ADA* FLOATING-POINT ARITHMETIC A3 A BASIS FOR PORTABLE NUMERICAL SOFTWARE

PETER J L WALLIS

SCHOOL OF MATHEMATICS,

UNIVERSITY OF BATH

CLAVERTON DOWN, BATH, U.K,

Abstract

Ada supports two different schemes for
floating—point arithmetic portability - one based on the
use of the underlying machine arithmetic and the
other based on the ‘modei arithmetic’ that the
underlying machine supports. Features of both
schemes are explained in the context of their
suitability as bases for the production of portable
numerical software.

introduction

Although Ada is a fully-standardised high-lavel
language for which portability of programs was a
requirement, writing portable programs in Ada
necessarily requires great care ([1]. The need for
such care is not unique to Ada, but seems to be
inherent in any realistic contemporary high-lave!
language (2].

The Ada design incorporates a serious attempt! to
facilitate the production of portable numerical software
by the provision of suitable language features. The
purpose of the present paper is to examine these
features to clarify the ideas behind them and the
difficulties inherent in their use. After axplaining how
environment paramsters are provided in Ada. we
present two schemes for Ada floating—point portability
in detail as alternative bases for the production of
portable numerical software. Finally, their relative
merits are discussed.

Versions of Ada

Ada evolved through a number of versions to its
recent ANSI standardisation. This paper is based on
ANSI Standard Ada (3}, while the November 1980
vaersion of the language [{4] was used as a basis in
previous discussions of Ada arithmetic [5.6.7.8,9].
The only language changes relevant here concern the
introduction of sate numbers ([4] Section 3.5.6) and
a small resultant change in the handiing of range
constraints for floating-point types ({4] Section
3.5.7): see [7] for the previous position on these

Environment Parameters

Ada arithmetic portability ultimately relies on the
well-used idea of allowinag the programmer access to

*Ada is a registered trademark of the US Government,
Ada Joint Program Office.

CH1892-9/83/0000/0079%01.00 © 1983 IEEE

‘environment parameters’. There is nothing new
about this - see (9] for a comprehensive survey of
work relating to the parameterisation of floating—point
arithmetic. However. the mechanisms provided within
the Ada language for furnishing environment parameter
values do deserve brief comment.

Parameterisation in Ada

Cnvironment parameters in Ada are supplied to
programs in two different ways - in the body of
package STANDARD and as attributes of types. This
has the advantage that special syntax is used for
them. Thus (unless their values are assigned to
variables. which would be considered bad Ada
programming style [101). their use in the program is
conspicuous to the reader and can lead to compiler
dead-code elimination since the values of all
quantities concerned are known at compile-time. This
means that versions of a program tailored to different
object machines could in principle be compiled from
the same source text, eliminating a messy editing job
sometimes needed for current numerical libraries.

Fioating—-Point Portability

There are two quite different methods of arranging
a floating-point portabiiity scheme based on
environment parameters. The first, which may be
called the ’machine-dependent’” method, furnishes
parameters of the arithmetic actually provided and
leaves the programmer to tailor his work to this.

The second. which we call the ‘model’ method.
relies on the provision of parameters characterising a
very conservative use of the arithmetic on any
particular machine in such a way that the programmer
is encouraged to rely only upon characteristics
common to all targat machines. The provision and
use of Ada attributes corresponding to the
‘machine-dependent’ method and to the ‘model’
method are now separately discussed.

‘Machine-Dependent’ Method

Fioating-point portabllity in Ada can be arranged
using only the machine—-dependent characteristics of
floating—point arithmetic. This style of Ada portable
programming is analogous to Fortran portable
numerical programming with the added possibility of
exploiting dead-code elimination. For this purpose.
access is provided (using package STANDARD) to
characterisation of the available floating—point

arithmetic. Additionally. any Ada floating-point type F
has the machine-dependent attributes listed in Table
1.

Table 1. Machine~Depeandent Attributes

F'MACHINE_RADIX
F'MACHINE_MANTISSA
F'MACHINE_EMAX
F'MACHINE_EMIN
F'MACHINE,_ROUNDS

F 'MACHINE_OVERFLOWS

Comparing the contents of Table 1 with other
proposed parameterisations such as the IFIP WG 2.5
parameter list discussed in [9]. it may be concluded
that Ada attributes provide a plausible basis for
‘machine-dependent’ floating-point portability.
tHowever, the machine—dependent attributes given in
Table 1 are of limited use in portable programming of
this type. Availability of F'MACHINE_RADIX means that
one can take advantage of wobbling precision, but the
rounding action is not well specified. In practice
these deficiencies are not serious., since compiler
dead-code elimination based on the use of SYSTEM_
NAME from package SYSTEM is the way machine
dependencies at this level of detail are most likely to
be handied.

