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ABSTRACT

A special computer for high-precision &rith-

metic features an ALU that is dynamically reconfi-
gurable under program control. The 256~bit ALU con-
gists of 8 32-bit slices each of which has its own

ALU operation code in each microinstruction. The
slices can remain logically separated from each
other, or be dynamically connected to either or both
of their neighbors under control of a segment con-
trol code that is part of each microinstruction.
The micro-assembly language designed for the machine
includes special features to assist in the control

of the segmentation, data addressing, and control
sequencing. Estimations of the times required to
execute arithmetic operations on the machine show
that it will be exceptionally fast for problems in
computational number theory and factoring of
integers.

INTRODUCTION

« +« » The dignity of the science itself {fac—
toring numbers] seems to require that every
possible means be explored for the solution of
a problem so elegant and so celebrated[1]."

The DRAFT (Dynamically Reconfigurable Architec-~
ture for Factoring Things) computer now under con-
struction at LSU represents the first in a new fam-
ily of computers that feature dynamically reconfi-
gurable CPUs [2] Under program control these
machines can alter their effective wordlengtls to
suit the sizes of the current operands. Each elice
of the ALU has its own operation code so that the
machine can execute several different instruction
sequences simultaneously on different sets of
operands of different lengths. The result is a
highly parallel machine. But all the ALUs are under
control of a single sequence controller with a sin-
gle clock. Furthermore, all ALUs use the same data
store address in executing a micro-instruction. The
result is that the machine does not suffer fron the
problems in controlling and coordinating asynchro-
nous processors that arise in true multiprocessor
architectures.

The original motivation for building the IRAFT
machine 1is to support Buell's research 3,4,5,6] in
computational and experimental number theory. Frob-
lems in this area of mathematical research include

primality testing, the factoring of large numbers,
encryption and decryption, and the study of the
structure of the set of integers. The unifying
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characteristic of such problems is that they require
fast execution of integer arithmetic on large (75
decima. digits is not unusual) integer operands.

Researchers at the University of Georgia have
adopted another approach in this area [7,8,9]. They
have built and are now wusing a machine designed
solely for rapid execution of the Brillhart-Morrison
continued fraction algorithm for factoring 1large
numbers [10]. The machine, called EPOC, is basi-
cally an array processor for integer arithmetic.

Our design philosophy is that, in all stages of
design and construction of +the machine, we will
place equal weight on considerations of hardware,
software and algorithms. This approach is abso-
lutely essential if we are to develop a system that
will satisfy our objectives.

In keeping with this philcsophy, we present in
this paper a discussion of all three of these areas
as they relate to the DRAFT machine. We begin with
an overview of the hardware design. In part 2 we

introduce a micro-assembler that uses a pseudo-
register technique to simplify microprogramming the
mechine., We include two programming examples. In
part 3 we derive some performance estimates for the
prototype machine. Part 4 offers a summary and some
our plans for further research.

1.0 The DRAFT architecture

The heart of the DRAFT machine (Fig. 1) is its
256-bit ALU, which is constructed from eight 32-bit
ALU slices. At the micro-instruction level, each
slice can be combined with or isolated from its
neighbor on either side. An isolated slice or a con-
nected set of neighboring slices is called a seg-
ment. There is no restriction on how the slices can
be combined to form segments. A single 256-bit seg-
ment, eight 32-bit segments, 2 32s, a 64 and a
128, or any other intermediate combination can
be formed by appropriate setting of the seg-
mentation control word that is a part of each
micro-instruction.

Fig. 2 is a sgsketch of the DRAFT micro-
instruction format. Each micro-instruction includes
a sequencer control section, a segmentation control
word, and an ALU control section that contains one
ALU control word for each slice. Each ALU slice has

its own operation code, operands, and set of
condition test masks. But the ALU slices are not
independent concurrent processors. A single
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sequencer and clock
of all operations.

DRAFT micro~instruction format

control sequencing and timing

The control and data
machine are separate.

stores in the DRAFT
The first version will have a

4K control store for 252-bit micro-instructions.
The data store will consist of 4K pages, each of
which contains 16 256-bit words. The data store

page is selected by a 12-bit field in the sequencer
control section of the micro-ingstruction. This
field 1is also used for the control store address in
those micro-instructions that refer to +the control
store.

