (TM) that interconnects these

units can transfer 320 megabytes per second of
addresses and data.

The operating systern uses messages for interpro-
cess communication. Message system primitives are
part of the instruction set, so they are implemented by
the microcode and hardware of each processor. The
message passing instructions are available to user as
well as operating system processes.

2. Arithmetic Instruction Set Architecture

The ELXS! architecture provides 16 64-bit general
purpose registers (Figure 2). .
These can hold integer, floating point or decimal data.
Any register can be used as an index to compute a vir-
tual address. The 32-bit virtual address space is divided

into 2K-byte pages. Instructions and data are byte-
addressable,
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Figure 2. - Visible Process State




Instructions specify either two or three operands.
The three operand addressing modes are of the form:

R1 « R2 op R3,
Rl « R2 op Immediate, or
R1 « R2 op Memory.

Memory addresses may be formed with up to two index
registers plus a 32-bit displacement. For unary opera-
tions, the R2 specifier is ignored. The destination is a
register for all instructions except stores. The two
operand address modes are special cases of the three
operand ones, intended to increase code compaction.

2.1. Floating Point

Figure 3 shows the format of ELXS] single, double
and extended precision floating point data types. These
data types define 32, 64 and 80 bit numbers, respec-
tively. ELXSI extended precizion uses 128 bits of
storage, although only 80 bits participate in arithmetic
operations. Extended precision numbers use register
pairs when loaded from memory. The explicit leading bit
of an extended precision fraction is a holdover from ear-
lier drafts of the proposed floating point standard. Arith-
metic on unnormalized fractions is not supported,
except for denormalized numbers with the minimum-
valued exponent.
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Figure 3. -- Floating Point Data Types

The floating point precisions have three different
exponent ranges as well as fraction widths. Moving to a
wider format increases both range and precision, unlike
most prior architectures with more than one floating
point data type.

Three kinds of fioating point numbers and two sym-
bols are encoded in each data type. Zeroes, denormal-
ized numbers and normalized numbers are encoded in
sign-magnitude form. The denormalized numbers have
the minimum-valued exponent and are the default
response to underflow. The special symbols in the archi-
tecture are plus infinity, minus infinity and Not-a-
Number. A NaN is the default response to an invalid or
undefined operation.
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add
subtract (reverse)

FADD 3z
FSUB, FSUBR 84
FMUL 80

multiply
FDIV, FDIVR divide {reverse)
FCMP, FCMPX compare {exception if unordered)
FSQR square root
FINP integer part in FP format
FREM remainder (argument reduction)
CVTSD, CVTSE convert single
CVTDS, CVTDE convert double
CVTES, CVTED convert extended

CVTSI, CV'IDI, CVTE!]
CVTIS, CVTID, CVTIE

convert FP to integer
convert integer to FP

READ.STAT
WRITE.STAT

status/mode word to reg
reg to status/mode word

Figure 4. — Floating Point Instructions

Figure 4 shows the floating point instruction set.
There are distinct opcodes for each operation in each of
the three precisions. Single and double precision opera-
tions can be used with any addressing mode, while
extended precision operations are restrictel to the
three register form. Floating point loads and stores use
the normal integer and logical instructions. Two loads or
two stores are required to move an extended precision
number. Floating point negation and absolute value
operations are performed with logical XOR, logical AND,
or shift instructions.

The ELXSI floating point architecture differs in
structure from the Intel architecture [4] (which also
embodies the proposed standard), although the numeri-
cal results are identical. One difference is that the ELXSI
integer and floating point registers coincide, while Intel's
are distinct. A second difference is that ELXSI has
separate opcodes for each precision. Consequently,
there are instructions for conversion between floating
point precisions. Intel's registers hold all numbers in
extended precision. Conversions to and from extended
precision are implicit in the floating point load and store
instructions.

