ARITHMETIC ALGORITHMS FOR OPERANDS ENCODED IN .
TWO-DIMENSIONAL LOW-COST ARITHMETIC ERROR CODES

Algirdas Avikienis

UCLA Computer Science Department
University of California
Los Angeles, CA 90024, USA

Abstract

A pgeneralization of low-cost residue codes into two-
dimensional encodings was presented and error detect-
ing and error correcting properties of two dimensional
inverse residue codes were discussed previously. This
paper presents byte-serial checking, additive inverse
(complementation), and addition algorithms for
operands encoded in two-dimensional residue and in-
verse residue codes.

1. Introduction

A general approach to the cost and effectiveness study
of low-cost arithmetic error codes has been presented in
[AVIZ 71a]. This paper introduced the concepts of in-
verse residue codes and of multiple arithmetic error
codes. The concept of repeated use faults was presented
and the cffectiveness of various arithmetic codes with
respect to both determinate and indeterminate repeated-
use faults was established. An important result was the
proof that inverse residue codes can detect the “com-
pensating” determinate repeated-use faults that are not
detected by ordinary residue codes. The modulo 15 in-
verse residue code was applied in the JPL-STAR experi-
mental computer [AVIZ 71b]. Further results on deter-
minate faults were presented in [PARH 73] and [PARH
78]. An extension to signed-digit arithmetic is found in
[AVIZ 81]. J. F. Wakerly has analyzed the detectabili-
ty of unidirectional multiple errors [WAKE 75], and
A.M. Usas has demonstrated the advantages of inverse
residue codes for multiple unidirectional error detection,
when compared to inverse checksum codes [USAS 78).
Bose and Rao have considered unidirectional one-line
error correcting codes using a combination of byte pari-
ty and residue (not low-cost) encoding [BOSE 80].

A new generalization presented in [AVIZ 83] extended
the application of low-cost inverse residue codes into
two dimensions: row (byte) and column (line) residues.

* This research has been supported by ONR contract N00014-83-
K-0493.

CH2146-9/85/0000/0285%01.00 © 1985 IEEE

This extension improves the detection of errors, espe-
cially of those due to indeterminate faults, and provides
certain error-correction capabilities. Of special interest
to current VLSI implementations of arithmetic are the
advantages offered by two-dimensional inverse residue
codes in the detection and correction of errors that af-
fect byte-wide communication paths and processing ele-
ments. Such paths are widely used in high-performance
array processors, systolic arrays, and for inter-processor
communication in large multi-processor systems. Byte-
wide processing clements are very suitable for the im-
plementation of large processing arrays [AVIZ 70],
[TUNG 70] and variable-precision signed-digit arithmet-
ic [AVIZ 62].

This paper presents the fundamental byte-serial arith-
metic algorithms for operands encoded in two-
dimensional low-cost inverse residue codes. The algo-
rithms are:

(a) the line-residue checking algorithm;

(b) the additive inverse (complementation) algo-
rithm;

(c) the addition algorithm.

A brief review of the error-detecting and error-

correcting properties of 2-D inverse residue codes fol-
lows the description of arithmetic algorithms.

2. Model of the Byte-Serial Communication and
Computation Path

We consider a communication and computation path con-
sisting of b bit lines (X%x!, ... ,X*"'). The binary
operand X consists of kb bits, processed as k bytes
(Xo, “ .. ,X‘, « .. 'xk—l) of b bits lcngth cach. Flgure
1 shows the notation used in this paper.

Two types of low-cost residue encoding are applicable to
the operand X:

(a) Residue Code: the k bytes carry an error-

detecting code check byte X, that represents the
modulo 2°-1 residue X’ of the operand X:
X’'=(2°-1)|X; and the operand is now k+1 bytes
long. Usually the residue value X'=0 is
represented by a string of b ones. If the all-zero
operand can exist, its residue will be b zeros, un-
less explicitly disallowed.