The architecture offers a modified multiple
data stream and many of the capabilities of a
multiple instruction stream machine, but the design
eliminates many of the concurrency problems found
in conventional MIMD machines. The dynamic seg-
mentation feature makes it especially appropriate
for the kind of problems for which it is designed.

The entire machine will be constructed from
"off-the-shelf" LSI devices. We estimate that the
total cost for hardware will be about $25,000.

The DRAFT machine will be attached to Q-bus
ports on a PDP 11/23, which will serve as the front

end and console for the DRAFT machine. A1l I/0 for
the DRAFT machine will be through direct transfers
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through the Q-bus to and from the DRAFT machine's
control and data stores. We will use separate Q-bus
ports for control and status information. The PDP 11

is connected to our VAX 11/780, on which the
software deveslopment work is being done.

We now describe the DRAFT architecture in more
detail.
1.1 The micro~instruction sequencer

The micro~program sequencer is designed around
the AMD 29104 Micro-program Controller. This con~-
troller chip provides 16 instructions for condi-

testing and branching, a counter register
and a 9-level stack for subrou-

tion
for loop conmurol,

tine linkage. The DRAFT sequencer operation code is
a 6-bit fiel¢ formed from the 4 bit 29104 instruc-
tion input (SI0O-SI3), a condition enable bit
(CCEN), and a global condition combination (Gee)

bit. The CCEN bit distinguishes between the uncondi-

tional (CCEN = 0) and conditional (CCEN = 1) ana-
logs of the 16 2910A operations. The GCC bit
defines the logical operation  (AND/OR) used to

combine the local condition codes from each segment
to generate the condition code input to the 2910A. A
GCC bit set to one (AND) means that all the segments
must return & logic 1 from their condition code out-
puts in order for the global condition to be true.
A GCC value of zero yields a global condition
true if any cf the segments produces a local condi-
tion that is true. In combination with the CCEN
input this system generates three analogs to each

29104 operation that tests the external condition
input to the 2910A.
For example the JSB (jump to subroutine)
sequencer operation has the analogs
GCC=X 1CEN=0 JSB ¢ unconditional JSB
GCC=1 CCEN=1 JSBAND : conditional JSB and
GCC=0 (CCEN=1 JSBOR : conditional JSB or

In the sequencer mnemonics listed in Table 1,
the mnemonics for the conditional operations are
formed by adding AND or OR to the end of the

corresponding mnemonics for the unconditional opera-
tions.




The data page address is a
by the 2910 sequencer as
operand for all instructions
instruction, and by the
the data RAM workspace
instruction. The
be changed only by
not cause a

shared field used
a direct acdress
except the EX

ALU slices as input to
register during sn EX
data RAM workspace pointer can
sequencer instructions thet do
transfer of control. This is a

both

programming inconvenience but should not be a
restriction on the architecture.

In traditional

major

sequencers, a fixed-frequency

clock signal generates the master clock frequency
and hence the micro-cycle length. The propagation
delay for the operation with the longest path for

data flow through the system determines
quency. Recognizing

this fre-
that not all operations require

the same delay, some improvement in system
performance can be achieved by matching the
micro-cycle length to the operation being exe-~

cuted. In the DRAFT architecture, the fact that
the effective wordlength varies from instruction to

instruction means that the ability +to vary the
micro-cycle length is even more important. Using
conventional look-shead carry circuits, an addi-

tional delay of 30-45 ns is added for each level in
the look-ahead tree. In the prototype versisn of
the DRAFT machine, the machine will run slightly
faster when split into 8 32-bit segments than when
it is operating on 256-bit operands. For example, a

32-bit register-to-register add will take 156ns,
while the same operation on 256-bit operands will
take 200ns.

In the DRAFT prototype the micro-cycle length

field controls an AMD 2925 clock generator that
divides a crystal frequency of 30 mhz into 2lock
waveforms ranging from 100 ns period (000 input)

to 300ns (111 input).
1.2 The segmentation word

We dynamically connect two adjacent slices log-
ically by gating two signals between the slices.
Carry-out from the low-order slice is gated thirough
carry look ahead circuitry to carry-in of the high-
order slice. Similarly, shift/rotate~high from the
high-order slice is connected to shift/rotate-low of
the low-order slice to provide for bidirectional
shifts.

