ACRITH

HIGH-ACCURACY ARITHEMETIC

AN ADVANCED TOOL FOR NUMERICAL COMPUTATION

J.H. Bleher / A.E. Roeder / S.M. Rump
IBM Development and Research
7030 Boeblingen
Germany

ABSTRACT

The High-Accuracy Arithmetic Subroutine
Library (ACRITH) is a program product for
engineering / scientific application. It
consists of a subroutine library for solving
problems in numerical computation. All
results obtained have algorithmically veri-
fied accuracy.

INTRODUCTION

With existing processors and conventional
techniques, it is often difficult, or in
some cases not even possible to solve prob-
lems in numerical computation to the
required degree of accuracy. To illustrate
this in more detail Figure 1 shows the pro-
cedure used in the engineering / scientific
environment when solving real-world prob-
lems.

f\%

Problem

Physical
Model

Mathematical
Mode?

Mathematica?l
Approximation

Computation

ACRITH

oo === - o - o e —

Figure 1: Solution of real-world problens,
with ACRITH

CH2146-9/85/0000/0318$01.00 © 1985 IEEE

s

The first task is the description of the
problem followed by the description of the
physical model. Knowledge and experience
leads from the physical level to the
description of the problem by mathematical
equations. Unfortunately those equations
normally are not adequate for the computa-
tional phase. Their complexity again
requires hard brain work to get equations
that can be handled by standard routines
available on our computers. We call this
part the mathematical approximation.

In our example the mathematical approxi-
mation results in a linear equation
described by the equation A . x = b where A
is a matrix, x the vector of the unknowns and
the vector b is called the right hand side.

After computation a difficult and often time
consuming task is the error analysis. Inac-
curacies during computation may occur due
to:

. loss of digits in small differences
through cancellation

. rounding during computation

o conversion of input numbers to machine
representation (e.g. from decimal to
hexadecimal).

If the result is not correct different
"loops" for a correction are possible. Along
the inner loop the computation is executed
again with a change in the precision of the
floating-point computation for example from
short to long or even to extended precision.
If, after a repeated error analysis the
result is not satisfactory, the profes-
sional has a different algorithm ready to
deal with this "ill-conditioned problem".
He is changing his program using the new
algorithm and runs the problem again.

Now, let us assume that this time he con-
cludes his error analysis with the strong
feeling that he can trust his results. Oth-
erwise the two outer loops would have asked
him to think over his physical or mathemat-
ical model and start all the work again. The
bold box in Figure 1 indicates where ACRITH
can help the user to complete his task.
ACRITH directly influences the computa-

tional phase. For the given input parameters
the solution is determined with verified
accuracy, in this example the solution of
the system of linear equations. Therewith
the numerical part of the error analysis is
no longer necessary.

In addition to that the knowledge of the
capabilities of ACRITH influences the math-
ematical approximation. This is depicted by
the dashed box. Some approximation methods
which deliver good results have not been
used in the past due to problems during
numerical computation. Having in mind that
ACRITH delivers results of verified accura-
cy some methods can be successfully used
again.

ACRITH DESCRIPTION

The High-Accuracy Arithmetic Subroutine
Library is an IBM-First. It consists of
routines for solving problems in numerical
computation. All results obtained have an
algorithmical verification of the correct-
ness and the accuracy.

Together with the ACRITH Subroutine Library
a so-called Online Training Component (OTC)
is provided. The OTC has been designed to
give the user a valuable tool for familiar-
ization with the capabilities of ACRITH. In
addition to that it allows solving of numer-
ical problems interactively.

ACRITH runs on all System /370 processors
under VM/SP, MVS/370, MVS/XA (24 bit-ad-
dressing mode), VSE/SP, and on the PC
XT/370. 1t is callable from VS Fortran and
Assembler programs. ACRITH arithmetic,
which bases on a sound theory by Kulisch and
Miranker [1] makes use of the High-Accuracy
Arithmetic Facility. This architecture RPQ
provides 20 new instructions, with round-
ing. The microcode implementation on all
4361 processors results in a remarkable per-
formance improvement of the arithmetic and
the subroutines when running on one of those
processors.

With the ACRITH package a software simu-
lation written in Assembler for the new
instructions is provided enabling the sub-
routines to run on all System /370 process-
ors.

SUBROUTINE LIBRARY

The ACRITH subroutine library offers a large
variety of routines for solving problems in
numerical computation. They deal with
arithmetic expressions, polynomial evalu-
ation, Zeros of polynomials, linear
equations, matrix inversion, linear pro-
gramming, eigenvalues and eigenvectors, and
standard functions. The theoretical basis
for the algorithms is given in {2].

319

ENVIRONMENT

Application Programs
FORTRAN,ASSEMBLER

Onlina
Training Component

HIGH ACCURACY ARITHMETIC

)

CALL

[Subroutine Library
———:> t 0 loted Inetract I
{

N e E———
1
— &
/370 Instruction Level new OP-Codas
B2cCo,...,82DF

HIGH ACCURACY
ARFTHMETIC
FACIUTY
Microcode

43617

Processor Unit ‘

/370 Interpratation

Figure 2: ACRITH application environment

The ACRITH application environment is
depicted in Figure 2. In the upper left cor-
ner the application programs written in FOR-
TRAN and/or Assembler are shown. After
compilation /370 instructions are executed
to obtain results.

To take advantage of the capabilities of
ACRITH parts of the old programs or calls to
other libraries have to be substituted by a
"CALL" to the ACRITH subroutines. The sub-
routines execute on standard /370 level and
use in addition the 20 new instructions,
either directly on /370 machine level on all
4361 processors, or, via the simulated
instructions on the standard /370 level.