ELXSI’'s compare and remainder (argument reduc-
tion) instructions have extensions beyond the require-
ments of the proposed standard. Floating point com-
parison is based on one of 32 predicates. The com-
parison may result in a branch, an exception or no
action. The predicates are all combinations of flve bits.
Four of these match the four possible relations between
two floating point numbers: less than, equal, greater
than or unordered. If the fifth bit is set, then an Invalid
Operation Exception occurs if the relation between the
operands is unordered. This bit can be used to prevent
the proposed standard’'s Not-A-Number symbols from
confusing a program's control flow. By allowing all possi-
ble predicates, the floating point compare instructions
give the programmer and the compiler writer complete
flexibility across languages and when porting old pro-
grams.

The floating point remainder instruction takes two
floating point arguments and delivers two results. One
result is the last 64 bits of the rounded two’'s comple-
ment integer quotient. This is not required by the float-
ing point standard, but is useful for both periodic func-
tions and others such as exponential. The second result
is the remainder expressed in floating point format and
ranging in value from -% abs{divisor) to +% abs(divisor).
The usual relation

dividend = (full-length quotient * divisor) + remainder

holds, although not all of the quotient is delivered if it is
longer than 84 bits.
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2.2. Status/Mode Word

The process status word contains all of the mode
bits and status flags that the user can modify and test
(Figure 5).
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BcC decimal carry bit
FP OV floating point overflow (trap enable, flag) pair
FP UN floating point underflow (trap enable, flag) pair
FP DZ floating point divide by zero {irap enable, flag) pair
FP IV floating point invalid operation {trap enable, flag) pair
FP IX floating point inexact result (trap enable, flag) pair
INT OV integer overflow {trap enable, flag) pair
INT DZ integer divide by zers (trap enable, flag) pair

Figure 5. -- Process Status/Mode Word

Seven mode bits are required by the proposed floating
point standard for implementations that allow excep-
tions to be trapped. Two bits select one of four rounding
modes: to nearest even, chopped, toward plus infinity
and toward minus infinity. Five trap enable bits allow
the user to select trapping or a default result for the fol-
lowing floating point exceptions: underflow, overflow,
divide by zero, invalid operation and wmnexact result.
Trapping means that control passes to a procedure sup-
plied by the user for the particular exception, if there is
one. Otherwise, control passes to the system trap
handler. Fach trap enable bit is paired with a flag bit
that is set if an exception occurs with its trap masked
off. In this case, the computation continues after the
default result is delivered to the instruction's destina-
tion.

There are no condition code bits in the status word
because ELXSI compare and branch instructions com-
bine both steps into one operation.

The flush to zero mode is an extension to the stan-
dard that allows the user to prohibit the formation of
denormalized numbers on underflow. This may make it
simpler to port programs written for machines that
always flush to zero on underflow. Flush to zero is
relevant only if the underflow trap is masked off.
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2.3. Integer

ELXSI provides 1B-bit, 32-bit and 84-bit two's com-
plement integers and the arithmetic operations shown in
Figure 8. Two pairs of bits in the status/mode word
correspond to the integer overflow and integer divide by
zero exceptions. The trap enable bit and the occurrence
flag in each pair allow the user to control integer excep-
tions in the same manner as floating point exceptions.

The integer instructions are defined to support mul-
tiple precision arithmetic well. In multiple precision
addition and subtraction, all segments except the left-
most use instructions that generate a carry bit, but do
not check for overflow. The leftmost segment uses a reg-
ular add or subtract operation to check for overflow and
clear the carry bit. Thus single length arithmetic is a
special case of multiple precision arithmetic. Only the
leftmost segment differentiates between magnitude and
signed numbers. The integer carry bit is available in the
status word for the user to manipulate, although the
usual sequences of instructions would make this
unnecessary. Multiple precision multiplication is sup-
ported by instruclinas which deliver the 128-bit product
of signed or unsigned numbers.