(b) Inverse Residue Code: the inverse residue byte X;
represents the value X” that is the (22—1)’s com-
plement of X’. It is obtained as
X = (2-1)-Xx' = (2*-1)-(2*-1)|X; and the
operand is again k+1 bytes long. The residue
value X’=0 is represented by b ones, and the in-
verse residuc X” in this case is represented by b
zeros. The all-zero operand X has an inverse
residue code X” represented by b ones.

To form a two-dimensional residue encoding, one more
check line X? is added to the communication and com-
putation path (Figure 1). The lines X°x?,.... X*~! are
summed modulo 2**1-1 to get the line-residue of X.
Two classes of 2-D low-cost residue codes can be em-
ployed:

() Two—dimensional Residue Code: the check bits X 4
of the check line X® represent the modulo
2K*1—1 line-residue X;:

X, = (21 b&ls . R i
L= @-1) | TX; where X/ = 3 x] 2
Jj=0 im=Q

(d Two—dimensional Inverse Residue Code: the
check bits X} on the check line X* represent the
modulo 2*1-1 inverse line-residue X;' :

Xy = (@*1-1) -x;

It is important to note that the bits (X} ~1,....,.XJ) of the
check byte X, are treated as the most significant bits of
the lines X271,... X0 when the line-residue of X is
determined. The line-residue encoding is superimposed

on the already encoded operand.
oL B I b
¥ o4 - oq - 8B i
xf—l xi:} e 4“‘-1 x}‘-l xg‘—l &’-l
X ' - A XX X chek
byte X,

Figure 1. Model of the Path and the Operand X

3. A Byte-Serial Line-Residue Checking Algorithm

Given a Two-Dimensional Inverse Residue encoded
operand X (as shown in Figure 1), the line-residue
checking algorithm requires the computing of the line
check result R(L):

b k
R(L) = (2**1-1) | 3 x/; where X/ = 3 x/ 2!

j=0 i=0

An "all-ones” R(L) indicates a valid encoding; all other
values of R(L) indicate an error.

In the byte-serial implementation, one byte of X be-
comes available at a time, with the Icast significant byte

b
X, arriving first. The “line sum”)X’ designated by

=0
(L), is computed as the weighted Jsrum of the "count of
ones” in each byte:
b kb
W)= 3x = 3 (3x{)2
Jj=0 i=0 j=0
In order to get R(L), the modulo (2¥*!-1) residuc of
(L) must be computed. That requires an "end-
around-carry” addition of the “overflow bits"
(SH,,,,.....,.S'H]) of E(L) that are in the posmons
k+1,....,k+m of 3 (L). Since a full-length addition de-
lay is inacceptable in high-speed byte-organized comput-
ing (e.g., systolic arrays), a fast line-residue checking

algorithm is developed here that requires only a short,
m-bit (with 2™ = b+1) addition after (L) has been
byte-serially computed.

The specd-up is accomplished by the simultaneous com-
puting of two tentative line sums >(L) and
2(L) = J(L)+2™. The value of m is determined by
the maximum value of the line sum 3(L). An upper
boundforz(L)isobtainedbyassumingalldigits
X/ (0sisk; 0sj=b) to have the value "1". (This situa-
tioneam:otocmrforavalidencoding, but could be
caused by an error.) In this case,
2L)max = (B+1)(2F*1-1) = p24+1+(2k+1-1)—p

and the "overflow bits" represent the value b with
respect to the position k+1 of the line sum >(L). The
value of m is the smallest integer that satisfies the con-
dition:

2"-12b or 2™ =p+1

For example, 8-bit bytes (b=8) will need m=4, regard-
less of operand length k (in bytes).

After 33(L) and 3(L)’ = 3(L)+2™ have been comput-
ed, the m "overflow bits” (Sk.“.,...,sk.,,l) of E(L) are
added to the m least significant bits (S,_,,...,5,) of
2(L). The resulting carry-out C, determines the
choice of the bits (Sj,...,S,,):

(a H¥C,=0,(Ss...,S,) come from J(L)
(b) HC,=1, (S,...,5,) come from 3 (L)’

The "all ones” line check result (§;=1 ;0sisk) indi-
cates the absence of errors; any other line check result is
an error indication. The determination whether
(Sg,...,S,) are "all ones” is done while these bits are
computed. The final step is to test whether the bits
(Sm—15---»S) also are "all ones” after the "end-around”
addition of the "overflow bits".

