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ABSTRACT

Itis shown that the greatest common divisor of two n-bit integers (given
in the usual binary represcntation) can be computed in time O(n)on a
linear systolic array of O(») identical cells.

1. INTRODUCTION

We consider the problem of computing the greatest common divisor
GCD (a, b) of two positive integers @ and 5. This problem arises when
performing exact rational arithmetic during symbolic and algebraic
coinputations, in factorisation® 2, etc. For serial computation the clas-
sical Euclidean algorithm and its variants have been thoroughly
analysed and their behaviour is well understood>* 3. In this paper we
consider parallel algorithms which could rcadily be implemented in
hardware. We assume that @ and b are represented in binary in the
usual way.

The integer GCD- problem is superficially similar to the problem of
computing a GCD of two polynomials® ¥, The significant difference
between integer and polynomial GCD computations is that carries have
1o be propagated in the former, but not in the latter,

Since our aim is to obtain parallel algorithms which can readily be
implemented in hardware, we do not permit the most general
“unbounded parallelism” model®. Instead, we restrict our attention to
algorithms which can be implemented on a linear array of O(n)
“Sf'stolic processors™ or “cells” with nearest-neighbour communication
%10 In Sections 4-6 we show that GCD (g, b) can be computed in time
O(n) on a linear array of O(n) cells, where each ccll is a finite-state
machine which could be implemented using a special-purpose VLSI
chip or a microprogrammable chipu.

In a companion papexJB the easier problem of polynomial GCD com-
putation (ever a finite filed) is considered. It is recommended that the
reader unfamiliar with systolic algorithms should read that paper before
reading Sections 4-6 of this paper.

In Section 2 we consider various serial algorithms for integer GCD
computation. The classical Euclidean algorithm® and the binary
Euclidean algorithm® 1% do not appear to lead to good parallel al-
gorithms, but a new algorithm (PM), which may be regarded as a
variant of the binary Euclidean algorithm and is described in Scction 3
does lead to a good parallel algorithm. In Section 4 we consider the
systolic implementation of algorithm PM, and in Section § we give an
upper bound on the number of systolic cells required. A lower bound
and some empirical results are given Section 6. Finally, a possible VLSI
implementation is discussed in Section 7.
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1. THE CLASSICAL AND BINARY EUCLIDEAN ALGORITHMS

Assume that @ and b are positive. The classical Fuclidcan algorithm?
may be written as:

al, b

while b # 0 do [b] := [a, zod b

This is simple, but not attractive for a systolic implementation because

the inner loop includes the division operation “amod 5" which takes

time Q(n). The “binary” Euclidean algorithm® 12 13 aypids divisions,

so is superficially more attractive. The binary Euclidean algorithm may
be written as:

{assume a, b odd}

t = [a-b};

while t # 0 do
begin
repeat t = t div 2 until odd (t);
if a > b then a := t else b ;= t;
t := |a-bj
end;

GCD := a .,

};GCD:-a

Figure I.  The binary Euclidean Algorithm B, (usual version).

An alternative which avoids the use of an auxiliary variable ¢ and the
absolute value function is given in F igure 2.

{assume a odd, b # 0}
while b # 0 do
begin
while even (b) do b := b div 2;
if a > b then a <<> b;
b := b-a
end;
GCD := a .

Figure 2. The binary Euclidean Algorithm B, (alternative version).

Itis easy to verify that Algorithm B, with initial (4, 8) = (min(g, 5), | 7 —
B]) generates the same sequence as Algorithm B, with initial (g, 5) = (a,
B). Converscly, Algorithm B, with initial (a,b) = (@ + 5,3) gives the
same sequence as Algorithms B, with initial (g, b) = (3, B). Hence, the
two algorithms are essentially equivalent,

To prove convergence of algorithms B, and B,, it is sufficient to note
that a + b decreases by a factor of 3/4 at each iteration, because the
larger of aand b is replaced by |a — b)/2 for some k> 1.