Advanced users may directly use the 20
instructions to write their own programs.
This possibility is also shown in Figure 2
by the small horizontal arrows.

At this point it should be mentioned that an
application program using ACRITH runs on all
/370 processors. If the microcoded
instructions of the ACRITH Facility are
available (4361 processor), the subroutines
automatically use them, without the neces-
sity of recompilation or relink, i.e. ACRITH
programs always choose the fastest mode.

ACRITH FACILITY

The new and outstanding capabilities pro-
vided with the ACRITH package base on the
architectural definition of 20
instructions.

it
i

1
iy
iy

7

E 7
A

s RN i TS

e divided in two
basic arithmetic

These instruction
classes, namel

instructions the accumulator
instructions. . basic arithmetic
instructions Bt of add, subtract, mul-

tiply, divi
executed

©ead. Each of them can be
me of the four possible
ards (towards + infinity),
& - infinity), to nearest
nunber, and to zero.

tions are defined and archi-

r System /370 short and long float-
ht-format. The results obtained with

tructions are all of maximum accu-
Which means that, within the given
floating-point format used, no
floating-point number lies between the com-
puted result and the result obtained with
infinite precision. A key point of the
Kulisch/Miranker theory is the introduction
of an additional instruction: the scalar
product with maximum accuracy. This is the
step from the maximum accuracy single opera-
tion to maximum accuracy composed oper-
ations. The instructions defined in con-
junction with the scalar product are called
accunmulator instructions:

- add/subtract operand to/from accumulator

- multiply and accumulate (scalar product)

- round from accumulator

- add/subtract accumulator to/from
accumulator

- clear accumulator

The long accumulator occupies a 168 byte
storage area. The layout of an accumulator
in storage is depicted in Figure 3.

EXPONENT RANGE

1126 6[3 0l -'614 '12|8
U1 l l L1 [

70 OVERFLOW - /370 UNDERFLOW
 VERFLOMLG—/370 FL.PT . RANGE —] unoer

7 BYTES ACCU OVERFLOW
4 BYTES STATUS INFORMATION
168 BYTES —>|

Figure 3: ACRITH accumulator layout

The accumulator consists of a four byte sta-
tus area on the left, followed by a 164 byte
numeric area. When a floating-point number
is added to the accumulator, the fraction is
positioned in the numeric area that corre-
sponds to the exponent. The fraction is
added -at that point, and any carries are
propagated'to the left as far as hecessary.

The exponent range covered in the accumula-
tor is 16 ** 126 through 16 *#* (-128), which

is twice the standard /370 exponent range.
Together with 14 digits for accumulator
overflow no exponent overflow can occur,
because the numeric area is large enough to
allow any reasonable number of scalar pro-
ducts of the largest representable float-
ing-point numbers to be accumulated.

EXAMPLE

In order to demonstrate the capabilities of
ACRITH we have selected a set of linear
équations. The solution of the linear sys-
tem.

37639840 X - 46099201 Y
29180479 X - 35738642 Y

[T}
I
=

is obtained with ACRITH as
X = 46099201 and Y = 37639840.

This result is verified to be correct as
well as the matrix is automatically verified
to be non-singular.

With a conventional approach, using the
'Gaussian' elimination method one would
have obtained three different results
depending on the precision:

single: no result (divide exception)
double: X = 41095618.57Y = 33554432
extended: X = 46099201 Y = 37639840.

In case of single precision the divide
exXception alerts the user that something is
wrong with his problem. The results obtained
with double and extended pPrecision differ
already in the second digit. It is up to the
user, to verify by time consuming error
analysis that the extended result is cor-
rect.

ACRITH, however delivers the result includ-

ing the verification step, which means that
the user can trust his result.

HISTORICAL BACKGROUND

In the historical background we want to give
an overview on methods used in the past to
obtain accurate or exact results. The meth-
ods have been derived after users realized
the problems with roundoff errors and can-
cellation and the resulting errors in numer-
ical computation.

The different approaches are:

. Symbolic computation

. Algebraic computation

. Naive interval arithmetic

320

The three methods were invented in the early
sixties. The first two are strongly con-
nected and they are often together referred
to as "Symbolic and Algebraic Manipu-

lation." The research and development in

this area is in steady progress.

The third method, the naive interval arith-
metic, was proposed as a global solution to
numerical problems. It turned out that this
is not the case. The naive interval arithme-
tic has been finished after few years where-
as the sophisticated interval mathematics
has been settled as an individual part of
numerical analysis.

The standard floating-point algorithms do
not deliver verified results (as has been
demonstrated by examples) or provide error
bounds for the results. The delivered
results are often of high accuracy, but
sometimes vastly wrong.

The new methods ACRITH is based on, deliver
always results which are verified to be cor-
rect, i.e. no wrong results are possible.
Moreover, the results of the lower level
algorithms are always of maximum accuracy.
The results of the higher level algorithms
are almost always of maximum accuracy. The
property of maximum accuracy means, that
between the computed result and the infinite
precise result there is no other
floating-point number.

REFERENCE

[1) Kulisch, U., Miranker, W.L.: Computer
Arithmetic in Theory and Practice.
Academic Press, New York (1981).

[2] Rump, S.M.: Solving Algebraic Prob-
lems with High Accuracy, in "A New
Approach to Scientific Computa-
tion", Eds. U.W. Kulisch and W.L.
Miranker, Academic Press (1983).

321