The segmentation control word, an 8-bit
in each micro-instruction,
and hence the segment
instruction of a

tield
controls this geting
configuration during euch
micro-program. Each bit of the
segmentation control word controls the gating
between the corresponding segment and its
lower-order adjacent neighbor., The segmentation
bit for slice O controls the gating of signals
between slice O and slice 7 to provide a circle
shift. The segmentation control word is also used
- by the carry look-ahead circuitry to generate the
carry look-ahead signals for each segment, ard by
the condition code multiplexer in combining the
status outputs from each slice to generate the
correct condition codes at the slice, segment, and
global levels.
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1.3 The ALU slices

Bach micro-instruction contains 8 ALU control
words, one for each slice. The ALU slices in the
prototype are being be built from AMD 2903 four-bit
slice chips. The 2903's offer 16 general purpose
registers (RO-R15), all stsndard ALU and shifter
functions for 2's complement binary arithumetic,
and a special set of 8 instructions for accelerating
integer multiply and divide operations.

ALU operands are selected from the following:

RO-R15 - one of the sixteen general-purpose
registers

Q - the Q register (multiply accumulator)
the 2903

DO-D15 - one of the sixteen 1locations in the

current page of data memory

DLO-DL15 - one of the sixteen locations in the
current page of data memory from the
next lower slice

We included the DLn option so that we could
have a fast 32-bit shift for arithmetic normaliza-
tion and other horizontal data movement operations.

Hach slice can independently address loca-
tions within the current data page. Since the
data page is determined by a single 12-bit field in
the control word portion of the micro-instruction,
all data store operands in a micro-instruction must
be in the same page. Because of the structure of
the 2903, at most one of the two operands in an
instruction can be from the data store. In other
words, only one D or DL operand is permitted in an
operation for each slice. Because it is possible
that one slice might use a D operand while its
neightor uses a DL operand, yielding the same data
store address, we have included arbitration circui-
try sc that DL operands are read-only.

Table 2 lists the ALU arithmetic and shift
operations. The second field in the ALU word for
each slice selects the operation for that slice.

The third field in each ALU control word con-
tains control masks that determine how to generate a
local condition code from the four status bits out-
put by the 2903%3's. The ALU chips generate status
outputs for zero, carry, 2's complement overflow,
and sign. Table 3 shows how the masks select the
appropriate conditions. Each slice produces a 1local
éignél at the end of each operation that indicates
whether the result satisfied the condition dictated
by the mask for that slice. The control unit
latches the local condition codes from each slice
and combines them to form a global condition
code for transfers of control, as described in
Secticn 1.1 above.

The latched local  condition codes are
returned to the slices so that these codes can be
used to control conditional execution of operations
in ensuing instrudtions. Each ALU word contains a
conditional execution bit. If set, the ALU opera-
tion executes -only if the 1local condition code
is falsé.  Whén' the condition code is true, the
slice ignores ‘the current operation code and enters
a wait etate for the duration of the micro-step.




Conditional execution by each slice loosens consii-
erably the restrictions imposed by the single
micro-program control structure. Different slices

can simultaneously execute instruction
that have little in common with each other.

sequences

2.0 The DRAFT micro-assembler

Microinstructions in the DRAFT machine are 237

long and contain 30 fields. A conventional
columnar micro-assembler format would not be prac-
tical. In practice, the segmentation of the ALU
means that many of the ALU instruction words are the
same from one slice to another. The DRAFT micro-
assembler format is designed to take advantage of
this redundancy.

bits

In the DRAFT micro-assembler language, each
micro-instruction consists of two parts, which are
in separate columns in assembler source programs.

One part 1is the micro-sequencer operation ard
optional 1label and ‘branch address fields. Tre
sequencer instruction is specified in three fields
in the righthand column of the source program. An
entry in the sequencer control column means that the
source line is a micro-instruction and the assembler
generates a complete control word. A vertical bar

hH separates the ALU control column on the left
from the sequencer control column.
The left-hand column contains the ALU control

fields. The assembler uses the current settings of
several pseudo-registers to determine how to fill in
the ALU control fields of the micro-instruction. In
the current version of the assembler there are five
such pseudo-registers: the segmentation register,
the ALU operation register, the shifter operation
register, the condition mask register, and the data
RAM page register. The contents of these registers
are set by command statements inserted between
micro-instructions. Once set, a register keeps its
contents until another statement changes it.