3. ALGORITHM PM

Note that the inner loops of algorithms B, and B, invoive the com-
parison “if a2 5", and in the worst case this takes time Q(n) because the
result depends on all bits in the banary representations of g and b,

We attempt to modify the binary Euclidean algorithm so that opera-
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tions in the inner loop depend only on the, low-order bits of a and b
and hence the inner loop can be pipelined on a systolic array). Our
rst attempt is algorithm By,

{assume a odd, lal < 2", |bl < 2%}
o t=n; {1al < 2%
t= n; (ib1 < 28
while b # 0 do
k begin
while even (b) do
begin
b:=bdiv 2; g::= g-1
end;
{odd(b), Ibl < 25
LO : if a > B then
begin
a<d<=>b; a<=>8
end;
{odd(a), odd(b), 1ai < 2% 1bl <28, & < g}
Ll : if even ((a+b) div 2) then b := (a+b) div 2
else b := (a=b) div 2
end;
GCD := {a} .

Figure 3. Algorithm By: a first attempt.

The idea of algorithm B, is to maintain integers a and 8 such that |aj
<2%,|b] <2P, and replace the test “a2>b” in algorithm B, by the
weaker but more casily implemented test “a 2 8”. (For details of how
this test is implemented sce Section 4 below; at present we merely note
that a and B8 are number with € logn) bits whereas a and b have
O(n) bits.)

It is tempting to replace statement 1.1 by the simpler
"L2: bi=b~a".

However, the algorithm would then fail to converge for certain initial
data, e.g., a=1,b= 3. The problem is that a £ does not imply a< b,
so the variables b and a may become negative, then |a| 2%, |b] <28
and a <8 before L2 does not imply |b] <28 after L2, Changing the
test “a > 8" to “a> 3" at statement LO does not help (try a= 3, b=1).
We do have convergence of the algorithm given in Figure 3 because

lbls-zf—;_-yi—:;?ﬁ

after statcment L1, and since b is even after L1, a + 8 decreases by
cach time (except possibly the first) that the inner loop is executed.

Hence the inner loop can be executed at most 21 + 1 times.
Another alternative is to replace statement L1 by

"L3: bi=|b—al".

With this modification the algorithm converges, but the inner loop is
difficult to pipeline because of the absolute value function occurring at
statement L3. As given in Figure 3 the inner loop is easy to pipeline
because the operations on a and B depend only on the two least sig-
nificant bits of their 2’s complement binary representations.

Observe that the two variables « and 8 in algorithm B, are unneces-
sary: only their difference § = a — f is required. Using this fact and
allowing for the possibility of a being cven, we get the algorithm PM
(for “plus-minus”). The comments involving & and B are included
only to show the relationship to Algorithm B,.

{assume a, b notboth zero}

{a := n; B := n} a 8
§i= 0; {6 =a-8, lal <2, Ibl £27}
m = 1;
LO: while even (a) and even (b) do
begin
a :=a div 2; b := b div 2; {a :=a -],
m = 2%
end;
if even (a) then a <=> b; 8
{now a odd, jaj < 2%, bl < 2F}
Ll: while b # O do
begin
L2: while even (b) do
begin
b :=bdiv 2; § :=§+L {B :=5 -1}
end;
if & 2> 0 then
begin
a<d~>b; §:=-6 {a <> 8}
end;
L3: if even ((b+a) div 2) then b := (b+a) div 2
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else b := (b-a) div 2
end;

G := m*a. {G = + GCD}
Figured4. Algorithm PM,

4. SYSTOLIC IMPLEMENTATION OF ALGORITHM PM

Consider now the implementation of algorithm PM on a systolic array.
We assume that a and b arc represented as (2's complement) binary
integers which enter the array least-significant bits first. The initial
“whilc” loop LO and the final multiplication by m are casily imple-

mented: essentially the array just transmits unchanged the low-order
zcro bits of aand b.

There is no necd for the array to check the termination criterion: once b
becomes zero the systolic cells to the right will merely implement the
“while” loop 1.2 (b:=bdiv 2; §: =8 + 1) and transmit a to the right.

In the inncr loop L1 the essential tests involving a and b depend only
on the low-order bits of @ and 5. Hence, a cell can perform these tests
before the high-order bits of a and b reach it via cells to its left.

It only remains to consider the implementation of the operations on §
in algorithm PM. The only operations required are “8:=8§ + 17, “8: =
-~ 8", and “if §20-.. then”. Rather than represent & in binary, we
choose a “sign and magnitude unary” representation, i.e., keep sign (5)
and || scparate, and represent ¢ = | 8] in unary as the distance be-
tween 1-bits in two streams of bits. With this representation afl re-
quired opeartions on § can be pipclined. For example, the operation
“8:=98 + 1" merely involves shifting one bit stream relative to the
other and possibly complementing the sign bit.