4. The Byte-Serial Additive Inverse Algorithm

The additive inverse of an operand X is formed by ob-
taining the complement of X. Either "one’s” or "two’s"
complements can be employed; the specifics are dis-
cussed in [AVIZ 71a)] and [AVIZ 73).

The purpose of this section is to develop the correspond-
ing complementation algorithm for the inverse line-
residue X>. When the "one’s” complement X of X is
formed, the "count of ones” in each byte X; of X is :
b=1— b1
X =b- 3xi
J=0 J=o
This leads to the relationship for Y, (X):

S®=36- 3 xh2 = b@t-1) - Tx)

i=0 Jj=0
Taking the line-residue modulo (2**!-1), we get:
- |13x) =

=@**1-1) [{o-[2*'-1) | S@)]=

=@*1-1) - @*1-1) | Z()

The relationship demonstrates that the line-residue of
the "one’s” complement X is obtained by taking the
one’s complement (28*1-1)-[(25*1-1) | 3(X)] of the
line-residue (2¢*!-1) | S(X) that was computed for the
operand X. The same argument follows for the inverse
line-residue.

If the "two’s” complement X* of X is to be formed, it is
considered to be: .

Xx* =x+20

In order to get the line-residue of X*, the line-residue of
2° must be added modulo 2¥*1-1 to the line-residue of

X. For inverse line-residue encoding, this means the
addition of C=1, as described in the next section.

287

5. The Byte-Serial Addition Algorithm

We consider the byte-serial addition of two operands X
and Y, each kb bits long, to get the sum Z=X+Y. The
addition is modulo 2—1 ("one’s” complement), or
modulo 2% ("two’s" complement).

The check byte Z, is obtained by adding the check bytes
X; and ¥, modulo 2°-1. If "two’s" complement is
used, a "correction signal” input needs to be used, as
defined in [AVIZ 73).

An algorithm to generate the inverse line-residue for Z
from the inverse line-residues of X and Y is developed
here. As first developed by Garner [GARN 58], the
carries generated during the addition of X and Y need
to be employed in the calculation of the inverse line-
residue for Z.

The "count of ones” (designated by a(2,)) in each byte
Z; (0ssisk—1) of Z is:

$2="5 ey - 5 ch-2ct +
J=0 J=0 J=1
or: a(Z) = a(X)+a(Y)—a(internal C))-2C? + C? ;

where Cf is the carry into the j -th position of the sum
byte Z;, and C%, = C? for O<i<k-2. For "one’s"

complement addition of X and ¥, we also have
¢k, =c§.
The above leads to an expression for 3,(Z) when
k=1
@) = 3 a@)2 + a(zp?* ;

i=0

or
2(@)= Z*(X)+Z*(¥)—Z*(internal C)-2°C}_; +

+C3+2a(Xy) +a(ry) -a(Cy]
The count a(C}) is the total count of carries Cf for
1sj=b, since C{ = C} in the modulo 221 addition of
the check bytes X, and ¥, ; i.e.,:

b
a(C) = 3 €} = a(int C)+C?
=1

Two cases need to be discussed separately:

(8) "One’s” complement (modulo 2¥~1) addition of
Xand?Y;

(b) "Two'’s” complement (modulo 2¥) addition of X
and ¥.

For "one’s” complement, CP_;=C§ is the "end-around-
carry”, and the expression for 3,(2) is :

@)=’ @)+ (V)-3'(int. C)-2*C}_,+CE_, +
+2%a(X,) +2%a(Y,) -2 a (i C)-25CE
The expression reduces to:
Z@)=ZX)+Z(¥)-[S(int €)+25(Ch+Ch-1)-Ch-y)

Taking the line-residue modulo A=2¢*1-1 of 3(2), we
get:

Al Z@)=Al{A| Z(x) +

+A| 2(Y) -A|[Tl C)+2X(Ch+Ch)~ch_i]}

This relationship shows that the lin¢-residue of Z can be
predicted from the line-residues of X and Y, as well as a
line-residue computed from the internal carries formed
during the summation of X and Y. The two "end-
around” carries C}_, and C} also need to be included in
the calculation.

