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Abstract

The space-time domain expansion method has
recently been used to transform a computational task
with a recursive formula into a VLSI architecture. In
addition to its simplicity and completeness, an impor-
tant advantage of this method is that it can easily solve
the problem of partitioning an algorithm to fit a fixed
size VLS] architecture. We propose a computational
model and a partition rule which can be easily used to
partition any recursive computation problem suited to
the space-time domain expansion method so it can be
solved on fixed-size VLS! architectures. Several exam-
ples, such as partitioned vector inner product, parti-
tioned comparators in relaticnal database management,
partitioned matrix multiplications, and partitioned tran-
sitive closure computation, parallel recognition of gen-
eral context-free languages, string matching and
dynamic time-warp pattern-matching are used to illus-
trate the proposed method.

Index terms: Space-time dornain expansion, recursive
task, pipelining, multiprocessing, very large scale
integration (VLSI), algorithm partition.

1. INTRODUCTION

There are many articles [3 - 12] about the design of
special VLS! architectures for specific applications.
There are also somme works which attempt to develop
general methods for designing VLSI architectures sys-
tematically [1,13-19]. Most of these methods assume no
limitation on the size of VILSI architecture, or the
number of processing units on the VLS chip. Such an
assumption appears to be unrealistic, since there are
several factors ( physical , technology and complexity
limitations) that actually constrain the integration level
of the silicon IC technology [20]. Even by the late 1980's,
it could only be possible to fabricate 107 or 108 transis-
tors on a monolithic chip [21], which may be much
smaller than the sizes required by many large-scale
computation problems. The assumption of no size limi-
tation of VLS] architectures is also not very economical
and convenient because we have to design VLSI archi-
tectures with different sizes for different computation
problems even they may use the same algorithm. We
bave to find methods to partition computation problems
so they can be solved on fixed-size VL.SI architectures.

We will use 'algorithm partition’ for solving a prob-
lem using fixed-size VLSI architectures and use 'recur-
sive task' to represent a task with recursive mathemati-
cal formula in the following discussions.

Although algorithm partition becomes a key to
extend the computational capability of VLSI architec-
tures, so far only & few papers have paid attention to
this problem {22, 23, 29]. In this paper we propose a
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partitioning method based on the space-time domain
expansion. The application of the proposed method is
illustrated by examples.

2. SPACE-TIMF: DOMAIN EXPANSION AND COMPUTATIONAL
MODEL

Let S represent space domain and T represent
time domain. The space-time domain is then the set of

5.7} which, in general, is a ( n +1 )-dimensional vector

1Lz, T | 2488 1=1,2,-n, and te But for the

1.1’2-Is-t

real world , we only concerp the case of at most 4-
dimensional vectors II T

Along z; , a k-space expansion means that the processing
unit repeats uniformly k times along the z; direction, as
shown in Fig.1. The structure in Fig.1(b) is called the k-
Space expansion of the structure in Fig. 1(a) ; on the
other hand the structure in Fig. 1(a) is called the k-
space condensation of the structure in Fig. 1(b). The
space-expansion ( condensation ) can be performed at
several levels , each processing unit could be a gate, a
processing element (PE) , a group of PEs, a processor , a
group of processors or a processing system, ete. In this
paper, we only consider processing unit consisting of a
PE or a group of PEs.

A K-time expansion means that J events occur
sequentially and each adjacent pair of the events has
equal time interval ( 1 time unit ) . Its configuration is
shown in Fig.2. The structure in Fig.2(b) is called the K-
time expansion of the structure in Fig 2(a); on other
hand the structure in Fig. 2(a) is called the K-time con-
depsation of the structure in Fig 2(b). The time-
expansion ( condensation ) can also be performed at
several levels, each event could be a datum, a block of
data, a task, or a group of tasks, etc. We only consider
an event as a block of data in this paper.

We propose the following rules for space-time
domain expansion to design a VLSI architecture for
solving a recursive task [1].

(1) Space-expansion rule

Input data of the Kth processing unit should spend K
time units to reach this processing element to maintain
the time consistency. The Space expansion essentially
uses the multiprocessing technique.