These considerations lead, after some straightforward optimizations, to
the systolic cell illustrated in Figure 5. The cell has six input strcams
(each one bit wide), and six output streams which are connected to the
corresponding input streams of the cell to the right. The ihpul streams
are ain and bin for the bits in the 2's complement binary represen-
tation of the numbers a and b (least significant bit first), startin to
indicate the least significant bit of a, and three additional streams

B:= B -1}




startoddin, epsin and negin which should be all zero on input 1o
the leftmost cell, startoddin is used to indicate the least significant
1-bit of a and b (so the distance between 1 bits in the startin and
startoddin streams is log,m, where m is the highest power of 2 in
GCD (a,b), as in Figure 4). epsinand negin arc used to represent e
= |8]| and sign (~8) respectively (e is represented as the distance
between 1-bits in the eps in and startoddin streams).

aln. —— [T] [ait] |—— aout
bla ——f %) [Shift] }— bout

startin .——, ]stagj [carry] l——— startout

startoddin— [sta:rtodd] [iwapl ———— startoddout

epsin ———| [eps| leps2] f— 0 epsout
negin —— [n él Einus' ——— negout

Figure 5. Systolic cell for integer GCD computation,

The cell has twelve internal state bits: one for each of the six inputs,
and six additional bits (wait, shift, carry, swap, eps2 and
minus). The wait bit is on if the cell is waiting for the first nonzero
bit in the binary Tepresentations of @ and b, The shift bit signifies
that the cell is shifting the bits of b right faster than those of g (i.c.
implementing “: = b div 2, The carry bit has the obvious mcaning
for a cell performing the serial binary operation a + b or g — b The
swap bit significs that @ and b arc to be interchanged (and the sign of §
reversed); to save cells the interchange may be combined with a shift.
eps2 is used to save a bit on the epsin stream (so the operations ¢: =
e—lande:=¢ + 1can be implemented by shifting the eps in stream
cither faster or slower than the “normal” speed of one cell per two
cycles). Finally, minus indicates whether subtraction or addition is to
be performed at statement L3. A definition of the systolic cell is given
in Appendix A,

5. UPPER BOUNDS ON THE NUMBER OF SYSTOLIC CELLS

In this section we show that the systolic array described in Section 4 will
correctly compute +GCD (a.b) for n-bit integers g and b, provided
that the number of cells in the array is at least [ 3.1105n]. First we
prove a weaker result.

Theorem 1: 4n cells as defined in Appendix A are sufficient
to compute * GCD (a, b) for any n-bit integers g and b,

Proof: Consider the systolic implementation of Algorithm
PM. The statements

"ai=adiv2; b =bdiv2; {a:zgq-— Lp:=pg-13"
are implemented by one systolic cell. Similarly for the state-
ments

"bi=bdiv2; §:=6 + L {B:=pg-1"
and the statement
"L3: ifeven((a + bydiv2)

then b:=(a + §) div2
else b:=(a— b) div2"

Suppose these statements are executed py,p, and p, times
(rcspectivel_y) before b becomes zero, This requires p = n
+ p + p; cells. Other statements such as

E § 2 0 then
begin
a <-> b;

6 := =6 {a <> g 1

end"

may be disregarded because they are implemented by cells
which have been counted already.

At statement L1, if 55 0 we have § = « — § <0, 05 |a] 5
2%, [b] <28, Hence fza 20,50 a + 830

Now 2n—(a + B) = 2y + p, and Pr2ps—1 (since b is
even after exceution of statement L3). Thus
P=ptp+p<p+ 2p, + 1=202p, + p)+1
S4n—Na+B)+1<4n+ 1,

ie, 4n + 1 cells suffice. However, the last cell implement-
ing statement L3 merely sets b to zero (at this point b = +gq)
and does not change a, so 47 colls would suffice to compute
*GCD. This completes the proof of Theorem 1.