Common-mode errors can occur if the carries are in-
correctly determined. To avoid such errors, separate
and independens carry-forming circuits need to be em-
ployed to form the carries for line-residue determina-
tion.

For two’s complement, the “"correction signal® C}_,
must be added (modulo 2%-1 to the modulo 221 sum
of inverse residuc check bytes X; and Y, [AVIZ 73].

The expression for 3'(Z) is now:
Z@=Z* O+ Z(N)-T*m. ©)~25Ch_ +cf+
+2%a(X,) + 2%a(¥y) —2a(ins C,)—2%CE+ 2kch_,

The expression is reduced to:

2@)=T@+Z(N)~[S(int C)+2*ct-cY)
where C§=1 only exists if one of the two operands is
being complemented (in "two’s" complement) simultane-

ously with the addition. Once again, we take the line-
residue modulo A=2%*1--1 of 3'(Z) as follows:

Al3@) =

=A [{A | ZX)+A| T(1)-A | [Zne. C)+2*CE-C8]p

The difference between "two’s” and “one’s” complement
cases is quite small with respect to computing the line-
residue (2¢*1-1) | $(2).

In practical implementation of byte-serial arithmetic the
"two’s” complement addition (and subtraction) is strong-
ly preferable because there is no "end-around-carry”
that requires either a second addition or the generation
of two “tentative” sums - with and without the end-
around-carry.

288

6. Detection of Unidirectional and Bidirectional Errors

In this and the following sections 7 and 8, the error-
detecting and error-correcting properties of the two-
dimensional codes that were first presented in [AVIZ
83] are reviewed, illustrated, and extended to two and
three adjacent lines.

Given a modulo 2°—1 inverse residue code, the un-
detectable unidirectional errors are those that have error
values E congruent to zero modulo 22— 1, where

=1 (k

E="S [E,f] ”

j=0 {i=0
All other unidirectional errors will be detected; howev-
er, there are no error correction properties.

One bit-line determinate (“‘stuck line”’) faults that cause
unidirectional errors will always be detected as long as
the condition:

(k+1) < (26-1)
i§ sa'tisﬁed. For mo adjacent “stuck lines,” the condi-
tion is:

3(k+1) < (2b-1)
For m adjacent “stuck lines,” the condition is:

@"-1)(k+1) < (2¢-1)

For the purpose of this discussion, lines 0 and b1 are
considered adjacent.

The PM (pattern miss) [AVIZ 81] percentages for
“stuck line” faults remain very low after the left side of
the inequalities above exceeds the limit that guarantees
PM percentage of 0%. For example, for one “stuck
line,” when k+1=2%-1 is reached, we have:

PM (Inv. Residue) = 100/(2t*1)

since only one of the 2**! possible error patterns on the
“stuck line” (all zeros - all ones, or vice versa) goes un-
detected. The situation is not as favorable with “stuck
byte” faults, as discussed next.

There is one undetectable one-byte unidirectional error;
it results when an all-zero byte X; is changed to an all-
ones byte, or vice versa. The PM percentage for this
“stuck byte” fault is (100/2°)%. Introduction of byte
parity bits will detect only one of the two (stuck-on-one
and stuck-on-zero) “stuck bytes”; the other one remains
undetectable.