K

(a) (b)
Figure 1. {a) Single processing unit, (b) K-space expan-
sion




() Time-expansion rule

Input data of every processing unit must be expanded in
time domain, the Jth data needs J steps (each needs one
time unit) to reach the processing element to maintain
the space consistency. The time expansion essentially
uses the pipelining technique.

(3) Rule of mapping a recursive algorithm into a VL3I
architecture

For the index (indices) in the recursive formula (or of
the program loop ) we can apply space and time expan-
sions alternatively such that each index corresponds to
one expansion and the processing unit performs the
mathematical computationt in the formula. In general,
space and time expansions are applied alternately, can
we obtain higher performance.

There are several measurements for a computa-
tional task. We will use problem size N which is the
number of operations needed to solve the given task to
measure a computational task. The computation model
of a VLSI archilecture obtained by space-time domain
expansion can_ be described by the tuple
K. K2.Kq,Q@,. .6 | Here K; denotes a K;-space expan-

sion along the z; direction and & denotes a @;-time
expansion in the jth expansion. K; equals to one if there
is no space-expansion along z; direction , and & equals
to one if there is no expansion in the jth time-expansion.
The necessary condition for solving a recursive task by
using the space-time domain expansion is:

[1&% x []&=N (1)

which indicates that the VLSI architecture based on the
space-time expansion can perform a number of opera-
tions equal to the product of all the space-time domain
expansions.

(4) Partitioning rule
If we make a k-space condensation along the z; direction
, then we have to also make a k-time expansion. Multi-
dimensional condensations need multi-time expansions
which may require some input data to be used repeat-
edly.

In the next section , we will use some examples to
illustrate how to apply the proposed computation model
and the partitioning rule to partition a given algorithm.

3. PARTITIONING ALGORITHMS USING THE PROPOSED
METHOD

3.1. Partitioning Vector Inner Product
The inner product of two vectors can be expressed

as :
¢ = SVa@)xb ) 2)
i1
Its recursive formula is
o =0,
Ct=c0D4g(i)xb(i) 1<is<N;
c=CcN (3)

We can solve it in three different ways by using different
structures.

3.1.1. Using a single processing unit with feedback

The processing unit has the structure as shown in
Fig.2(a). Since K, = K; = Ks =1, according Eq.(1), we
obtain @; =2 N. It means that a N-time expansion is
needed, and the structure is shown in Fig.2(b).
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3.1.2. Using an one-dimensional array of processing
units without time-expansion

Since & =1 forall j and Kp=K3=1, according
Eq.(1), we obtain
K,=N
It means that we need to make an N-space expansion
along the =z, direction. The structure is shown in
Fig.2{c) and obtained by using the space-expansion rule,
details can be found in [1].

For reducing the number of pins, we could use the
structure in Fig. 2(d) and an asymmetric two-phase
clock.

The structure in Fig.2(b) and the structure in
Fig.2(c) can perform the same operation and require the
same amount of time (N time units ) to complete the
task, but the structure in Fig.2(b) only needs one pro-
cessing unit, because the time-expansion can improve
the utilization of the system, in this case the utilization
is 100%. If we want to compute multiple vector inner pro-
ducts, we can make one more time-expansion, then the
structure in Fig.2(c) can gain the speedup, but the struc-
ture in Fig.2(b) can not. It is simply because of the fact
that a space-expansion followed by a time-expansion can
speed-up the computation.

