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ABSTRACT

F4. For addition the sum digit at a
given position is completely

determined by the inputs at

The maximal redundancy signed-digit both the same pO:iTiDntand EEE
(MAXSD) number system has the highest position immediately o e
redundancy within the carry-absorbing right.

signed-digit number system proposed by
Avizienis in 1961. The digital values
for radix R lie in Li-R, R-11.

Its compatibility with both
standard nonredundant systems and binary
arithmetic makes it an excellent
choice for multiprecision arithmetic on

He obse-ved that these requirements are
satisfied by positional number systems
with (implied) radix R » 2 characterized
by the parameter q such that

—q i de & q; with W(R+1) 3 q 2 R

d binary machines. The representations Sucb 5ysteT§ notdpn}z ?b;1ate tge
] for finite numbers are however nonunigue need er_ & sign 191 an pror; f
] and can even be unbounded in wordlength; immediate carry absorption in paralle
1 this is resolved by algorithms for addition/subtraction, but has the
; partial or complete conversion to benefit that addition, . subtraction,
standard nonredundant notation without multiplication and division can all be
carried out with the most significant

explicit carry propagation.

digits emerging first, in the manner of
on—-line arithmetic (see, for instance
Trevedi and Ercegovac®), not possible

with nonredundant number systems.

l. The Signed-Digit (SD) number system Despite these advantages, 8D
schemes have not prevailed in the

. A guarter century ag0, A. market. The built-in redundancy takes a
Avizienis® 3.4  gtudied digital number toll in storage capacity, hardware cost
representations with signed digits under and processing time. Moreover, the
the following premises: roundoff error is sensitive to detailed

implementation.

F1. Zero is represented by setting
all digits to 0. A new opportunity arises with the
- . ) ) recent strong interest in multiple
2. The sign of the number is given precisior arithmetic, where  carry-
by that of the lead nonzero propagation can be time-consuming. The
digit; emerging parallel computation designs,

The negation of the number is
obtained simply by reversing
the sign of all nonzero digits;

and vector arithmetic systems all favor
a parallel processing approach to
multiprecision arithmetic. These facts
has motivated the present investigation.

2. Digital redundancy and recoding

¥ Work performed at IEM Heidelberg tat An  SD digitR h§s (§g+1) ?istinct
Scientific Center, Tiergartenstrasse 15, sta EZ’ d V:FS?SR) 1nt ?th :handard
D&6900 Heidelberg, Federal Republic of nonredundan . system wi e same
radix. The digital redundancy can be

Germany, Fall 1984.
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defined by




-
]

2g+1-R

2 for R:z3.

During an addition, say between A
{Axy and B = {Buxl, the value V & (A«
Be) = is expressed as cR+d and

symbolized as the pair [(c,dl, where d is
an interim digit and ¢ is a signed carry
(called a transfer digit by Avizienis)
which could be O, +1, or -1. A nonzero
carry 1is absorbed by the digit to its

+

left usually; but if the latter
POSSESSes critical  values g or -q
respectively digital overflow occurs,
calling for carry propagation.

A digital redundancy of 2 ar
greater in SD systems permits the
(conceptual) recoding of the two
critical values, to eject a nonzero

carry *1 beforehand, leaving an interim
digit d = x(g~R) which for R*2 is always
subcritical, ready to absorb Aan
arbitrary carry from the right. The
recoding of other values from V to [c,dl
= {1, *(V-R)1 are often possible, but
does not serve the explicit purpose of
carry absorption.

Z.. The MAXSD system

Sal.

Characteristics

The highest redundancy within the
5D context is reached with the MAXimal
(redundancy) Sigrned—-Digit (MAXSD)
system, with g = R-1. It has the
following features:

it has the largest
and the greatest
(R—-1).

a. For given R,
capacity (2rR-1),
digital redundancy r =

b. It contains all other SD
notations, as well as the
standard nonredundant (NR)
notation as special cases.

[s38 If R =27, then the MAXSD digit is
just a p-bit field.

d. Every nonzerao digit can be

recoded into a nontrivial

carry—digit pair i1f needed. This

curious fact has its uses as well

as drawbacks.

3.2. MAXSD arithmetic

The MAXSD scheme allows simple
hardware additions wusing digit-sized
signed accumulators extended to contain

The overflow
digit
Normal

the sum of two digits.
bit together with the sign of the
forms a signed carry.
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operations,
carry Cases,
recoding is
complement.

including the mandatory
are straightforward. The
just taking the R's

Localized additions, such as adding
and subtracting 1°s, and rounding in
several different ways to bracket the
final results, are well-served by the

high~capacity MAXSD, often within a
single digit.
Multiplications and divisions,

however, would require a double-digit
accumulator, or table look-up devices.

For R=2r, the MAXSD digit is a
p—bit field, and the recoding of g into
R~g amounts to replacing a field of
all—-1"s by all-0"s with a trailing 1.