The “stuck byte” detection problem is fully solved by
the use of two-dimensional inverse residue encoding.
There is one additional check bit X’ for each byte X;
(i=0, ... ,k). The check bits (x?,X8) represent

the modulo 2**!-1 inverse line-residue ¥ of the
operand X that is now interpreted as b lines X/
(=0, . ..,b—1) of k+1 bits length cach. It is evident
that every “stuck byte” now will be detected by the use
of Y" as long as the condition:

(b+1) < (2F*1-1)
i§ satisfied. For two adjacent “stuck bytes,” the condi-
tion is:
3(b+1) < (2¥*1-1);
for p adjacent ‘‘stuck bytes” it is:
(Z-1(b+1) < (2¥*1-1)

The bytes X, and X; are considered adjacent in this
analysis.

The two-dimensional inverse residue is clearly superior
to the byte-parity encoding, since the "stuck byte" con-
dition subsumes all other possible error patterns (dou-
ble, quadruple, etc.) in the byte, while all "even error”
patterns go undetected when byte parity is the only
form of encoding.

In general, the remaining undetectable errors in the
operand X are those that are missed by both checks:
modulo 26~1 over the bytes gmt including the check
line bits X?), and modulo 2**1—1 over the lines, with
the check byte bits X{ included in each line j. Most uni-
directional errors are detectable; furthermore, the detec-
tion of bidirectional errors is significantly improved, as
discussed below.

It has been noted that low-cost inverse residue codes are
considerably less effective in detecting bidirectional er-
rors due to indeterminate repeated-use faults [AVIZ
71a]. The addition of the line-residue (i.c., the second
dimension of encoding) allows the detection of all bi-
directional errors that affect a single line, as well as all
bidirectional double errors affecting any two bits of the
operand X. The double, quadruple, and other even
"half-and-half” bidirectional errors on one line that were
undetected by the byte check are now detected by the
line check, while those in one byte are detected by the
byte check.

The remaining undetectable bidirectional errors are
those that are simultaneously undetectable by the byte
check and the line check. An illustration is the quadru-
ple error that changes Z to Z* as shown below:

01 10
Z=10=>% =01
Here an even number of opposite-direction changes oc-
curs simultancously in the bytes and lines of the
operand X. In general, all quadruple errors of this type
(at four corners of a rectangle of bits within the operand
X) are undetectable.

289

7. Correction of Single-Bit and Unidirectional
Single-Line Errors

The introduction of the inverse line-residue ¥* also
makes single-bit error correction possible. As shown in
[AVIZ 71a), the low-cost inverse residue codes have the
“partial error location” property. Therefore a single-bit
error value E{=+1 (0<jsb—1; 0<i<k) will produce a
unique indication for line j in the modulo 2°~1 check
and for the byte i in the modulo 2¥*1-1 check, making
a correction of £/ possible in the operand X. The
single-bit error E’=+1 that occurs in the check line b
will produce the indication for byte i (0<i<k) in the
modulo 2*1—1 check, but no error indication at all in
the modulo 2°—1 check, since it does not include the
bits of the check line. Correction of E? is therefore pos-
sible.

The correction property can be extended to most uni-
directional single-line errors as follows. If we assume a
determinate single-line fault on line j, the error values
E(j) will fall into the range:

k k
-3 E < E(G) s 23 E
i=0 i=0
The positive values will be due to a stuck-on-one (s-0-1)
and negative values — due to a stuck-on-zero (s-0-0).
The actual byte check results will assume the values

C()=(2°~1) | E(j), and as long as (k+1)<(2’-1)
holds, ali error values due to a s-o-1 fault will be detect-
able and have a unique byte check result C(j) in the
range

0= Cy()) = (22-1) | (k+1)2/

Similarly, the error values due to a s-0-0 fault will have
the byte check result in the range:

0 = Co(i) = (2°-1) [(-2)(k+1)

However, many other error patterns (on two or more
lines) can produce the same values of check results, and
error correction is not possible with the byte residue en-
coding alone.

To obtain single-line unidirectional error correction, we
use the additional information provided by the line
check result obtained from the inverse line-residue en-
coding. Given a byte check result C,(j) discussed
above, we find its value to be N, represented by b bits
Ny-1,Np).