The following describes details of the
version of the micro-assembler. Because we have
found that programs for DRAFT tend to contain many
blocks of code that are identical except for differ-
ences in segmentation, we are now adding a macro-
assembly capability to the micro-assembler.

current

2.1 Micro-assembler pseudo registers
2.1.1 Segmentation register, the SEG statement

DRAFT machine segments are built by
32-bit ALU  slices designated
Segmentation control word of the control register.
A bit set to 1 connects two adjacent slices, a 0
means the slices are not connected. In the DRAFT
micro-assembler format the SEG statement controls
the contents of the segmentation register:

SEG w1 [w2 [w3 [w4 [5 [w6 [w7 [w81]111111]

Wn. = width of segment n

combining

>

by bits set in the

For example,

(four segments of lengths

SEG 64 32 32 128
. 64, 32,32, and 128 bits)

The OP, SHIFT, and COND statements déscribed

below must contain exactly one operation code or
mask for each segment. Therefore, the number of
operands in the SEG statement determines the

number c¢f operands in later occurrences of these
other statements. Obvious restrictions on the SEG
statement are that segment lengths must be multiples
of 32 and the total of the lengths of the segments
cannot exceed 256,

2.1.2 The DATAPAGE statement

The ALU instruction word for each slice con-
tains two 4-bit fields that select operand addresses
for the ALU. These fields may specify either an
ALU register (RO-R15) or a location within a 16-word
page of data primary memory (DO-D15 or DLO-DL15). If

a data nemory saddress is specified, each of the
slices provides & 4-bit address generated from
these fields. The high-order 12-bit field of the

data RAM sddress is shared by all segments and is
taken from the data RAM page register. The DATAPAGE
statement sets this hardware register as follows:

DATAPAGE (12 bit address constant)
as in

DATAPAGE 1EOH

or

DATAPAGE TABLE1

For all micro-sequencer instructions that can

cause a transfer of control (all except EX), the
same 12-bit hardware field contains a direct
branch address operand for micro-program
transfers of control. The micro-assembler loads

the contents of the field from the address operand
of the sequencer instruction. The contents of the
data RAM page pseudo-register is ignored. The
micro-programmer may not combine in a single
ingtruction a microprogram transfer of control with
an  attempt to set the DATAPAGE register. Because
the data RaM bage register is also a physical regis-
ter in the machine, micro-program transfers leave
the previous setting of this register unchanged.
Operations within a previously established data page
can execute concurrently with transfers of control.

2.1.3 ALU operation register, the OP statement

For each of the ALU segments an operation code
and two ALU operands must be specified in the ALU oP
pseudo register. The ALUs operate as a two address
architecturs with the result being stored gt the
operand A address. A single ALU instruction
specification takes the form:

OPCODE Operand A,QOperand B

For example we might have the following:

ADD R1,R2 (add r! ang r2, result in R1)
SUB R2,D14 (add r2 and d14, result in r2)
MoV RO,DLO (transfer low order slice dO to RO)




TABLE 1. SEQUENCER OPERATION CODES

MNEMONIC OPERATION

JZ Jump unconditionally to location O

JSB Jump to subroutine

JSBAND Jump to Subroutine on AND condition

JSBOR Jump to subroutine on OR condition

Jp Unconditional jump

JPAND Conditional jump on AND condition

JPOR Conditional jump on OR condition

SLAND Selector on AND condition

SLOR Selector on OR condition

SSBAND Select subroutine on AND condition

SSBOR Select subroutine on OR condition

PUSH Push micro-instruction counter

LOOPAND Loop initialize on AND condition

LOOPOR Loop initialize on OR condition

ENDCNT End of counter loop (dec and pop)

ENDCJP End counter loop and Jump

ENDAND End loop on AND condition

ENDOR End loop on OR condition

BXIT Exit loop

EXITAND Exit loop on AND condition

EXITOR Exit loop on OR condition

RPTDIR Repeat loop direct until counter=0

HALT Halt

CHLTAND Halt on AND condition

CHLTOR Halt on OR condition

RET Return from subroutine

RETAND Return on AND condition

RETOR Return on OR condition

LDCNT Load counter

EX Continue sequential execution

The number of ALU instructions specified in

an  OP statement depends on the number of seg-
ments as dictated in the preceding SEG statement.
The complete OP statement consists of the key-
word OP followed by one ALU operation code and

operand pair per segment.