Manipulative Functions

Some portable numerical software uses algorithms
that treat the exponent and mantissa of a floatin-
point number separately. Brown and Feldman [11].
who discuss this question and illustrate it with sampile
algorithms. conclude that this is best done using six
basic functions. These six functions, which have
become known as the Brown/Feldman functions, are
also discussed (and are related to similar X3J3 and
IEEE proposals) in (9]. The bodies of the
Brown/Feldman Functions cannot be written in a
portable way using the attributes in Table 1 because
none of these concern the way a floating—point
number is actuaily represented: implementations of
the Brown/Feldman Functions tor the
machine-dependent fioating—point types would have to
be written in assembly code for each target machine.

‘Model” Method

As explained already. the ‘model’ method of Ada
floating—-point portability is based on encouraging
programmers to se floating-point arithmetic
capabilities very conservatively in the interests of
guaranteed portability. The approach taken uses a
model of floating-point arithmetic that is based on that
of W S Brown [12],

The idea of Brown's model is to provide a formal
basis for ‘worst case’ error analysis of portable
floating-point softwarae. Thus the model necessarily
provides a pessimistic view of numerical behaviour on
any particular machine. Some attempts have been
made in Ada to reduce the pessimism of the mode! at
the cost of excluding certain machines. Ada’s use of
supported division and a binary machine base can be
sean in this light; supported division improves

‘expected error behaviour on division and .a binary

base means that certain non-integral literals are
model numbers, but both these assumptions exclude
certain machines (6,71,

General Description

The idea of the Ada model meathod for
floating—point portability is that the programmer
specifies the precision (in decimal digits) and
(optionally) the range of each floating—-point quantity,
and the compiler furnishes a machine-dependent type
providing at least the requested range and precision.
It is thus necessary for the compiler writer to know
the Ada model characteristics of the floating-point
arithmetic provided by the target machine hardware:
the way these model characteristics may be found is
explained in [7,8]. Use of the model brings with it
certain guarantees about the errors inherent in the
floating—-point arithmetic.

Characteristics of the model arithmetic requested
and provided are available as attributes. There are
two sets of these -~ model attributes and safe
attributes - which are now separately explained.

Model _Attributes These attributes relate to the
properties of the model arithmsetic guaranteed to be
the same on all machines. There are six of those as
given in Table 2 for a floating—point type F. but
their values are all calculated ([3] Section 3.5.8)
from quantities specified by the programmer in a type
definition of the form

type F is digits D [range L..R]

where . L and R are supplied by the programmer
and the range specification is optional.

Table 2. 'Modsel’ Attributes

F'DIGITS
F'MANTISSA
F'EPSILON
F'EMAX

F ' SMALL
F'LARGE

Safe Attributes As explained in (7], a consequence of
having an Ada mode! for arithmetic that may be
parameterised only by the required precision is that
some exira mode! range to that specified by the model
attributes may be available on particular hardware. In
ANSI Ada [3]), this extra range is made available by
the three ‘safe’ attributes given in Table 3 -~ these
correspond to the three attributes in Table 2 whose
values are affected by the extra range.

Table 3. Safe Attributes
F ' SAFE_EMAX
F'SAFE_SMALL
F'SAFE_LARGE

Comparison_of Safe and Model Attributes

It remains to discuss the relative merits of the use
of Safe and Mode! Attributes in portability using the
Recail that Model Attributes are

‘model’ method.

those which follow from the precision specified, while
Safe Attributes correspond to all the mode! range and
provision provided by the machine type allocated as a
result of the precision specification. It follows that
Safe Attributes should be used for full exploitation of
the model arithmetic as supported by a given machine
while the use of Model Attributes corresponds to
making minimal demands on machine arithmetic
consistent with the required portable pracision. Thus
it would appear that the attributes in Table 2 that
correspond to those in Table 3 have littie practical
value.