First we form the hypothesis that N is due to a single-
line stuck-on-on¢ determinate fault on line j
(0=<j=b-1). If the fault is on line j=0, then N(0)=N
error bits E/=1 in line 0 will produce the byte check
result N. We determine the numbers N(j) of error bits
E{=1 on lines j=1, ...,b—1 respectively that would
be needed to produce the byte check result N by end-

around shifting N to the right b—1 times. The shifts
will produce the numbers N(1), . . . ,N(b—1) in succes-
sion.

The number of errorbits E{=1 (due to a stuck-on-zero
line) that would -be needed to produce N(j) for any
0=<j=b-1 is given'by (2°—1)—N(j), that is, the “one’s
complement™“of - N(j). All values of N(j) and
(2°-1)~N(j) that arc greater than k+1 are discarded
as impossible solutions.

To test ﬁie"hypothmis that a given byte check result N is
due to a single-line determinate fault, we use the line
dmk’;mmt

O b .k .
R = (2k+1__1) I 2 lejzn]

j=0li=0

This result will contain N(j) digits R;=1 (0=i=<k+1) if
there is a single-line determinate (stuck-on-one) fault in
the line j. The presence of each R;=1 indicates that the
digits X{ should be corrected by the 1-0 change.

The line check result R will contain (2°—1)-N(j) digits
R;=0 (0=i=<k+1) if therc is a single-line detcrminate
(stuck-on-zero) fault in the line j. The presence of each
R;=0 indicates that the digit X{ should be corrected by
the 0-1 change.

Example 1: Line Correction

Consider an operand X with seven bytes &=7) of 4 bits
cach (b=4). Inverse-residue coding is used for the bytes
(modulo 2°-1=15) and for the lines (modulo
2++1-1=255). The encoded operand (following Figure
1) is shown below:

check line line line line

line 3 2 1 ¢

1 0 1 0 0 byeo

0 0 0 1 1 byel

0 1 0 0 1 byte2

0 0 0 0 0 bye3

0 1 0 1 1 obywes

1 0 0 1 0 byes

0 1 0 1 0 byes

0 6 1 1 0 checkbywe?

The byte check result (modulo 15) is N=1111, and the
line check result (modulo 255) is R=11111111. No er-
rors are indicated.

Ifowmumcastuck-on-onclinc:Zmdsetalldigiuin
line 2 to one. The new byte check result is N=1001.
The single-line determinate fault possibilities are:

Stuck-on-One Stuck-on-Zero
N(0) = 1001 = 9 15-N@©) =6
N(1) = 1100 = 12 15-N(1) =3
N(2) = 0110 = 6 15-N(2) =9
N@3)=10011=3 15-N(3) = 12

The values greater than k+1=8 are discarded, and the
remaining possibilities are: line 2 (6 errors) or line 3 (3
errors) stuck-on-one, and line 0 (6 errors) or line 1 (3 er-
rors) stuck-on-zero.

The new line check result is

R = (R4, ... ,Rp = 01111110
The six ones in R indicate that the “line 2 stuck-on-one”
hypothesis is valid, and the corresponding six positions in
line 2 are corrected by setting them to zero.

The single-line, unidirectional error correction algorithm
can not be completed only in the cases in which two
conditions occur simultaneously:

(a8 More than one line is indicated by the occurrence
of identical values of N(j) or of 15—N(j) for two
or more lines j of X.

(b) The correction pattern indicated by the line check
result R is actually applicable to more than one
line j of the operand X, i.c., the lines have all
zeros (or all ones) in the positions to be correct-
ed.

Example 2 below illustrated condition (2); the subse-
quent discussion deals with condition (b).

Example 2: Correction Ambiguity

Now assume that line 1 is stuck-on-zero. The byte check
result is N=0101, and the possibilities are:

Stuck-on-One Stuck-on-Zero
N@O)=10101 =5 15-N(0) = 10
N(1) = 1010 = 10 15-N(1) =5
N2)=10101=5 15-N(2) = 10
N(3) = 1010 = 10 15-N(3)=5

'l‘hcmminingpassibilitiaallpointwﬁvccrmrs. The
modulo 255 line check result is

R = 00001101

The five zeros in R (positions 7,6,5,4,1) indicatc a
stuck-on-zero on line 1 or line 3. To resolve the ambi-
guity, we find that line 3 already has “1” digits in posi-
tions 6 and 4, andmnnotbcconectcdthcm;thcrcfom
the stuck line must be line 1.