Before proving a stronger result, we need some Lemmas,

Lemma 1: Let p = li%QT—— ~0.6404 and l<m<k
Then

D1+ p=4u

(i) u>2-3

(i) a+ w- l)/zk +1 5”,(2" +m=1)/2

(iv)2"("+”']'+(l+ --1)(1_4-my(3,2k+1)5 (k+m+
n n
1)/2

(v) 2=k S;L(”‘ + m)/2
(vi)2=Ck+m) 4 BT = 47my(3.0k) Spk+m=1n
(vi) w12k +m 4 a- 4-m)/(3,2k)5#(2k+ m=2)/2

Proof: (i) is easy. For (ii), we have

~BHSVIT 13454 .
=TI 128 '

»
so

p>27Ys
Note that 1/2 <, s0 2m=k g yk=~m Ty it is sufficient to
prove (iii) - (vi) for k = m: the inequalities for > m then
follow by multiplying the left sides by 27~k and the right
sides by pk—m  With k= m, (i) - (vii) reduce to (iii)’
- (vii)"
(i) 1 + poy/2m+L S"(zxm—l)/z
@Y 27 4+ (1 + p=1y] - 4"")/(3-2’""”)5;1%
(V)' 2-mg ”sm/:l

m=1

(273 4 i1 - g3, my g, 2L
(VY 273 + (1~ 4=my/(3.2m) < yomia




L3:

L4:

We observe that (v)' follows frem (ii), (vi)' follows from (iti)’
(since 272m<2=(m+1) and (1 — 4= m/(3.2mM <2~ (m+1))
and (viiy follows from (iv) (since p <(1+ p~?)/2) and ,,,(Jm
*+ /2 3m7) Hence it is sufficient to prove (iii)’ and (iv).
When m = ], (iii)’ and (iv)’ reduce to equalities

@Gi))” (L + p~Y) = p,and

(V)" 174 4 1+ p~W16 = gt

For m> 1, we multiply the left side of (iii)” by 2!~ and the
right side by p¥m=V72, giving (iii) (12 <p*? by @iD).
Similarly, from (iv)” we get

2-(m+ 1) + 0+ “—1)/2m+35p'(3m+1)/2
but it is casy to show (using 1—4~"<2(1—2'"") and
p~1<2) that

274 (14 p= )1 — 47 mY/32m
€27+ 4 (1 pmh2mEd,

so (iv) follows. This completes the proof of Lemma 1.

Lemma 2 Consider Algorithm P defined in Figure 6.
Provided the initial condition

L:{8=0al <k/p bl <K p=0}

hoids, where g == (1 + V/I7)/8 as in Lemma 1, then the
condition

H: {8 = 0=>|a] <KpP?~Y, | bl < Kp?'3}

holds at all points indicated by {H} in Figure 6.

{1}
repeat
{H}
if & > 0 then
begin {Jl}
if odd (a) then
begin

if even ((a+b) div 2) then a := (at+b) div 2
else a := (a-b) div 2;

p = ptl
end;

while a # O and even (a) do
begin
a = a div 2;
p = ptl;
§ i= &-1
{4}
end

end

else { § < 0}

Lé6:

L7:
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begin {JZ}
if odd (b) then
begin

if even ((a+b)div 2) then b := (bt+a)div 2
else b := (b-a)div 2;

p = ptl
end;
while b # O and even (b) do
begin
b := b div 2;
p i= ptl;
§ = §+1
{1}
end
end
until (a=0) or (b=0).
Figure6. Algorithm P
Proof; Note that p increases monotonically during execution
of algorithm P. The proof of Lemma 2 is by induction on p

20. If p=0 we have H true at label L1, by the initial
.condition L.

Note that § decreases monotonically during execution of the
block L2, then increases monotonically during execution of
the block L5, then decreases monotonically during the ex-
ecution of the block L2, etc. Also, H is trivially true if § #
0.

Consider an cxecution of block L5 such that 8 = 0 at state-
ment L7. Let the values of (a, b, p) at this point be (ay, by, p)-

We shall show that H holds, i.c., that
|y} < KuP/*~1and | by| < KpP”%,
First, supposc the previous occurrence of § =.0 occurred in

block 1.2, say when the value of (a, b, p) at L4 was (ay, by, Do)
where p, < p,. By the inductive hypotheses,

[a,| < Kpho/2™ 1 and | by < Kphot,

There are two cases:
(i) 4, odd, and
(ii) a, even.