op 11 [12 [13 [14 [15 [16 [17 [18]]]111]]

where

In = ALU operation code/operand pair for segment n
asg in

OP ADD R1,R2

SUB R2,R1 ZERO R2 (three segmenss)
OP TEST R1,R2

ADD R1,R3 TEST RY,R4 CMOV R1,R5
(four segmenus)

Settings for the OP pseudo register do not pers:st
longer than one micro-instruction. Once used to
generate an instruction, the assembler automati-~
cally sets the register to NOP for all seg-
ments.
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Before applying an operation in a micro-
instruction, each ALU tests its conditional opera-
tion bit in its local control word. If this bit is
set, tha operation is carried out only if the local

conditicn code bit indicates that the last operation
that latched the local condition code bit produced a
false result. The mnemonics for conditional execu~
tion are formed from those in Table 2 by appending a

C to the beginning of the mnemonic, as in CADD or
CNAND.
2.1.4 Shifter operation register, the SHIFT state-
ment

Before being written into the operand A loca-
tiocn, ALU results pass through a shifter circuit
that allows single- and double-length shifts of the
result before it is written. Both arithmetic and
logical shifts are allowed. Double length shifts
are achieved by concatenating the result with the

current contents of the Q register of the ALU.

SHIFT st [s2 [s3 [s4 [s5 [s6 [s7 [s8]1111]11]
Sn = shifter operation code for segment n

For example, we could have

SHIFT SLA SLA NOP (three segments)

SHIFT DLL SLL DLL DLL (four segments)

Not all ALU operations can be combined with
shifter operations in a single micro-instruction.
The extended instruction set of the 2903 has
built-in shifter operations; these override any

micro-program settings. Like the ALU operation, the
SHIFT pseudo register setting lasts for only a sin-
gle instruction after which it returns to its
default setting of NOP.

2.1.5 Local condition codes, the COND statement
Each ALU slice has a local condition bit that

is set to true or false by a mask and test opera-
tion on the four ALU status outputs - zero, carry,

sign, and overflow. The COND statment controls the
latching of ALU status for each slice and sets the
mask for the ALU status outputs. The COND stat-
ment specifies a condition keyword for each seg-

ment as follows: .
covp ¢t [c2 [e3 [c4 [e5 [c6 [c7 [es]]1]1]1]
Cn = condition keyword for segment n

The valid conditio s are shown in Table 3.

We could have
i

COND POSITIVE P
COND  ZERO 13

The NONE cogdi%@on%«‘the default for the

ZERO
CARRY

COND
pseudo-registerys<ila.  a no-latch operation that
leaves the. 1g¢alﬂcondition code unchanged for that

lero-inatructions for which no COND stat-
‘specified to have no effect on the local
condition codes.




TABLE 2. ALU OPERATION CODES
MNEMONIC OPERATION

Arithmetic and logic operations

SUB A <~ A-B Subtract
TEST A-B ' Compare (sub w/o latch)
SWUB A <~ B-A Swap and subtract
ADD A <~ B+A Add
NOP A<-A No operation
INCA A <~ A1 Increment A input
CMPA A <~ not A Ones complement A
NEGA A <~ -4 Twos complement A
INCB. A <- B+} Increment B input
MOV A <-B Data transfer
CMPB A <~ not B Ones complement B
NEGB A <- -B Twos complement B
ZERO A <K-0 Zero A
"CAND A <- A and not B And complement
XNOR A <- A exc nor B Exclusive nor
XOR A <~ A xor B Exclusive or
AND A <~ A and B And
NOR A <- A nor B Nor
NAND A <- A nand B Nand
OR A<~ AorB Or
Shift operations
RA Shift result right arithmetic
RL Shift result right logical

DRA Shift result double right arithmetic
DRL Shift result double right logical

NOPR  No shift, result <- one of RO..R15
NOPQ No shift, result <~ Q

LA Shift result left arithmetic

LL Shift result left logical

DLA Shift result double left arithmetic
DLL Shift result double left logical
EXT Extend sign of result

Special multiply/divide operations

UMUL  Unsigned multiply step

SMUL1  Twos complement multiply step

INC2 A <~ pA+2

SM2C  Sign magnitude twos comp. convert
SMUL2 Twos complement multiply last step
SNORM Single precision normalize (Q)
DNORM Double length normalize