3.1.3. Using a size-K VLSI one-dimensional array

The size K one-dimensional array can be considered
as a K-space expansion of the structure in Fig.2(a) and a

%—space condensation of the structure in Fig.2(c). The

input data should be arranged according to the space-
expansion rule. Since Kz = K3 =1, following Eq.(1), we
]Ig-time expansion. The input data a(i)
and b(i) become a{m,n) and b(m,n) with the following
relations:

have to make a

almmn)=afi);
b(m,n)=>5(i):
i

(K+1) *L

m =

n=i-— x K ; (4)

i
(K+1)
Since there is data-dependency between the operations
of this problem, we need to add one more cell - an accu-
mulator controlled by the signal sent from the hest
machine. The resulting structure is shown in Fig.2(e).
The accumulator initially is set to zero and will be
stimulated at (K+1)st time-unit by the input data and

reset at the end of each accumulations which could

N
X
be controlied by the host machine. The output has to be
removed before the reset. If N (mod K)# 0 , the
remaining portion of the last row has to be fllled with
zeros. Using the structure in Fig.2(e), we can compute
vector inner product of any size on a fixed-size VLSI]
linear array.

Consider the computation of M pairs of size N vec-
tor inner products,

c)=Sajxb(ig). 1<i<H (5)
i=

we can use cne of the structures in Fig.2(b) and Fig.2(c)
by performing one M-time expansion. We can also use
the structure in Fig.2{e) by performing a M-time expan-
sion, then the structure in Fig.2(f) is obtained. It needs

N

K

M x + K time units to perform the computations.
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(h) Another implementation of partitioned matrix-vector
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Note that all the patterns of the input data will be
repeated M times in a M-timme expansion.

If the processing unit performs comparison instead
of multiplication and logic AND instead of addition and
accumulation and the additional processing unit is ini-
tially set to logic one, the structure in Fig.2(e) can be
used as a cornparator in relational database manage-
ment to perform any size ‘comparison’ computations.
Also after a time-exparsion, it can be used for a
sequence of comparisons.

3.2. Partitioning Matrix-Veector Multiplication

Consider a matrix A with size MxN and a vector B
with size N The multiplication of A and B is a vector C
with size M and is defined as :

c(i) =ii:ffa<i.j xb(j), 1sisM (6)

Eq.(8) can be considered as a special case of Eq.(5) when
b(i,j) =b(j) for all i. This can be implemented by
the architecture in Fig.2{g) or the architecture in
Fig.2(h), no matter what sizes they are.

Since convolution and FFT (Fast Fourier Transform)
have similar computational properties as matrix-vector
multiplication, they can also be solved by the architec-
ture in Fig.2(g) or the architecture in Fig.2(h), no matter
what sizes they are. Certainly, we can also make another
time-expansion to perform multiple matrix-vecter multi-
plications, multiple convolitions, and multiple FFT.

3.3. Partitioning Matrix Multiplication

Without lossing generality, we can assume that two
matrices A and B both have size MxM ( actually it merely
needs that they are compatible ). The multiplication of
two matrices is defined as :

Clig) =':iya(1'.,k)><b(lc.j), \<ij<H  (7)
=1
Its recursive form is:
c'=0;
C¥(ij) = C*0(1,5) + a(i k) x b(k.j):
cli,j)=Cc¥(,j) 1=ij<M. (8)

Using space-time domain expansion rules, we can obtain
the MxM structure in Fig.3(a). It needs totally 3
M? - 3M + 1 processing units and 24 — 1 time units for
the computations. If we want to use a VLSI architecture
with size KxK to solve this problem, according Eqg.(1) and

the partitioning rule, we need to make two u time

K
expansions, and one M-time gxpansion. The input

matrices are partitioned into KxK submatrices. The

K

submatrices of A and B matrices are the inputs to the
KxK VLSI architecture seguentially according to the
time-expansion rule. Since there is data-dependency in
the matrix multiplications, except the KxK VLSI module
based on the space-time demain expansion We have to
add KxK processing units controlled by the signal sent
from the host machine, as shown in Fig.3(b). Each
processing unit has an accumulator and an one-time-unit
delay and a Flip-Flop which stores the output of the
accurnulator or the output of Flip-Flop of the left-side
processing unit. All the accumulators are initialized at
zero and will start at 2Kth time-unit after inputing the
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Figure 3. (a) Full sized VL3I matrix multiplication archi-
tecture based on the space-time domain expansion
approach, {b) size KxK partitioned matrix multiplier
(module) and the VLSI structure for partitioned matrix
multiplication.