ADD 16 add

SUH, SUBR 32 subtract {reverse)
MUL 84 multiply

DIV, DIVR divide (reverse)
REM. REMR remainder (reverse)

CMP, CMPU compare (unsigned)

ADDIUC add and generate carry
SUBUC, SUBUCR subtract end generate carry
NEG negate

joad sign extended

Lpz 18 toad zero extended

ST 32 store

STV 64 slore with overfiow check

STI, STIN store immediate {negative)
ASCILADD ndd

ASCILADDC add and generate carry
ASCILSUB subtract

ASCH.SUBC subtract and generate carry
CVT.Al convert ascii to binary integer
CVT.IA convert binary integer to ascii

Figure 8 -- integer and Decimal Instructions

2.4. Decimal

Decimal arithmetic is defined for digits encoded i
ASCIl. There is no packed decimal format. A registe.
holds eight decimal digits representing a positive integer
or zero. The six decimal instructions are "add", "add
and generate carry”, "subtract”, "subtract and generate
carry”, "convert decimal to binary" and "convert binary
to decimal”. The carry instructions are for multiple pre-
cision arithmetic. The decimal carry bit in the status
register ir separete from the binary integer carry bit.

Decimal multiplication and division are carried out
through conversion to binary. This technique is efficient
because a small amount of hardware makes conversion
between binary and decimeal extremely fast.




3. 8400 Arithmetic Processor {AP)

The arithmetic processor performs all floating
point, integer and decimal arithmetic. It fits on a single
board, yet adds double precision floating point numbers
in 150 nanoseconds and multiplies them in 300
nanoseconds. Other register to register instruction
times are given in Figure 7.

Single | Double | Extended

FADD 150 150 300
FMUL 200 300 500
FDIV 1000 1750 2100
FSQR 1600 3050 3750

ADD 100

MUL.64 250-350

MUL. 128 450

DIV BO0 + (25 * #quotient »its)

ASCIILADD 200
ASCII -> INT | 500
INT -> ASCII | 2500

Figure 7. -- Register to Register Bxecution Times (ns)

Two principles governed the AP's design. The first
was to avoid slowing arithmetic on normalized floating
point numbers due to checking for special cases. All
such cases are detected by special hardware and then
handled by microcode at whatever speed is appropriate.
The detection hardware never interferes with the critical
path for regular normalized numbers. In most cases, the
complexity of the floating point architecture is pushed
into microcode rather than hardware.

The second principle was to reuse hardware for mul-
tiple functions. One example is that the exponent box
computes the number of goutient bits to generate for
integer division, floating point sguare root and floating
point remainder operations. Another example is the
two-directional barrel shifter used for prealignment and
postnormalization in floating point addition/subtraction.
The shifter also aligns operands in muitiplication and
division, and forms part of the priority encoder.

3.1. Interface to the Cache and Main CPU

The 6400 central processing unit consists of three
boards: cache, main CPU, and AP (Figure 8).
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Figure 8. -- System 6400 Central Processor

The cache is 18 Kbytes, two-way set associative with a
100-ns access time. The microcode cycle time of the
main CPU and the AP is 50 nanoseconds. All control
store is held in RAM.

The main CPU and the AP are co-processors, each
with its own copies of the register file. The two micro-
engines are synchronized by branch lines and interrupts.
Consistency is maintained because the main CPU
controls writes to the register flie copies on both boards.
The main CPU contains the instruction fetch unit and
handles all interactions with the cache, but the AP
decodes instructions for itseif. When instructions are
handled by the main CPU, the AP is idle. On instructions
handled by the AP, the main CPU fetches non-register
operands for the AP and then waits for it to signal com-
pletion. This protocol allows execution times to be data
dependent. Communication between the main CPU and
the AP is fast because unusual slow cases are caught by
interrupts. The microcode proceeds on the usual fast
path until interrupted.

3.2. AP Block Structure

The arithmetic processor's data paths and func-
tional units are shown in Figure 9.