DIV2 Intermediate divide step

DIV3 Final divide step

2.2 Sequencer instruction fields

.. In the two-column format of the DRAFT
l}crofassembler, pseudo-register statements are
listed down the left side of the page. None of
these statements actually generates a control word.
They specify how certain fields of the next con-
trol word are to be completed. Generating a
control word requires that a micro- sequencer
instruction be specified on the right side of the
page. +These instructions are specified in a three-
field format familiar to any assembly language pro-
grammer. ‘

[label] B 6per§tion code [address operand
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2.3 Comments

The line scanner terminates when it encounters
a ; in the input 1line. If room permits docu~
mentation c¢an be added +to the right of each
statement or complete lines of documentation may
be added by entering a leading semicolon.

2.4 Examples

We now present an example of a DRAFT micro-
assembler program segment. In this example the
machine 1is segmented into two 128-bit machines

each with two values stored in R1 and R2.
gram segment examines the values and arranges thenm
such that the smaller of the values ends up in R1.
The following is the assembler listing:

The pro-

ALU CONTROL SEQUENCER CONTROL

5 1f r1>r2 swap r1,r2

1 seg 128 128

2 op test r2,r1 test r2,ri

3 cond positive positive 10000 ex

4 op Cmov r3,r! Cmov r3,ri 20001 Jjpand done
5 op mov 11,r2 Cmov r1,r2 0002 ex

6 op Cmov r2,r3 Cmov r3,r2 {0003 ex

7 10004 done ex

In the example, statement 1 sets the value of
the segmentation pseudo-register such that two
128-bit machines are formed from the 256-bit word.
This statement generates a bit string in the geg-
mentation control word of the micro-instruction
such that glizes 0,1,2,3 are combined into one seg-
ment and slices 4,5,6,7 form the second. The value

for the segmentation control word is automatically
included in all micro-instructions until a new
SEG statement is encountered in the source listing.
The number of operands in the SEG statement also
determines the  number of operands in later OP
and COND statements.

Statement 2 assigns operation codes to each
of the ALU segments. In this case a TEST opera-
tion (subtract without result store) is done in both
segments.

All ALU operations generate status outputs, but
not every statement is allowed to change the local
condition code register. The COND statement
selects a rparticular condition output from the
ALU segment and causes that condition to be

TABLE 2. CONDITION CODE CONTROL FIELD

MNEMONIC MASK
ZERO
NOTZERO
POSITIVE
NEGATIVE
OVERFLOW
NOOVERFLOW
CARRY
NOTCARRY
TRUE

FALSE

il e NeoNoNoNoNeoNoNe)
MK —>—===0000
KM —=2==00~—=200
OO0~ 0—==00—




This condi~-
statement

latched into the local condition code.
tion remains in effect until the next
generated with a COND statement included. 1In
statement 3 the condition positive (R2>R1) is
latched into the local condition code of each state-
ment.

Statement 3 is the first that generates a
micro- instruction word. The EX sequencer opera-
tion simply causes the sequencer to go on to the

next sequential micro-instruction after the ALU is
finished. o

statement 4 (JPAND)
have latched a true

The sequencer portion of
tests to see if both segments
condition from statement 3, the preceding micro-
instruction that latched the condition code. If s0,
the sequencer jumps to DONE, because the contents of
neither register pair are to be interchanged. If at
least one interchange is to be performed, statenents
4-6 do the interchange. Note that, because the Cmov
ALU operation is used, only the segment(s) which
latched a false condition in the TEST instru:tion
are interchanged.

3.0 Performance estimates

Table 4 shows estimated execution times for the
arithmetic operations, assuming we use a 30Mhz :lock
with the variable cycle-time sequencer as described
above. The jump in add and subtract times that
occurs between 64- and 96-bit operands results from
the need to go through an additional carry-.Look-
ahead level for operands that are 96 bits or longer.
This change 1is also reflected in the multiply and
divide times, in which the time per additional 32
bits of operand increases from 5.3 to 6.4 and 6.4
to 7.5 microseconds, respectively.

We have yet to explore fully all the
which the
arithmetic.
know to date.