first pair of submatrices. The accumulators perform the
operations in a synchronous manner with the clock

period K and will be reset at the end of each M accu-

K
mulations. The results have to be removed just before
the resets. If we remove all the outputs simultaneously,
we need 2K-1 output pins, it may be difficult when K is
very large. To reduce the number of output pins, we can
chain the Flip-Flops in the same row and form K output
channels which require only K output pins. The data in
the left-side Flip-Flop will be shifted into the right-side
Flip-Flop in one time unit. Since the clock period is K,
before the change of the accumulator occurs, it can shift
K positions to the right and all accumulations can be
moved out with only K output pins.

It ¥ (mod K)# 0, it may be one of the following two
cases:
(WK>HM
Input data need to be filled with zeros and only MxM out-
puts are needed.
(RYK<HM
The submatrices in the last column and the last row have
to be filled with zeros.




N

From the above discussion, we know that the KxK
VLSI module consisting of ( 4X°-3K+: ) processing units
asg shown in Fig.3(b) can solv atrix multiplication of

any size. It needs (2K + lefé ) time units to com-
plete the computations When M>>K, Ll time units
?.re needed. For the structure in Fig 3(b), if we make a
l%{ -Space expansion, according the partitioning rule,

then we only need one (ﬂ time expansion and one M-

K
time expansion. It needs ,%—] KxK VLSI modules and

[
(M'x,%’ + 2K ) time units to complete the computation ;
when M > K, it becomes (Mx[%] ) time units. For the

l % -space

expans}jT then we only need one M-time expansion. It
M

obtaining structure, if we make another

needs KxK VLSI modules and (M+2Kk) time units to

complete the computation; when ¥ >>K it becomes M
time units. Of cause we can make another time-
expansion for the above structures to perform multiple
pair of matrices multiplications, the details are omitted
here.

3.4. Partitioning the Computation of Transitive Closure

The transitive closure problem has many practical
applications such as process synchronization, data flow
analysis of computer programs, and many graph-
theoretic problems [10,23-25]. The fact of that the com-
putation of transitive closure can be partitioned is also
indicated in [10].

We use a boolean matrix A to represent a directed
graph and let the nodes of the graph be 1,2,...,N. The
elernent a; of the matrix A is 1 if and cnly if there is an
arc from i to j, and 0 otherwise. The transitive closure of
A representing a graph G is the matrix A* whose (L))
entry is 1 if and only if there is a path of length zero or
more from node i to node j , and 0 otherwise. Its recur-
sive formula is:

ﬂu}'“)=ac§+ﬂfz v af;,
Here + indicates logic OR operation and * indicates logic
AND operation. There are several algorithms for com-
puting the transitive closure. Here we consider the
structure proposed by L.J.Guibas, et al 110,23] as shown
in Fig.4(a). The algorithm is as follows:
Using a processor mesh with the connections between
top and bottom and between left and right for feedback-
ing the data. At each processor 4;. the tollowing opera-
tions are performed:
1.% Shy toy tay
2. When ay arrives at Ay . set a4;=4;, and the other
@y, (k #5) are unchanged. Sirnilarly for a'y.
After three passes the transitive closure is obtained in
4y The time complexity for this algorithm is O(N).

If we want to use a VLSI architecture with size KxK
to solve the transitive closure problem, accordi q.(1)

i<t=N forall 1<ij <N.(9)

and the partition rule, we need to make two % time

expansions, and one N-time expansion similar to the case
of partitioning matrix ultiplication. Each input matrix

N

is partitioned into KxK submatrices. We number
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Figure 4. (a) The structure for computing the transitive
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ing transitive closure computation, (c) The structure of
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the submatrices of the mmatrix A in a row-major manner
and the subrnatrices of the matrix A' in a column-major
manner, The submatrices will input to the given KxK
VLSI structure sequentially according to the time expan-
sion rule as shown in Fig.4(b). If N (mod K ) # 0, it may
be one of the two cases as discussed in Section 3.3.