Consider case (i) first. After reaching L4 with p = py, block
L2 is executed once more. Thus, at LS we have, for some k
21,(8.a b p)=(8,a,b,p). where 8, = —kp=p + k
+1,a,= (g by/2** 1, and b, = b Then block L5 is ex-
ecuted some number m>1 times until L7 is reached with &
=0, Thus, there is a sequence of positive integers k... k,
such that

Shiki=k p=ptktma=a

and
b=

Lsmes Wik MER
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where The result follows as in case (i) above.

by = b and b';= (b~ 2 a)/2ki*1 Finally, we should consider an occurrence of & = 0 at state-

ment L4 rather than at L7, with the previous occurrence of

+ la)| (1/4+1/6%4. . .41 /6™
< Ibg 172570 4 13,1014 /3

(172 4 (u'1+1>(1-4"“)/3.z“”]

by Ind. Hypothesis
X (pg+2k+mt1) /2
AR by Lemma } (iv)
P2/2
<Ky .

Thus, the proof for case (i) is complete,

Now consider case (ii) (a, even). After reaching 1.4 with p
=pyand & = 0, block L3 is executed some positive number
k times more then & = ~ k<0 and block L5 is executed.
Thus we have a,, b,, 4y, b, etc. as above except that

a=a/2t, p=p + k.

Hence || < Kpn/2=1 and |, < Kup”? follows from the
inductive hypothesis (for p = Po) and Lemma 1 ((v) and
(vi)).

Now, suppose that the previous occurrence of § =0 oc-
curred in block L5 (withi (a, 5, p) = (ay, by, p) say) rather than
in block L2, This can only be the case if b is odd. Then,
block L2 is executed once, after which @.abp=(-ka,
by, py) say, and for some ky ...k, we have

4 = (ax b)/2k+1, b= b,
n=ptk+1,

a = b,

1, <15 172K+m 4 g1 =473,
and

r=p+tk+m

fori=1,....m 8 =0 at L7, and show that H holds, Thy proof of this is
o similar to case (ii) above, using [.emma 1 (vii), and hence is
1 It follows that omitted.
k+1 k+1
IaZI < laO’ /2 + Ib0I /2 This completes the proof of Lemma 2, by inducticn on p.
Py/2 ) . I
0 ats k+l L a 3 Consider Algorithm P defined in Figure 6
<K u TS | 2 . €mima 3. 2 il .
‘ - ( )/ by Ind Hypothesis Provided the initial condition
(p0+2k+m--l)/2
LKy by Lemma 1 (11ii) L {6 =0.1al <K/u, |6} <K.p=0}
=K uPZ/Z-l holds, where p == (1 + V/T7 )/8, then the conditions
o
I (k +1) 1 10l < Kyt
1
lbzl < lbll/2 u and
k +1 kgLt +1 L(k,+1) 1 lal < kppr=1
R LS TE R V7 B )
hold whenever exccution rcaches the points indicated by
< Ibg! ,2kt® {1} and {J,}, respectively.

Proof: Consider J, (J, is similar). Clearly §20. If p = 0 the
result follows from I, so suppose p>0. Then L4 and L7
must have been executed with § = 0. At the most recent
such execution suppose the value of (a.b,p) was (a’, b’ p").
By Lemma 2, |a’| < Ku?/2~1and | /| SKpP'?,

If 8 = 0 (so p= p’) we are finished, If §> 0 then block L6
must have been executed § times since p=p’ s0

b=b'728 p=p' +4.

Thus [b] < Ku@=82.2-8 < gupt2 g5 =112 ¢,

We are now ready to prove the majn result of this section:

Theorem 2: [cn] cells as defined in Appendix A are suf-
ficient to compute GCD(a, b) for any n-bit integers q and
b, where

VvIT =1
2

e =2/ logy (=" ymu3.1105,

Proof: The result is trivial if g or b is zero, s0 suppose both q
and b are nonzero,

Let 2% (k2 0) be the largest power of two which divides both

aand b. Then the loop 1.0 of Algorithm PM reduces (abto
(a’2%, b/2%y and its systolic implementation uses & cells, At
this point § = 0, |a] 27~ | | <274 and at least one of
aand bisodd. Subject to this condition, it is casy to sec that
the “while” loop L1 of Algorithm PM is cquivalent to Algo-
rithm P (Figure 6) modulo interchanges of g and b and cor-
responding sign reversals of §. Furthermore, the variable Y/
of Algorithm P counts the number of cells required in the
systolic implementation (Appendix A) of loop L1 of Algo-
rithm PM,

Algorithm P terminates when a=0orb=0; immediately
before this occurs we have lal = |b] = |G| at {3} or {1,},
where G is the GCD being computed. By Lemma 3,

15| Gl gan=kypi-,




Thus p/2 — 1<{n— k) log,(L/p). The total number of
cells required is

p+ ks2n= k) log,(1/p) + k+1

and the right hand side attains its maximum (over k20) of
21/ log,(1/p) + 1 when k= 0. Thus, since log,(1/p) is
not rational, the result follows.