The DRAFT architecture has two major effects on
the speed at which integer arithmetic can be done.
The first derives from the long wordlength. Le! us
take as a competitor a computer with a 32-bit word
and the same execution times as in the first column

ways in
DRAFT architecture will speed up infeger
The following summarizes the resulfs we

of Table 4. A 256-bit add on 32-bit machines is
done in software by computing pairwise sums of 8
32-bit slices of the operands, starting at the low

order ends of the operands. Each addition except
the one for the highest-ordered slices (if we are
not concerned about the possibility of an overf'low)
is followed by an add of the carry bit to one of the
next higher order operand slices. Thus, 15 32-bit
additions are required to compute the sum. There are
computers that have an add with carry operation;
such machines require 8 32-bit additions to compute
& 256-bit sum. Thus, DRAFT will add 256-bit numbers
8 to 15 times faster than will machines with 3¢ bit
words and the same basic addition time.

For economic and practical reasons, the IRAFT
prototype will not have special multiply-divide cir-
cuits. The machine will still outperform short
wordlength machines for these operations. For ex
ple, to multiply 2 256-bit numbers to form a 512-bi:
product will require 51.2 microseconds on DRA
The same operation on a 32-bit processor reguire

32-bit multiplies to form 64-bit partial products
and 224 additions to compute the final result. The
total time, assuming the same times are required for
32-bit addition and multiplication as on the DRAFT
machine, 1is about 375 microseconds. Thus, DRAFT
should be on the order of 5 times faster than 1t Mip
machines for multiplication, considering the effect
of the long wordlength alone.

The DRAFT machine will compute a 128-bit quo-
tient and 128-bit remainder from a 256-bit dividend
and 128-bit divisor in 59.6 microseconds. The sanme
operation, wusing the algorithm in Knuth [10] on a
32-bit machine would require about 422 microseconds.

The next generation DRAFT machine will have
built-in multiply hardware, which will permit the
computation of 512-bit products in 3.6 microseconds
and produce a corresponding improvement in speed for
division.

The other factor in the DRAFT architecture that
leads to an improvement in performance 1is its
dynamic reconfigurability. Many arithmetic opera-
tions and algorithms produce partial results that
continually decrease in length, as do intermediate
dividends in division or the intermediate results in
GCD algorithms. In other processes, such as multi-
plication, the intermediate results grow in length
as the computations proceed. The DRAFT architecture

takes advantage of this fact by allowing parallel
processing of intermediate results.

Perhaps the simplest example of this capability
is in division. Suppose we have 8 division problems
to do, all of which involve 256-bit dividends and
divisors mno longer than 32 bits. The idea is to
start the division process on one of the 256-bit
dividends and continue until the remaining dividend
is 128 bits long. Store this intermediate dividend

and the associated partial quotient temporarily. Do
this for the remaining 7 256-bit operands. The
result is 8 128-bit intermediate dividends.

These can now be processed two at a time in

DRAFT's 256~bit word, the division proceeding until
the intermediate dividends are 64 bits 1long. The
resulting 8 64-bit intermediate dividends are pro-
cessed four at a time to produce 8 32-bit dividends.

The division is then completed in one 32-bit divide
cycle. The result is (supposing for simplicity that
all 32-bit division cycles take the same time) that

only 43 32-bit divide cycles are required to compute

the 8 quotients, compared with the 64 divide cycles
that would be needed if no parallel computations
were possible.

ies to the computation

The same reason
of GCDs. ] ar technique produces the
tion times for multiplica-
tions in which intermediate

than shrink, in length.

o additional improvement by
An the "tree" segementatioin approach

not all the the slices in the ALU
“4n all steps in the algorithm. In the
escribed for division, there are 52 slices

are not
eas of doing 8 diviaions.

used for 32-bit divide cycles in the
These slices would be
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available for other operations, such as arithmetic
and tests for loop control or the generation of
operands for later steps, with no loss of time.

The DRAFT architecture also permits a speed
increase by a “horizontal pipeline" approach, a
topic that demands much further research effort.
Suppose that a multiplication is to be followed
immediately by division of the product. In DRAFT,
a trial value for +the high-order 64 bits of the
product could be computed in a 64-bit multiply cycle
and moved to two slices where the first steps of
Knuth's algorithm [10], normalization and the calcu-~
lation of a trial quotient from the highest-order
portions of the dividend and divisor, could be done
while the exact product is calculated. The effect is
that, for problems in which this sequence of compu-
tations occurs, the DRAFT machine will permit a con-
siderable overlap of the division and multiplication
operations.