It is possible that both potential corrections could be
carried out in Example 2 above; that is, both line 1 and

line 3 could have zeros in positions 7,6,5,4,1. In such a
case, the error has been detected, but a correction is not
possible, since both conditions (a) and (b) occur simul-
taneously.

8. Two-Line and Three-Line Errors

A more critical case than the ambiguity discussed above
would be that of a mis-correction, in which the restored
pattern would differ from the original one, such as in
the case of triple errors encountered by the Hamming
SEC/DED code.

A mis-correction for two-dimensional inverse residue
codes will occur if the bit pattern of the operand X
changes in more than one line, but both the byte check
result value N and the line check result value R remain
the same as for a single-line error. This will happen
when:

(a) the byte check result is altered by +c(22-1)
(b) the line check result is altered by +c(2¢*! -1)
(c) both (a) and (b) occur simultaneously.

In cases (a) and (b) the other check result remains un-
changed.

It is readily shown that a mis-correction cannot occur if
only two adjacent lines (or bytes) are affected by the
fault; the detection is guaranteed in all cases. When
three adjacent lines (or bytes) are affected, a mis-
correction can occur. The byte check result will be al-
tered by +(25-1) when the following changes are im-
posed on a correctable unidirectional single-line error
pattern:

(a) two error bits from line j are moved one line to
the right, causing a net change in N of
22572 = 252
(b) one error bit from line j is moved one line to the

left, causing a net change in N of 2-1=1.
The total change in N is then (22-2)+1=2%-1, and it will

lead to a mis-correction if the following two conditions
are satisfied:

M
@

there are no further error changes, and

the positions in line j that would be mis-corrected
actually do contain correctable bit values.

An example of the conditions under which a mis-
correction will occur is shown in Example 3 below.

291

Example 3: Conditions for Mis-Correction

Consider the encoded operand below (same format as in
Example 1). Without changes, both N=1111 and
R=11111111 are obtained.

check line line line line

line 3 2 1 o

1 0 1 0 0 byteo

1 1g 1 0 0 byl

1 1 1 1@ 1 bye2

0 0 1 1@ 0 bye3

1 1 1 ¢ 1 1 byed

0 0 19 1 0 byes

0 1 19 1 0 byeé

0 1 1 0 0 checkbyte?

The unidirectional (0 - 1) errors affect three adjacent
lines (3,2,1) as shown, and impose exactly six changes.
Now we get N=1001 and R=0111110. This is exactly
the same condition as in Example 1, and "line 2 stuck on
onc” hypothesis is validated, since bytes 1 through 6 con-
tain ones in linc 2. Setting those six bits to zero will
cause a mis-correction.

9. Conclusions

It is concluded that the two-dimensional codes are very
pearly 100% (except in the cases of ambiguity as illus-
trated in Example 2) single-line correcting, and full
100% double-adjacent-line detecting codes with respect
to unidirectional errors. The probability of mis-
correction in the case of three-adjacent-line unidirection-
al errors remains very low, since a very specific error
pattern and original pattern of X must coincide to cause
a mis-correction.

It has becn shown that byte-serial arithmetic can be car-
ried out with operands which are encoded in two-
dimensional residue and inverse-residue codes. Two-
dimensional encodings provide a very powerful error-
detecting and a substantial error-correcting capability
for byte-serial arithmetic. Promising application areas
are systolic arrays, multiple-precision arithmetic, and
high-speed array computing.

REFERENCES

[AVIZ 62] Avizienis, A. “On a Flexible Implementa-
tion of Digital Computer Arithmetic,” In-
formation Processing 1962, C.M.
plewell, ed., North Holland Publishing

Co., Amsterdam, 1963, pp. 664-670.