Data is received from and sent to the main CPU over two
unidirectional 64-bit busses. Instructions arrive over a
separate 24-bit bus. The AP’s major functional units are
designed to accomodate the three floating point data
types and integers with minimal replication of hardware
and microcode. For example, the microcode for single
and double precision floating point addition is identical.
The same is true for floating point comparison.

The AP hardware consists of 49 Motorola MCA-1200
gate arrays, 50 1K and 4K ECL RAMs, and 600 ECL 10K
series MS] packages. The gate arrays taken as a whole
contain as much logic as 1000 MSI packages. There are
eight gate array designs, providing the following func-
tions: multiply, divide(2), unpack, binary ALU, exponent
difference, barrel shift, and BCD add/conversion to

binary.
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Figure 9. - Arithmetic Processor Block Diagram
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3.3. Microcode

The AP microcode consists of approximately 1000
72-bit words. Figure 10 shows their distribution among
instructions. Of the B00 words used for floating point
arithmetic, 170 cover the cases of zero or denormalized
number operands and 135 cover the cases of infinity or
Not-A-Number operands. Another 75 words are used to
detect exception conditions or to respond after the
hardware has detected them. For the basic arithmetic
operations, more than half of the microcode is devoted
to the proposed floating point standard’'s denormalized
numbers and special symbols.

ZER0 TMNTY ToTaL
NORMAL PENCRN MAN

FADD, F5y8, FHyL } saLfogt | s+ i3 38 25 X« 151
FOI FCHP, Fempx EXT 42 2 o« o1 123
FSQR FINP FREM | SeL/oBL | 129 8 1t 1o 1 110
o Exr 0 4 s ;3 83
CONVERT ~ FP— FP 32 9 s 630 92
FP—=~ T 5] 3 3 303 63

38 41 18 60 1 681

CONVERT  INT—FP 3z
DECIMAL T2
INTEGER 80
EXCEPTION  HANDLING FP *
(user- visisLe ExcePTIoNs) | wr g
OTHER 52

1008

SINGLE/DOUBLE Floating Point 466
EXTENDED Floating Foint 327
Integer 88
Decimal 72
Other 52
Total 1005

Figure 10. -- Arithmetic Processor Microcode Allocation

The micro-sequencer contains a large number of
branch conditions and infrequently-used control lines
encoded in "miscellaneous’ microword fields. The micro-
code uses 30 two-way branches, 14 four-way branches
and 3 eight-way branches based on 4% independent
branch conditions. About 25 of these conditions ars
directly attributable to the proposed floating point stan-
dard.

The AP is designed so that the usual cases of the
most frequent instructions run entirely under hardware
control. These instructions include single add and multi-
ply, double add and multiply, and integer multiply. The
microcode follows along checking for unusual cases when
the appropriate branch conditions have become valid.

3.4. Extended Precision

Although the microcode for single and double preci-
sions cften blends into just one code segment, extended
precision operations are always controlled by indepen-
dent microcode. The primary reason is that extended
precision results occupy two registers. The AP must
pack two words in succession to pass to the main CPU. It
is difficult to fold extended precision microcode into that
for single and double without slowing them. In most
cases all microwords in the critical path already contain
multi-way branches, making it expensive to add another
branch bit to detect extended precision.

3.5. Functional Units

In the following sections, we describe the hardware
for multiplication, division, rounding, normalization and
decimal arithmetic.

3.5.1. Rounding and Normalization

To conserve hardware, the normalization unit,
adjusts fractions by a one bit shift to the right, no shift,
or a one bit shift to the left. This allows magnitude addi-
tions, multiplications and divisions to be normalized and
rounded in one pass. Most magnitude subtractions will
finish in one pass, also: all of them with exponent
differerice greater than or equal to two, and some of
them with exponent difference equal to one. Subtrac-
tions requiring postnormalizations greater than one send
the fraction back around to the top for one pass through
the barrel shifter.