We can use the analysis above to estimate times
required for factoring numbers using methods now in
vogue. For example, one of the most popular and
powerful factoring methods, the Pollard p-!1 tech-
nique [11], involves repeatedly raising a number to
prime powers, modulo the number, N, to be factored.
Because the numbers are large, the best way to
proceed is to follow each multiplication with a
division by N to compute the mod function. In fac-
toring 60-digit numbers, Buell uses the 190,000-0dd
primes less than 2,000,000 as exponents. Each
exponentiation requires an average of 30 multiplica-
tions and divisions. Using the times in Table 4
for multiplication and division we estimate that the
DRAFT machine will require about 9.25 minutes to do
the multiplications and divisions. Loop control
calculations and logic and generating the prime
exponents from a sieve can be overlapped with the
multiplications and divisions.

Buell's implementation of the method also
requires that the GCD of two large numbers be calcu-
lated after each group of 500 exponentiations. A
GCD requires approximately .843 1n(N) divisions, for
large N, where N is the larger of the two operands
[12 . We have determined empirically that the aver-
age length of the dividends in computing GCDs 1is
one-half the length of N. Thérefore, computing the
GCD of 2 60-digit numbers should require about 3,470
microseconds on the DRAFT machine. Thus, the GCDs
should require a total of about 2.2 minutes; the
total factoring time should be approximately 11.5
minutes. This analysis includes only the raw com~
puting times that will be required. All of the cal-

TABLE 4.

Length of longest segment (bits)

32 64 96 128

ADD -166 166 ,200 .200
SUBTRACT <166 .166 .200 ,200
‘MULTIPLY 5.3 10.6 19.2 25.6
- DIVIDE 6.4 12.8 23.3 29.8

ARITHMETIC OPERATION TIMES (usec)

3.6

culations can take advantage of the "tree" segmenta-
tion technique, which would reduce the time to about
7.7 minutes. The same problem on the LSU System
Network Computer Center's IBM 3033 requires about 90
minutes of (PU time. As mentioned above, we can
expect a ractor of 10 improvement when we include
multiply circuitry in the next gerneration of the
DRAFT machine.

The reeson for computing so many GCDs in the
Pollard p-1 method is that the exponentiation-mod
cycle takes so long on the conventional machines we
are using. The speed of the DRAFT processor will
enable us to wait until all the exponentiations and
mods are completed before computing the single GCD
at the end.

Schnorr's factoring method [13] requires about
120 (we do not yet have precise statistics on the
computational requirements for this method) GCDs of
pairs of numbers that are of magnitude on the order
of the square root of the number to be factored for
each of the primes used in generating trial factors.

The method also requires the generation of a posi-
tive definite binary quadratic form, which requires
computing the product of 3% 2 by 2 matrices, for each

prime. Assuming again that we use the 190,000-0d4d
primes less than 2,000,000, Schnorr's method should
require about 325 minutes to factor a 60-digit

number, or 233 minutes with tree
have just begun to analyze +this method with the
DRAFT architecture in mind. One immediate improve-
ment would be to use DRAFT's reconfigurability to do
all 8 multiplications in a matrix product in one
multiplication operation. The four additions could
also be done in parallel.

segmentation. We

Finally, we consider the continued fraction
method of Morrison and Bril%hart [14]. This tech-
nique requires about 2.36x10’ divisions of numbers
about 60_ digits in length to factor a 60-digit
number[15]. DRAFT should do this in about 3,415
hours (2,294 hours with tree segmentation), a result

that clearly indicates that there is more to these
problems than choosing a fast processor.
4.0 Conclusicn

The DRAFT machine will have a unique dynami-

cally reconfigurable ALU, which will provide a great
deal of power and flexibility for research in algo-
factoring numbers and other problems in
theory.

done,

rithms for
experimental
research

number
recains to be

Much interesting
including a formal

160 192 224
.200 .200 .200
.200 »200 .200
32.0 38.4 44.8
37.2 44.7 52.1




study of the properties of machines like DRAFT, the

development of new algorithms for arithmeti: that
take advantage of the machine's properties, the
development of high-level languages for the machine

and its descendents, and the use of the machine to
explore the properties of the natural number system.
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