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ABSTRACT

VLSI implementation of a square root algorithm is
studied. Two possible implementations of the basic non-
restoring algorithm are presented — the second is more
area-efficient and modular than the first. The implemen-
tations are simple and easy to control, but, at the same
time, are more area-time efficient than many existing
designs. A hardware algorithm suited to microprogram
implementation is also given. Extension of the algo-
rithms to achieve %bit precision is discussed.

1. INTRODUCTION

Several algorithms for fast computation of the
square root of binary numbers have been proposed in the
literature. They can be broadly classified into restoring
and non-restoring algorithms [1]. Some of them use
redundant representations, mainly to avoid the rippling
of carry associated with addition/subtraction 2]. Other
techniques for speed-up include processing multiple bits
at a time [3]. In most cases, the speed-up is achieved at
the expense of relatively complex control schemes; also,
the VLSI implementation is far from regular and lacks a
modular structure. In this paper, a VLSI implementation
of the basic non-restoring square root algorithm is
presented. We describe techniques for optimization of
the overall area-time complexity of the implementation
by judicious storage and manipulation of operands
without sacrificing simplicity. The entire hardware is
built from slices, resulting in a modular design; the con-
trol circuitry needed is extremely simple. We also present
a hardware algorithm for microprogram implementation.
Techniques for rounding the result to the nearest integer
value are given.

The basic non-restoring algorithm computes the
square root in a series of approximation steps. For a 2n-
bit number z, the algorithm usually makes an initial
guess y = 2""' and tries to approach the actual value of
the square root in a series of n-1 refinement steps; during
each iteration, the sign of the difference between z and
the current value of the square of y is used to compute a
better approximation for y. This algorithm can be ex-
pressed as follows:
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y ="
for ¢ :=1ton-1do
if(z -y?)>0theny :=y + 27!
elseif (z - y?) < Otheny =y - 2"t
end.

The squaring operation in the algorithm is expen-
sive in terms of area and/or time and can be avoided by
a modified scheme CF] his scheme replaces squaring by
a series of shifts and add/subtract operations.

2. THE ALGORITHM

Let z = z,,, --- 2, be the 2n- bit binary
number whose square root is to be found. We start with
an initial approximation y = 2""! and refine it in a series
of n -1 steps; at the (n - ¢ - 1)th step (n-2 > i > 0),
the new value of y is computed as
g =yzx2
During the (n - ¢)th iteration, the value of z - 2 can be
computed as:

z-§t =2 -(yx2')
_ (z _y2):F_ (2i+l.y 122‘)

= (z -y ¥ 4 (2.1)

Thus, if we store the value of z - y* during each
iteration, the new value of z - y% can easily be computed
from its old value in a straightforward way. The compu-
tation of A; = (2'*1.y + 2%) involves a shifting of y by
i+1 places. Addition or subtraction of the constant 2
can be achieved by setting or resetting a pair of bits of
the shifted operand.

The following are the basic operations involved in
the algorithm:

(i) Computation of A; = 2°*ly 4 927,

(ii) Addition/Subtraction of A; to (z - y%) to gen-
erate the new value of (z - y%).

(iii) Refinement of y by addition/subtraction of 2°.
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In this paper, we describe an implementation that
achieves operations (i) and (iii) in O(n) area and constant
time. We do not consider optimization of the
addition/subtraction operation.

3. VLSI IMPLEMENTATION

In this section, we will describe two possible imple-
mentations of the algorithm. The first scheme uses a bar-
rel shifter for the generation of 4;. The second design el-
iminates the barrel shifter by clever storage and manipu-
lation of operands, and is therefore more area-efficient
than the first.

3.1 Implementation Using Barrel Shifter

A straightforward way to generate the correction
4; is by means of a barrel shifter and additional logic to
manipulate individual bits at the output of the shifter.
As a matter of convenience of implementation, the logic
can be moved to the input of the barrel shifter without
affecting the result of the computation; this reduces the
number of gates by half.

During the (n - ¢)th iteration, the value of A is
given by

A; == 20ty g o
= 2 (2y % 27) (3.1)

Since y is of the form g, ; yao - §,210 - -« 0,
29+ 2 =y ity " Ki21010 -0,
and, 2y -2 =y, 90 - Y0110 --- 0

Thus we need to modify only a maximum of three
bits at the input of the shifter during every iteration.
The value of the bits depend on the sign of z-y? in the
last iteration. Multiplication of ¢ by 2 is achieved by a
skewed connection at the input of the shifter.

Figure 1 shows the block diagram of this imple-
mentation. It consists of the following registers:

(i) An n- bit register Y to store the current approxi-
mation to the square root y.

(ii) An n- bit shift register b to store the constant 2*
to be added/subtracted during each iteration.