Difficuities with the ‘Model’ Method

There are two different kinds of difficulty with the
use of the Ada model as a basis for numerical
software portability. These have been elegantly
explained by Cody (9] in arguing against such use of

the Ada model*. First, the model is too rigidly
defined: not only are some machines excluded. but
it gives an unreasonably pessimistic view of the

arithmetic on many floating-point units because of the
attempt at generality. Secondly, and more seriously,
the model is exceedingly difficult to use properly
because machine-dependent effects may arise through
inadvertent use of values which are outside the range
of safe numbers yet do not cause the raising of an
exception. The formulation of Brown‘s model and its
incorporation within Ada are substantial, praiseworthy
efforts. but it seems most unlikely that the Ada model
will find much favour among those using the language
for nontrivial portable numerical software.

Apart from these particular difficulties with the Ada
model. it may also be convincingly argued that the
idea of using a (necessarily pessimistic) model as a
basis for floating-point portability is wrong in
principle. It is bound to lead to inferior performance
on particular machines - for example one is prevented
from taking advantage of such features as known bias
in rounding and extra precision associated with a
hexadecimal base (‘'wobbling precision’). The
resulting error bounds can. in a computation of any
complexity. rapidly become so wide as to be
meaningless. Further, use of the model for error
analysis can be seen as suggestive of a way of
thinking about error behaviour that is quite
inappropriate for some hardware explicitly designed to
have good error behaviour. However, this does not
detract from the fact that the Brown model is the best
that can be done In designing a unlversal
floating—point model that can be fitted retrospectively,
so to speak. to existing floating—point hardware - only
the appropriateness of rigorous model arithmetic as a

basis for numerical software portability is at issue
here.
Conglusion
Ada is unique among contemporary high-level
languages in giving serious consideration to the
perplexing problems of floating~point portability. As

such, its support of fioating-point arithmetic warrants

*Cody refers to a version of Ada [4] without safe
attributes. but this does not affect his arguments.

81

It seems reasonable to conciude.
that the shortcomings of the

sympathetic study.
albeit with some regret.
Ada model outweigh its advantages for the production

of serious portable numerical software: the
‘machine—dependent’ method is likely to continue to
be used for Ada much as for contemporary portable
Fortran libraries. However, the Ada design does
address the issues in floating-point portability with an
unwonted seriousness. and as such provides a
stimulating and controversial precedent for the design
of the arithmetic features of future languages.

Acknowledgements For various contributions to the
eventual form of this paper. | am most grateful to J M
Boyle. W S Brown. W J Cody. B Ford. L D Fosdick.
J B Goodenough. J K Slape. B T Smith, G T Symm.
B A Wichmann and the Referees.

References

1] J C D Nissen, B A Wichmann, P J L Wallis and
others. Ada-Europe Guidelines for the Portability of
Ada Programs. NPL Report DNACS 52/81 and ACM
Ada Letters 1 1-3.44 - |-3.61 1982

(21

P J L Wallis, The Preparation of Guidelines for

Portable Programming in tligh~Level Languages.
Computer Journal 25 375-378, 1982
[3) U.S.Department of Defense. Reference Manual

for the Ada Programming Language. ANSI/MIL-STD

1815A, January 1983

{4] U.S.Departrment of Defense. Reference Manual
for the Ada Programming Language. November 1980

{51 P J L Wallis, Portable Programming,
(London) and Wiley (New York) 1982

Macmillan

(6] B A Wichmann, Tutorial Material on the Real
Data-Types in Ada. US Army European Research
Office and ACM Ada Letters 1 1-2.15 - |-2.33 1982

(7} P J L Wallis, Ada Model Arithmetic: Costs and
Benefits, ICC Proceedings Part C 127 75-80 1982

(8] Crratum to Reference [71.
Procesedings Part

to appear in ICE

91 W J Cody, Floating-Point Parameters. Models and
Standards. In: The Relationship Between Numerical
Computation and Programming Languages. J K Reid
(ed). North-tlolland Publishing Company, 1982 51-65

01 4 C D Nissen., P J L Wallis and others,
Ada-Europe Guidelines for Ada Programming Style. to
appear.

{117 W S8 Brown and S | Feldman.
Parameters and Basic Functions for
Computation, ACM Transactions on
Software 6 510-523 1980

Environment
Floating—Point
Mathematical

(121 W S Brown, A Simple but Realistic Model of
Floating-Point Computation, ACM Transactions on
Mathematical Software 7 445-480 1981