I3, Addition with carry prediction

It is even possible to add in MAXSD
using digit-size hardware, with neither
extension nor overflow indicators. Even
in such a case, the carries can be
predicted with ease. The algorithm is,
for every column:

A I¥ both input digits are zero, or
if both digits are nonzero with
oppasing signs, normal addition
can take place without recoding;
the carry is O.

k. If both addend digits are mnonzero
and equal in sign, recode either
one of the digits. The
subsequent addition follows (a)
and will generate no extra
nanzero carrys

Ca If exactly one digit is 0, the
the other digit already has the
intermediate sum, and is recoded
if necessary to avoid critical
values.

Here the recoding in (b)) is not confined
to intermediate critical valus, but
applies to nonzero digits of all types.
Nonmaximal 8D systems cannot do this,
and would require costly scrutiny of the

addend digits to achieve the carry
prediction.
4. The wordlength excess problem

4.1. 8D wordlennth uncertainty

The 8D npumbers may

o possess more
digits than their NR

equivalents. The




MAXSD scheme aggravates the problem in

having representations with unlimited

wordlengths. This 1is seen from the
following radix—-10 example:

NR: +(8 4) (2 digits plus sign)

5D, g¥8: (1 -2 &) (3 digits)

SD, g=8: (8,4) = (1 -2 4) (2-3 digits)

MAXSD: (8 4) = (1 ~2 4) = (1 -9 =2 23)
= (1 -9 -9 -2 4) =,,,

The leading digit 1 in MAXSD can be
recoded as [1, (R-1)1, which again bas a
leading digit 1, and can be recoded once
morg.: 'Such a recoding of 1 is not
explicitly practiced in MAXSD additions,
but may result from multiple arithmetic
operations.

This wordlength uncertainty is
perhaps the greatest hidden problem in
SD arithmetic. Clearly NR roundoff

analysis cannot be applied directly
without modification. Worse, one may
find in integer arithmetic premature
overflow indication, and in fractions,
fictitious integer parts. In
floating~point arithmetic a long
apparent fraction length can cause loss
of significant digits in some numbers,
which during addition may force other
addends to lose their significant digits
as well,

EXAMFLE : The NR decimal fraction
0.84 may appear in SD as (1.-2 4),
with an integer part, and in MAXSD
as (.1 -9 -9 -9) x 10*% = 1,000,

4.2. Wordlength excess in_SD data

The SD wordlength problem is
summarized below:

a. For a given number,

The NR representation is unique
and minimal in wordlength.

Non-maximal SD schemes has
nonunique representations, and
possibly 2 distinct wordlengths.

MAXSD systems has an unbounded
variety of representations and
wordlengths.

b. Nonzero wordlength excess aver
the NR notation occurs iff the
SD digit is 1, and the next
nonzero digit (possibly separated
by many 0°s) has opposing sign.

c. For non-maximal SD systems,
The excess never exceeds 1.

The excess may be irreducible
within the notation. For R = 10

and g = 7, (1 -2 4) canndt be
reduced to (8 4).

There are always values with
wordlength ambiguity in
representation. (5) = (1 -5) is a

decimal example.

With increasing q. the wordlength
ambiguity increases, yet the
number of irreducible cases
decreases.

d.  MAXSD representations for a given

value allow arbitrarily large
wordlength excesses. Fortunately
all are reducible, if only

because NR is a special case.

4.2, Reducing MAXSD wordlenagth excess

The MAXSD wordlength excesses are
all easily reducible. For instance, the
simple expedient of adding 0 +to the
number already rids the number of
undesirable extra #q's (g=R-1), bringing
the wardlength down to the level of
other SD number systems, with a excess
of 1 at most.

Toc eliminate the escess altogether,
one should be ready to transform the
leading part of the number.

In the following we define

a positive definite digit

a negative definite digit

the digit (-1)

1 if the number is positive
definite

0 if the number is O

T if the number is negative
definite

m-HZD
LU I

Step 1. If the number is 0, all but

one of the digits cam be omitted.
Else drop all leading © digits.

Step 2. The leading part is
reducible iff it has the form

=S(TP...F), followed by —-8(N or 0);
or ~-5(TO0...0F...F), followed by
~8(N or O)x

The reduction on the leading part
consists of

a. Outside parentheses: S replces =1
b. Inside: Replacing the lead T by 0y

€. Replacing the rest of the string by

its R°g complement;
d. Drop all leading © digits;

¥ The strings are actually S(IN, ..., N,
etc., rewritten with -5 factor te show
correspondence with R’s complementation.




There will be no carries during
the reduction.

EXAMFLES: (R = 10}
(O G O 0) ——> ()
(00 =3 1 0 =-Q@)==> (-3 1 O -9)

Q01 -9 -9 -2 -4 @)
-=> T(T 9 9 2 4), (B)
7

=% 140 0 Q &Y, (B —-—> (7 & 8)
(0G0 TO OG99 2 4 -8)

== T 009 9 2 4), (-8)

== T(O 2 9 007 6), (-8)

- - 3 -7 —~6 ~8)

S5tep 2 is strongly reminescent of
the negation of a signed number in R's
complement arithmetic, generalized here
to signed digital wvalues. The lead
digit within the parentheses, namely T,
behaves like a signed digit.