(ili) A 2n- bit register X which stores the current
value of (z - y?).

During every iteration cycle, the current value of
y is used to compute A; at the output of the barrel
shifter. This value of A; is then added to or subtracted
from the contents of X to obtain the new value of
(2 - y®) for the next iteration. The carry flip-flop stores
the sign of (z - y?) which is used to determine whether
an add or subtract operation is to be carried cut in the
next cycle.
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Floorplan for a 16-bit Implementation

The logic to set/reset individual bits at the input
of the shifter is simple and can be incorporated at the
output of the Y register. Let a; = a;, 8, ,, - 8,4
denote the value of 2y  2' during the (n - i)th itera-
tion. During this cycle, the th bit of b is 1 and the rest
of the bits are zero. The individual bits of 4, can be
computed using the Boolean expressions:

4 ;. =(y; + bjs + b; ADD) (b, ; + ADD);
for 0 < 5 < n-1withbd, =0.

o o= bo.ADD (3.2)

ADD is the output of the carry flip-flop. Since
each bit of 6; i5s dependent only on three adjacent bits of
b, registers b, Y, and the logic to generate a; can be com-
bined and implemented in single-bit slices.

The value of y is updated at the end of every
iteration by adding or subtracting b = 2'. Since y is of
the form y, ; ¢, 5 *** ¥;+210 - 0 at the beginning of
the (n - ¢)th iteration, the new value of y is given by:

=y +b =g 1o - Yipal10 -+ 0

it ADD =1
g=y—b='yn-lyn—2 cr !I.'+2010 e 0

if ADD =0

Only a pair of adjacent bits are modified during
every iteration; this property enables us to use simple log-
ic to update the Y register in place of a subtractor. The
individual bits of § can be generated using the Boolean
expression

§j = (y; +b;)(5;,, + ADD) (3:3)

This logic can easily be incorporated into a bit-slice along
with register bits y; and &;, and the logic to form g, ;.
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The initial value of z - y% can be generated easily
from z by performing an extra iteration initially. This
iteration makes use of the unused bit b, of the b register.
If we start with b, =1, y =0, and carry flip-flop = 0,
the first iteration will compute A = (2*1)?, which is the
initial value of y2. The X register is thus correctly updat-
ed to the initial value of z - y? at the end of the first
iteration.

The carry flip-flop which generates the ADD signal
stores the sign bit of z - y?, and can be considered as the
extension of the X register; correct operation is achieved
by complementing it every time a carry/borrow occurs
from the adder/subtractor during the computation of
z - y* and leaving it unchanged otherwise.

Figure 2 shows the floorplan of the chip for a 16-
bit implementation of this scheme. Circuits were
designed based on the 2- micron NMOS technology. A
bit slice of type 1 covers one bit each of the b and Y re-
gisters, Y-update logic, and logic to generate q;,. Bit
slices of type 2 incorporate individual bits of register X,
adder/subtractor, and the precharged output buffers of
the barrel shifter. The adder/subtractor is a straightfor-
ward implementation of the Mead&Conway ALU [4], and
was adapted from [5]. The zero detector decodes the all-
zero condition of the X register to terminate the algo-
rithm. Control circuitry and the carry flip-flop are not
shown. The internal organization of the bit-slices is
shown in Figure 3.

Control of the chip is achieved with a four-phase
clock. During initialization, the X register is loaded with
the 16- bit operand; the Y register is loaded with 27, and
the carry flip-flop is reset to zero. The execution of the
algorithm takes a maximum of eight iterations. Register
b serves the additional function of the iteration counter
also. Table 1 lists the four phases of activity during each
iteration:
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Phase Operation

1 Compute g;;

Precharge shifter o/p buffer.

2 Shift operation;

stop iteration if X = 0.

3 First phase of addition /subtraction;
update Y register.

4 Second phase of addition/subtraction;
update b, X registers and carry f/1.

Table 1

The critical path in the implementation is the path
from the output of the shifter through the ripple-carry
adder{subtractor to the carry flip-flop and the X register.
A SPICE simulation revealed a delay of approximately
100 nS for every 4-bit group of the adder/subtractor.
The output of the shifter is available at the beginning of
phase 3 and the carry flip-flop is updated at the end of
phase 4. This enables the 8-bit module to be clocked
with a 300 nS clock.