The structure of each processing unit and the con-
trol mechanism are shown in Fig.4{c) which are more
complicated than those for matrix multiplications since
the algorithni of the transitive closure is more complex
than the one for matrix multiplication. Each processing
unit hag a local memory which could be a shift register

[N
with %
to zero. The host machine will send the identification sig-
nals for a;;'s at the time unit according to the following
formula:

[ { [
I%{j -DK+(j-1)K «--I%r/((i—l)ﬂ 1<1i,j s‘%‘.(lo)

It will also send the idenLification signals for a'y;'s at the
time unit according to tke following formula:

2
i%!(j—l)l{ﬂi—l)[ﬂ-{%] K(i—-1)+1 1< i,jsi%—]. (11)

After completing the third pass , the host machine sends
the output signal which controls the contents of the
accumulators moving downward one row for each time
unit,3 It needs K output pins and its time complexity is

+1 bits forming a queue. The queue is initialized

O(ﬁz—). Certainly, we can make a space expansion to

speed up the computation. We make a N -space expan-

K3
sion of the structure in Fig.4(b) along the z, direction to
speed up the computation. If we make another ﬁ

space expansion along the z, direction, we will obtain the
structure similar to the one in Fig.4(a). ( see [2] for the
details.)

The structure in Fig.4(b) can also be used for matrix
multiplication if each processing unit performs addition
and product operation, and without the second step in
the algorithm.

3.5. Partitioning recognition of general context-free
languages and pattern-matching

Recognition of general context-free languages has
been very important in language processing and syntac-
tic pattern recogniticn. Many researchers have
attempted to speed-up the recognition procedure.
Recently, several VL3I irnplementations of context-free
languages recognition have been proposed{8,9]. The
main disadvantage of these proposed VLSI systems is
that the size of the processor array is critical to the per-
formance of the systems. That is, an nxn upper triangu-
lar VLSI array can only process strings with length no
longer than n. It will have difficulty in recognizing
general context-free languages[9]. We have proposed
new algorithms for recognition of general context-free
languages and the algorithm partition problem has been
discussed by using the space-time domain expansion
approach[26]. The details are omitted here. Since these
algorithms essentially speed-up the dynamic program-
ming procedure by using highly pipelining and parallel-
ism of VLSI architecture, the proposed parallel algo-
rithms and the algorithm partition methods may also be
useful for other problems solvable by dynamic program-
ming.
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String-matching problem arises in a number of
applications such as artificial intelligence, pattern recog-
nition and information retrieval. We have proposed a
VLSI architecture based on the space-time domain
expansion approach which has a very natural and regular
configuration. It can compute string distance and find
the edit sequence. The algorithm partition problem is
also solved by using the proposed computational model
and partition rule{27]. The technique of dynamic time-
warping has found extensive applications in speech
recognition and image processing[27]. We have proposed.
a VLSI architecture for dynamic time-warp pattern-
matching based on the space-time domain expansion
approach which results in a very natural and regular
configuration. It can perform dynamic time-warp
pattern-matching and find the warp-path in a much more
efficient manner by using extensive pipelining and paral-
lelism techniques. By using the proposed computational
model and partition rule, we also solve the algorithm
partition problem of dynamic time-warp pattern-
matching. (See [27] for the details.)

4. CONCLUDING REMARKS

We have proposed a partitioning method and a com-
putational model based on the space-time domain expan-~
sion approach. Using the given rules and the model, we
can partition a recursive computational problem of any
size to match a fixed-size VLSI architecture. Partitioning
vector inner product computations, partitioning matrix-
vector multiplications, partitioning convolution compu-
tations, partitioning FFT, partitioning matrix multiplica-
tions, partitioning transitive closure computation parti-
tioning recognition of general context-free languages,
partitioning string-matching and partitioning dynamic
time-warp pattern-matching are discussed to demon-
strate the application of the proposed model and
method. These problems can be computed on fixed size
VL3I architectures. Since the partition problem is a
major step in extending the computational capability of
a VLS! architecture, the proposed method will certainly
expand the general usage of VLSI systems.
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