Step 2 can be economized by
shortening the string of F values
sampled:

In S(T(:’..-Ole,F'z,..; «aFem) only Fi is
truly needed;

In S((TF,, FayueesPm), Fa alone
suffices unless it equals (R-1); 1in
which case one should continue
sampling to include a second P value,
if any.

EXAMPLES: (R = 10)

(0 01 -9 -9 -2 -4 @)
=~ T(T 9 9 2y, (-4 8)
= 10 00 8), (=4 8) ——» (8 -4 &)

(0O0TOO99 24 -8)
-=> T 009, (924 -8)
~=» TW 99 1), (92 4 ~8)
—~3 (=9 =% 1 9 2 4 -8)

9. Conversion_to NR notation

A fruitful approach to wordlength
reduction in MAXSD would be to map
directly into the NR notation, which has
minimal wordlength. On the other hand,
no  conversion is needed to map from the
standard NR number notations to enter
MAXSD arithmetic.

The standard technique for back
conversion to MR notation is to separate
the parts with aopposite signs into two
words, and add them together in NR
arithmetic, with the usual carry
propagation.

An alternative technique for
positive (negative) numbers would be tg
recode every negative (positive) digit
but no others, add to zero in MAXSD
arithmetic, repeat until all signs are
equal. The number of iteratiops would
be measurd by the longest string of zero
digits terminating at a negative
(positive) digit.

An intriguing question is, whether

a carry-nonpropagating conversion
mechanism to NR is possible. The answer
is vyes, in a manner of speaking, by
applying the generalized R's complement
technique to all strings containing

digits of the wrong signh in parallel.

The digits in the given MAXSD word
W is first subdivided into interlaced
strings:

W=V, U V, U, V,..., U, V

where U has the form -5(N, M)
M= My, .., Ma)
Me = P or 0, but never N3
also, M, is never Q3

V has the form -5(Q, B1,...04)
B is mever F, and some V's could
be empty.

The recoding applies only to U (the
string containing digits of sign Unlike
that of the number itself):

~S(Ny May wey Me) o= -S(N, M)
~=> B((N+1), (R's compl. of M))

EXAMFLES: (R = 10)

V U V—— U=~ Yoo

01 -9 00-7014-2390)
~=300 099% I 0132 BI9O)

v u u v

0T -900-7 0 1 4-2 3 90)
=20 T =9 0 0 -6 -9 -8B ~6 -1 ~6 -1 O )

and the result will be in NR notation,
yet ro carry propagation ever explicitly
ncocurs.

It may be said that the scanning
effort to isloate the U-strings is
nontrivial, and is similar to carry
propagation. However, in scanning only
(8] digits have assignment ambiguity
calling for examination beyond
neighboring digits. The interplay
between MAXSD and NR numbers clearly
bears further study in the future.




6. Multiprecision MAXSD arithmetic

As machines become faster and
faster, the quality of the arithmetic
results becomes an increasing concern.
This has led to a strong  interest in
multiple~precision arithmeticy for a
recent study using microprocessors see
Abertht,

Kulisch and Miranker” has examined
the use of a long accumulator of more
than. a thousands bits, covering the full
range.of products of all floating-point
'érs, to accumulate results of vector
;roducts, for matrix computations to
entially full-length accuracy an
otherwise short wordlength machines.
wSchemes using shorter accumul ators
;gkist, but are much less efficient. The
“schemes have been implemented in

software® and hardwares,

We have programmed multiprecision
MAXSD  arithmetic on the IBM Fersonal
Computer AFL system® in both
floating-point and fixed-point, with a
user—specifiable radix. At the largest
allowed radix of IPe,  the limit on AFL
signed integers. AFL provides no
aoverflow indication, nNecessitating the
carry prediction scheme of Section G

Multiplication and division area
done by reverting to a half-length
radix, which is no larger than 2=e_
Additions in this lesser radix, also in
MAXSD, but using effectively a double
short-digit accumulator without carry
prediction, was found to be much faster
in AFL for the same information content
than that using the larger radix via
carry prediction.

AFL uses only one  arithmetic
engine, vyet the processing of vectors
and arrays outstrips serial

digit-by-digit processing in speed. The
experimental study could shed light oan
implementations using fast vector
hardware, anc highly overlapped
machines, where a causal chain of events
is handled far less efficiently as an
equal number of otherwise unrelated
onhes. The carry non—-propagation and the
binary orientation of MAXSD should make
a welcome differencea.

Z.. Summary and conclusions

The signed-digit system, proposed a
quarter—-century a4go, can benefit from
re-examination in light of rPew need for
multiprecision arithmetic and new vector
machine hardware-software architecture.
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The maximal signed digit system,
compatible with standard NR system§ on
the one hand, and binary arithmetic on
the other, is an excellent candidate.
Froblems of nonunigue word lengths can

be overcome in MAXSD, and the solution
algorithm even offers the promige of NR
arithmetic with no explicit carry

propagation in the future.
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