3.2 Alternate Implementation Without Barrel
Shifter

The previous scheme used a barrel shifter to gen-
erate the value of 2'*'.y during every iteration. A
straightforward implementation of the barrel shifter takes
O(n®) area; besides affecting the modularity of the
design, this makes the implementation unwieldy for large
n. In this section, we describe an alternate design that
eliminates the barrel shifter — the function of the barre]
shifter is achieved by extending registers Y and b and
shifting them during every cycle.

of both b and y. (In fact, only the even bits of register b
are used, so the odd bits need not be present). Figure 4
shows the block diagram of this implementation. Regis-
ters X, Y, and b are all 2n-bits wide. Initially y is stored
in register Y in its most significant half. It is shifted
right once during every iteration so that its contents
represent 2'*1.y at the beginning of the (n-i)th iteration
(n-1 >4 >0). The b register is initially loaded with
(2" ™7 and is shifted right twice during every iteration so
that it contains 2 at the beginning of the (n—s Jth itera-
tion. Thus, according to Equation (3.1), the value of A;
can be computed by adding or subtracting the contents
of register b and register Y. The addition/subtraction
can be achieved, as in the previous implementation, by
means of simple logic to set/:eset individual bits, thereby
eliminating the need for carry propagation. The indivi-
dual bits of A, = Ain-, ', A, can be computed by
the following logic:

In this desifn, we use 2n-bit registers for storage

for even bits :
Bizj =(Yy; +by;)(bs; 0+ ADD), 0< j < n-1
B0 =Yy + by, (3.4)
for odd bits :
Bigj+r = Yoj41+b5;.ADD 0 < j < n-1

A2y =0 always. (3.5)
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Figure 3
Internal Organization of the Bit Slices

ADD is the output of the carry f/f. Once A; is
obtained, it is added to(subtracted from) the X register to
get (z -§%) as discussed in Section 3.1. Tke
addition(subtraction) also toggles the carry f/f if there is
a carry(borrow).

Refinement of y can be done in a similar fashion
as in the previous section. However, since the Y register
now contains a shifted version of y, the updating logic is
slightly different. The new values for the individual bits
of Y are given by:

Jor even bits :

Ya; = Y,; 8,2+ ADD) 0< j < n-1 (3.6)

for odd bits :

Yz,‘+1 = Y2j+1 + b-2j 0 S j S n-1 (37)

This logic is used to set, reset, or leave unchanged the in-
dividual bits of Y during the Y update phase.

Initially, the register X is loaded with the operand
z, b is loaded with 22"-!, and Y with 22"2 The first
iteration is equivalent to the initialization step wherein
the X register gets correctly updated to z - 22"-2, At the
beginning of the second iteration, we need the Y register
to contain 222 — this requires the shifting of Y to be in-
hibited in the first cycle. Every iteration requires the b
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register to be shifted right by two bits. Since only the
even bits of b are used, the same result can be achieved
by building only the even bits and shifting it right once
every iteration.

The number of clock phases needed can be reduced
to three in this implementation due to the absence of the
shifter. The following table lists the operations done dur-
ing each phase of the clock.

Phase Operation

1 First phase of addition {subtraction.
(stop_iteration if b = 0

2 Second phase of addition/subtraction;
update Y if X £ 0.

3 Shift right Y and b;

update X if not already zero;

update AD) /1.

Table 2

Figure 5 shows the internal organization of the bit
slices. Bit slices of type {a) occupy even positions and
slices of type (b) occupy odd positions. The even bit
slices contain one bit each of the X, Y, and b registers,
adder/subtractor, logic for generation of the A; bit, and
logic for updating the Y bit. The odd slices are similar
except that, instead of the cell for b register, there is a
straight connection that provides the shift path for the b
register; the logic for generation of A; and update of Y
are also different. The bit slices thus constitute the whole
of the hardware except the control unit, resulting in a
truly modular organization. The limit to the number of
slices is evidently caused by the delay due to the rippling
of carry associated with the addition/subtraction. (?arry
lookahead schemes may be necessary for large values of
n.

163

X Register X Register
Adder/ Adder/
Subtractor Subtractor

A generation logic
Y update logic

A generation logic
Y update logic

Y Register Y Register

e

b Register

(a) even bit slice (b) odd bit slice

Figure 5
Internal Organization of the Bit Slices

3.3 Processing of Floating Point Numbers

The design in Section 3.2 can be expanded to han-
dle floating point operands with a small overhead on
hardware and time. The operation for computation of
square root of a floating point number under this scheme
can be summarized as follows:

(i) If the exponent is odd, shift mantissa right and
increase exponent by one so that it becomes even.

(ii) Compute square root of mantissa as outlined in
Section 3.2.

(iii) Shift exponent right to achieve division by two.
(iv) Normalize result, if necessary.

Observe that, if the operand is initially normal-
ized, it takes at most one extra cycle for normalization of
the result. Thus the computation of square root of a
floating point number requires little extra overhead in
terms of time as compared to computing the square root
of its mantissa.