The intermediate fraction result after magnitude
subtraction is usually a negative two's complement
number. The logical sequence of operations on this frac-
tion is to complement it, normalize it and round it.
Negation and rounding both require a full-length carry
propagate adder. The AP uses only one adder by per-
forming negation and rounding at the same time.
Rounding occurs at one of three possible bit locations,
depending on the normalization which will follow. This
method is somewhat faster than the straightforward
scheme because the uphill part of the adder's carry loo-
kahead logic runs in parallel with the normalization and
rounding logic. The data lines can be kept as the critical
path rather than the select lines. If the normalization
multiplexer were first in the data path, the select lines
would be the critical path.




3.5.2. Multiplication

The multiplier accepts two's complement integers
and unsigned floating point fraztions as operands. This
capability is built into the 8-bit by 8-bit gate array multi-
pliers. Eight of them are connected to form a 84-bit by
B-bit slice that is clocked every 25 ns (Figure 11). The
redundant partial product registers keep the time for a
64-bit carry lookahead addition out of the inner loop.
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Figure 11. -- Multiplier Organjzation

The multiplier runs 3 steps for single precision, 7
steps for double precision and 8 steps for extended pre-
cision floating point. It runs 4 steps for integer multipli-
cation if both operands have less than or equal to 32
significant bits. Otherwise it runs 8 steps to form the
complete 128-bit product and tests for overflow. The
multiplier runs under hardware rather than microcode
control to allow an odd number of steps (lwo steps per
microcode cycle). Using the exact number of steps
necessary minimizes alignment shifting and saves 50 ns
in single and double precision fluating point

The multiplicand passes through the shifter on its
way to the multiplier chips so that it can be moved left
by 3 bits in double precision floating point and 32 bits in
integer multiply with short operands. With this arrange-
ment, products are correctly aligned when they leave
the multiplier on the way to the rounder.

64 by 64-bit unsigned integer multiply is equivalent
to the fraction multiply for extended precision, so the
sign-magnitude representation for floating point imposes
no additional hardware requirzments beyond those of
multiple precision integer arithretic.

3.5.3. Division

The division unit is used for floating point divide,
remainder and square root; integer divide and
remainder; and binary to decimal conversicn operations.
It produces two quotient bits or one square root bit per
50 ns cycle. The design is based on the divide and square
root hardware developed for a floating point accelerator
at UC Berkeley [5].

3.5.4. Decimal

Decimal adds and subtracts are carried out with an
eight byte BCD adder. Decimal to binary conversion uses
random logic in the BCD gate array to convert 4 digits to
14 bits. The high and low order halves of an eight BCD
digit number are converted in parallel. Then the top
half's 14 binary bits are multiplied by 10,000 and added
to the bottom half. Binary to decimal conversion
depends on the divider. The 27 bit binary input is
divided successively by 1000 to form sections of 7, 10
and 10 bits. Each of these is converted to three BCD
digits by a RAM lookup table on the output of the division
box.

4. Conclusions

The System 6400 arithmetic processor supports the
proposed IEEE floating point standard with fast hardware
of moderate size. The costs of the standard were
confined to microcode size and a longer design cycle.
The extra microcode could be a severe problem in the
future, either in numbers of IC's or a slower cycle time,
We do not expect to reduce extended precision’s micro-
code cost, but we want the reduce the number of micro-
words devoted to handling special cases in all three float-
ing point precisions. One approach would be to extend
the architecture so that we can trap to assembly
language subroutines from microcode when special cases
are detected.

Much more time was spent designing hardware and
writing rnicrocode for this architecture than would have
been required for an implementation of DEC VAX or IBM
370 floating point. But we expect future implementa-
tions to build on the knowledge gained this time.

The simple set of decimal arithmetic instructions
has worked well in our Cobol compiler and language-
independent format conversion utilities. Decimal arith-
metic is extremely fast, but requires little hardware. We
have provided well for multiple precision integer addition
and multiplication. To improve multiple precision divi-
sion, we need to add instructions to divide 128-bit divi-
dends by 64-bit divisors in both magnitude and two's
complement forms.
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