[AVIZ 70]

[AVIZ71a]

[AVIZT71b)]

[AVIZ 73]

[AVIZ 81]

[AVIZ 83]

[BOSE 80]

Avizienis, A., Tung, C., “A Universal
Arithmetic Building Element (ABE) and
Design Methods for Arithmetic Proces-
sors,” IEEE Trans. on Computers, C-19:
733-745, August 1970,

Avizienis, A. “Arithmetic Error Codes:
Cost and Effectiveness Studies for Appli-
cation in Digital System Design,” IEEE
Trans. on Computers, C-20: 1322-1331,
November 1971.

AviZienis, A., et al., “The STAR (Self-
Testing and Repairing) Computer: An In-
vestigation of the Theory and Practice of
Fault-Tolerant Computer Design,” IEEE
Trans. on Computers, C-20: 1312-1321,
November 1971. Reprinted in Best Com-
puter Papers of 1971, L. Petrocelli, ed.,
Auerbach Publishers, 1972, pp. 165-185.

AviZienis, A. "Arithmetic Algorithms for
Error-Coded Operands”, IEEE Trans. on
Computers, C-22: 567-572, June 1973.

Avizienis, A., “Low-Cost Residue and In-
verse Residue Error-detecting Codes for
Signed-Digit Arithmetic,” Proc. 5th IEEE
Symposium on Computer Arithmetic, 1981,
pp. 165-168.

AviZienis, A. and C. S. Raghavendra,
"Applications for Arithmetic Error Codes
in Large, High-Performance Computers,"
Proceedings, 6th IEEE Symposium on Com-
puter Arithmetic, 1983, pp. 169-173.

Bose, B., Rao, T.R.N., "Unidirectional
Error Codes for Shift Register Memories"”,
Digest FTCS-10, Kyoto, Japan, October
1980, pp. 26-28.

[GARN 58] Garner, H. "Generalized Parity Check-

[PARH 73]

[PARH 78]

ing”, IRE Trans. El. Computers, EC-T:
207-213, September 1958.

Parhami, B., AviZienis, A., “Application
of Arithmetic Error Codes for Checking
of Mass Memories,” Digest of the 1973 Int.
Symposium on Fault-Tolerant Computing,
pp. 47-51, June 1973.

Parhami, B., Avizienis, A., “Detection of

*Storage Errors in Mass Memories Using
Low-Cost Arithmetic Codes,” IEEE Trans.
on Computers, C-27-4: 302-308, April
1978.

[TUNG 70] Tung, C., Avifienis, A., “Combinational

[USAS 78]

[WAKE 75]

Arithmetic Systems for the Approximation
of Functions,” AFIPS Conf. Proc. (1970
Spring Joint Computer Conference), 36:
95-107, 1970.

Usas, A.M., “Checksum Versus Residue
Codes for Multiple Error Detection,” Dig-
est of the 8th Annual International Conf. on
Fault-Tolerant Computing, p. 224, 1978.

Wakerly, J. F., “Detection of Unidirec-
tional Multiple Errors Using Low-Cost
Arithmetic Codes”, IEEE Transactions on
Computers, C-24: 210-212, February 1975.

APPENDIX

Example 4: Line-Residue Checking

The byte-serial line-residue checking algorithm of Section
3 is illustrated below. The operand X is from Example 1,
with the “line 2 stuck-on-one” error. Here m=3 and

k=8.
check
line 001 0 0 0 o0 1
line 3 ¢ 1 0 1 0 1 o0 o
line 2 1 1 1 1 1 1 1 1
line 1 1 1 1 1 0 0 1 o
line 0 00 0 1 0 1 1 o
(= 0 1 0
, +
S@L)=010 0 1 1 1 1 0 0
1151059 <3 —» 0 1 1 0
\——ﬂ_._—/
E(L)' =010 1 0 0 0 0 52 51 £

L)'= T(L)+23 since m=3
Since C3=0, F(L) is selected as the check result, with
52,31,50=.l 10