6. A LOWER BOUND ON THE NUMBER OF SYSTOLIC CELLS

The following theorem: shows that the constant ¢ in Theorem 2 can not
be reduced below 3.

Theorem 3: 31 — 5 + (nmod 2) of the cells defined in Ap-
pendix A are necessary to compute * GCD(a, b) for certain
n-bit positive integers a, b.

Proof: The result is trivial if n<2, so suppose nz3. If nis
even, take a=3-2""1+ 1, b=32""2=1. It is easily verified
that 3n~5 cells are necessary and sufficient to compute
+GCD(a, b). Similarly, if n is odd, take a= 32n2-1, b=
3.27~24 1, It is easily verified that 3n—4 cells are necessary
and sufficient in this case.

The best possible value of the constant ¢ in Theorems 2 and 3 is un-
known, but we conjecture that it is 3. The following table gives, for 2
< n< 18, the number of cells (as in Appendix A) required to compute
+GCD(a, b) for all positive n-bit integers (a,b), and an example (with
minimal max(a, b)) for which the worst case applies. For comparison
the bounds of Theorems 2 and 3 are also given in the table.

n (number lower bound

cells required

7. A POSSIBLE VLSI IMPLEMENTATION

The GCD cell defined in Appendix A is a finite-state machine whose
state is determined by the 24 Boolean variables a, b, . . .. Consequently,
it has 2% states. In this section we outline one possible way in which the
GCD cell could be implemented on a single chip using current nMOS
technology. We do not claim that this is the best way to implement the
GCD cell, but it does have the virtue of simplicity.

A set of Boolean functions can be implemented by a programmed logic
array (PLA). The area of the PLA is approximately

A=64(p+TH2n;+ ng+ 6)A?,
where

n;=number of input variables (or their complements),
no= number of outputs,

p = number of distinct product terms (i.. conjuncts)

when the functions are written in disjunctive normal form (DNF), and
A is as in Mead and Conway™,

We assume that Boolean variables a, b, ... are implemented by clocked
.rcgistcrs in a standard manner'®. It would in principle be possible to
implement the GCD cell as a single large PLA with nj=np=18,p~s8S.
Ho.wcvcr it is possible to split the GCD cell into scveral components
which can cach be implemented by a PLA of moderate size. The initial
block of assignment statements “aout := a; ...; negout := neg" is

easy to implement, as is the statement “wait ;= (wait or start)and
not startodd”.

The remainder of the cell definition has the form

upper bound example of

of bits) (Theorem 3) in worst case (Theorem 2) worst caseb
a
2 1 3 7 1 3
3 5 6 10 7 5
4 7 10 13 15 13
5 11 11 16 17 23
6 13 15 19 57 47
7 17 18 22 33 125
8 19 20 25 119 213
9 23 23 28 319 349
10 25 26 32 647 693
11 29 29 35 1535 1537
12 31 33 38 3847 3829
13 35 35 41 6143 6145
14 37 38 44 10257 13651
15 41 41 47 24575 24577
16 43 45 50 64229 61519
17 47 47 53 98303 98305
18 49 50 56 185487 210061

Table 1: Number of cells required for n-bit inputs.




"if EJ then B1

else 1if E2 then B2

"
else 35

- E, are Boolean expressions in the 6 variables startodd,
wait, a, b, shift, startoddout, and B,,..., B are blocks of as-
signment statements. We could implement each of B,, ... , B by
“slave” PLAs P,,... Py of moderate size. These PLAs compute in
parallel and their outputs are selected by a “master” PLA which com-
putes the 3 (mutually exclusive) functions E,, E;-E, E-E,E,
E,E;EyE, E\Ey EyE,. The number of inputs (n7), outputs (ng) and
product terms (p) for the PLASs M,P,, ..., P are given in Table 2.

where £, ..