It is interesting to compare the efficiency of our
design with some of the existing implementations. As an
example, the 8087 numeric processor from Intel [6, page
5-3!, takes 180 cycles to compute the square root of an
80-bit real number comprised of a 64-bit mantissa and
16-bit exponent. Our implementation achieves the same
function in 332 = 96 cycles plus a few extra cycles for
shifting and adjustment of exponent.

4. HARDWARE ALGORITHM FOR
MICROPROGRAM IMPLEMENTATION

In this section, we present a simple and efficient
hardware algorithm for computation of square rodt of a
2n-bit integer. This algorithm requires a minimum of




hayd}vare and can be microprogrammed into many of the
existing mini- and microcomputer systems. The algo-
rithm makes use of the following hardware:

(i) A 2n-bit register X.

(ii) Two 2n -bit registers, Y and b, with shift-right ca-
pability.

(iii) A flag E that stores the bit being shifted out of
register b.

(iv) A 2n-bit ALU capable of addition/subtraction
with flags CY and ZER(Q to record the carry and
zero condition respectively.

The algorithm is illustrated in Figure 6. It is
based on the same technique as the implementation in
Section 3.2. Register X stores the value of z-y% register
Y stores a shifted version of y, and register b stores 22¢+!
at the beginning of the (n-i-1)th iteration (n-2 > ¢ 20)
The increment/decrement loop will be executed a max-
imum of (n-1) times. This algorithm can easily be ex-
tended to handle floating point numbers as outlined in
Section 3.3.

5. ROUNDING SCHEMES

The algorithms presented in Sections 3 and 4 pro-
duce results with a maximum error of +1 bit. The preci-
sion can be improved to -;‘ bit by rounding off the result.
In this section, we examine how rounding could be incor-
porated into our implementations.

Let us assume that the operand z is not a perfect
square. Application of the algorithms in Section 3 or 4
produce either y =|vz ) or y =[vz] as the result,
depending on whether the approximation was approached
from below or above. Let « = |+/z |. Then:

o~ y'l < (u41F - w? =2u +1 (8.1)

To obtain %-bit precision, we need to set y = u if

w'<z <u(u+l) and y=wu+1 if u(u+l) +1
<z <(u+1)>. In the implementation, this correction
can be applied from knowledge of whether the last opera-
tion was an addition or subtraction. If the last operation
was an addition, the Y register will contain
y =[Vz] = u+1 at the end of the last iteration; if the
last operation was a subtraction, the Y register will con-
tain y = |vZz ] = u. This information can be obtained
from the status of the carry f/f at the end of the last
iteration. If the carry {/f is zero, the final value of z-y?
is positive, implying y = u, and if it is 1, the final value
of z - y? is negative, so that the Y register contains
y = u+l. The following paragraphs outline how the
result can be corrected in the two separate cases:

tase (i) y = u : In this case, subtract the con-
tents of Y from X to obtain
we=(z-y}) -y =z -u(u+l) If w <0, the Y
register requires no correction; else it needs to be
incremented.

case (i) y = u+1 : In this case the X register
contains 2** - ((u+1)?-z). Add the contents of
the Y register to X to obtain w == 22" -
((w+1)2 - z) + (u+1) =22 _ (u(u+1)- z), tog-

(* Hardware Algorithm for Square Root *)

X« operand; Y « 2*"% p . 02"% p 0;

Xe-X-vY;

jump on zero (ZERO <1) to END ;
jump on borrow ('Y =1) to DECR ;

Y«~Y+b;
Shift b and Y right; {* in parallel *)
X~X-b;

Shift b right through E;
jump if E=1to END;

XeX-Y;

jump on zero (ZERO =1) to END ;
jump on no borrow (CY =0) to INCR ;
(* else fall through to DECR *);

Y~Y-b;
Shift b and Y right; (* in parallel *)
X+~X-b;

Shift b right through E;
jump if E=1 to END;

XeX+7Y;

jump on zero (ZERO =1) to END;
jump on no carry (CY =0) to DECR ;
jump to INCR

END: result « Y

stop.
Figure 6
Hardware Algorithm for
Microprogram Implementation

gling the carry f/f if there is a carry from the X re-
gister. Now, if w > 0 (carry f/f = 0), we need to
decrement the Y register; if w <0 (no carry
resulted from X), no correction is required.

The algorithms in Sections 3 and 4 can be extend-
ed easily to include this rounding procedure.

8. CONCLUSION

Area-time efficient VLSI implementations of the
non-restoring square root algorithm were described. The
first algorithm uses a barrel shifter. The second algo-
rithm eliminates the barrel shifter, and is therefore more
eflicient than the first in terms of both area and time
complexity. The design is modular and requires simple
control. A hardware algorithm suitable for microprogram
implementation was also presented. Extension of the al-
gorithms to handle floating-point numbers and techniques
for round-off were also discussed.
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