PLA ny n, P
M 6 5 7
Pl 5 7 6
Pz 1 1 1
P 3 9 5 8
P 4 5 3 9
4 5 9 4 12

‘Table 2: Parameters of PLAs for GCD cell implementation.

The total area of the PLAs in Table 2 is about 20000 A2, By way of
comparison, the “brute-force™ approach (using a single PLA) has area
about 350000 A%. These estimates neglect 1/0 pads, routing between
the PLAs, etc. With current technology the area of a chip can easily be
107 A% so it should be possible to implerent many GCD cells on a
single chip.

A prototype systolic integer GCD cell was implemented on a mul-
tiproject chip (coordinated by the CSIRCH VLSI Program, Adelaide,
Australia) in November 1983, using nMOS technology with Mead and
Conway design rules and A = 2.5 micron. For the sake of variety and
io reduce powcr consumption, our implementation used “blue-green
function blocks” (Plate 7(b) of Mead and Conway“) instead of PLAs,
To minimize routing problerns, we used only two function blocks in-
stead of the six suggested above. Onc function block, the “control”
function block, computes the functions Ey EvE, ... E By E E, and
some other Boolean functions of its inputs, c.g. a® b. The other func-
tion block, the “main™ function block, computes all other required
Boolcan functions. To implement the finite state machine, 18 outputs
of the main function block are fed back (through clocked registers) to
the control functions block. To simplify testing we used static rather
than dynamic registers. The total size of the cell is 688\ by 1022).
About 40 percent of the arca i occupied by the two function blocks, the
remainder being uscd for /0 pads, registers, clock drivers, etc,

8. CONCLUDING REMARKS

We have shown that the greatest common divisor of two n-bit integers
(given in the usual binary representation) can be computed in time
O(n) on a linear array of O(i) idehtical systolic cells, each of which is
a finite-state machine which could be implemented on (part of) a VLSI

chip. Thus, special-purpose hardware for integer GCD coniputation
could easily be built. Since GCD computation is the most time-
consuming operation when rational arithmetic is performed, such
hardware could be worthwhile for applications involving exact rational
arithmetic, ¢.g., symbolic computation.

Recently Purdy®® has suggested a different way to compute integer
GCDs. Although Purdy’s algorithm is linear on average, its worst-case
behavious is quadratic.

For applications we usually want to compute the extended GCD. It is
possible to do this using a straightforward extension of the systeolic cell
defined in Appendix A.This extension will appear in a paper by
Bojanczyk and Brent,
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APPENDIX A: Cell definition for systolic integer GCD computation

{The language used is Pascal with some trivial extensions and declarations

omitted. See Figure 5 for 1/0 ports}
aout := a; a :=-wain; {standard transfers}
bout := b; b := bin;

startout := start;
startoddout := startodd;

start := startin;
startodd := gtartoddin;

epsout := eps2; eps2 := eps; eps := epsin; {delay here}

negout := neg;

wait := (wait or start) and not startodd; {wait for nonzero bit}

if startodd or (wait and (a or b)) then

LD

prue)

RN

begin
eps := eps or wait;
eps2 := 0; {0 = false, 1 = true}
neg := negin and not wait;
startodd := 1;
wait := 0; {end of waiting for a nonzero bit}
swap := not a;
shift := not (a and b)
end
else if wait then epsout := eps2 {normal speed)
else if shift then {shift b faster than a, may also swap}
begin
aout := (bout and swap) or (aout and not swap); {normal speed}
bout := (a and swap) or (b and not swap); {fast speed}
epsout := (eps and neg) or (epsout and not neg);
neg := neg and not (eps and startoddout); {§ may become zero}
negout := neg
end
else if startoddout then
begin
epsout := epsl;
swap := not neg;
neg = neg or not eps2;
negout := neg;
aout := aout or swap;
bout := 0;
carry := a(®b;
minus := not carry
end
else {not startoddout}
begin
epsout := eps2; {normal speed}
aout := (bout and swap) or (aout and not swap); {normal speed}
bout := a @b @ carry; {fast speed}
carry := majority (b, carry, a ® minus) {majority true if 2 or 3 of
its arguments are true}

{normal speed}
{8 := =181}

{swap implies b}

{and new b 1is even}
{may be borrow or carry; (E) is exclusive or}
{1 1ff we form (b - a) div 2}

end.
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