EFFICIENT SERIAL-PARALLEL ARRAYS FOR
MULTIPLICATION AND ADDITION

L.Ciminiera and A.Serra

Dipartimento di Automatica e Informatica~ Politecnico di Torino-
Torino, Italy

Abstract

Three new arrays for unsigned and signed
multiplication, and for multiplication/addition
are presented. It is assumed that the factors
are axpressed in 2's complement, while the
addend (in the latter array only) and the

result are expressed in a redundant notation.

serial-parallel way,
in parallel, while
(in the case

The arrays operate in
since one factor is input
the second factor and the addend
of multiplication/addition) are entered digit
by digit starting from the most significant
one; the result is also produced serially with
the most significant digit first.
Hence, the arithmetic unit

suitable to be used as basic block of special
purpose processors performing functions such as
non-recursive digital filtering, signal
correlation and matrix multiplication. Indeed,
they have the same speed improvements as other
similar units using redundant representations
for the result, with a cost equivalent to their

presented is

counterparts based on full 2's complement
representation.

1. Introduc tion
New opportunities for implementing

and for exploiting
of redundant number

special~purpose processors
the potential advantage
systems are given by the recent advances of the
integration technology.

Higher speed can be attained by using suitable
redundant representations specially when they
are used for arithmetic units where at least
one input operand and the result come
digit-by~digit.

Furthermore, serial-serial and serial-parallel
units are often a good solution for
implementing complex processors, since full

parallel units are area and pin consuming.
Ammong others redundant number systems applied
to serial arithmetic units, an important class

CH2146-9/85/0000/0028$01.00 © 1985 IEEE

28

1
is represented by signed digit representation

and the on-line algorithm for basic and
complex arithmetic operations - , developed for
this representation.

The advantages of these algoritms over the

ones have been shown in the

; the major reason for this higher

conventiongl
literature™
speed lies in the ability of on-line units to
most significant digit first.
implementation of these units is

produce the
However, the
not as simple as for the conventional ones

In the field of

representation too, the
serial-parallel and serial-serial
have been extensively studied in the past. In
several works have appeared on the
implementatjon of serial-parallel
multipliers y which basically differs in the
sequence used for generating the elementary
products. The resulting design is very simple,

is based on an adder with the some
addition/subtraction and

non-redundant number

arithmetic wunits for

operations

particular,

since it
input logic for
elementary product generation.

The arrays presented in this paper
combine the simplicity of the design of the
arithmetic units based on non-redundant number
with the speed advantages offered by
for an important class of

try to

systems
the redundant ones,
application, at least.

The basic idea is that there is an important
class of algorithms such as convolution and
matrix multiplication, which do not require the
multiplication of any intermediate result.
Hence, it is not necessary to use a multiplier
accepting factors in redundant form. Since this
is one of the most important factors causing
the non simple implementations of arithmetic
units based on uniform redundant representation

of inputs and outputs, a careful non-uni form

choice of the different representations
produces the two characteristies mentioned
above.

Three arrays of this kind are presented in this

paper: a serial- parallel multiplier for
unsigned numbers and two units for serial~
parallel signed multiplication and

multiplication/addition" The two input factors
are always represented in 2's complenent
notation, while the result is representec by
using 2 bits pefldigit in the non assimilated
carry-sum form . For the multiplication
addition wunit, the addend number is
serially and it is represented in the same way
as the result. All the units presented generate

iaput

the output digits starting with the most
significant one; hence, they retain all the
speed advantages of other units based on

different redundant representation.
In section 2, the algorithm and the array for
multiplication introduced. 1In
the array for signed multiplication
is obtained as a modification of the previons
furthermore, the unit for sijgned
multiplication/addition is discussed. In
section 4, speed and cost comparisons with hoth
conventional and on-line
shown.

unsigned are

section 3,
one;
are

implementations

2. Unsigned number multiplication

The array for unsigned number multiplication is
presented first, is the kernel of
the other units able to process signed numbers,
which will be presented in the following
sections.

The representation assumed for the operands is
the following one:

n-1 i
X = Z: xi2 ,
i=0
The representation of the result, P, is not the

conventional binary representation, bacause the
need for obtaining the most significant digit

because it

n-1 5
Y =5 y.2 (1)

i=0

first cannot be met, if non-redundant
representation is wused. In our case, the
redundant representation chosen gives ‘the
result P, by means of a pair of numbers, each
represented in the conventional binary form,
whose sum gives the wvalue of the result.
Formally, the result P is given by:
2n~1 i 2n-1 i 2n-1 i
P= Z (e;+4s)2" = §° c,2 +Z 5,2 = C+8 (2)
i=0 i=0 i=0

in a redundant
will be

is expressed
form, each pair of bits (c,, s8,)
referred to as a digit of the result.

Since the result

Multiplication algorithm

We assume that all the bits of the operand Y
are available when the multiplication begins,
while only the most significant bit of the
operand X is available.

The other bits of X become available one at a

29

time in descending order of significance. Hence
the algorithm is organized in successive steps,
with a new bit of X available at the beginning

of each step. In formulas, the multiplication

algorithm is given by the following recursive
procedure:

R =0 (3.2)

0

R, =R, _+x 20 'y (3.b)

i i-1 n-i
P =R (3.0)
n

The novelty of the algorithm presented lies in
the method used for performing the addition of
the induction step shown in (3.b), and in the

representation used for the values of Ri. We
choose to represent the partial sum Ri in the

following form:
n-i

R =M + =M
i 5 Qi i * Qi«l + xn—i 2 Y (4)
2n "
= 2 (5)
M= (e v)
k=2n+2~1 .
) 2n-1 1 ") k (6)
- 2
% =9 onaami t 2 @ty
k=0

Hence, each step of the algorithm is reduced to
the computation of M, and Q_, starting from the
values of M, , Q. and x Y. From equation
(4) and (5),1;é denge the fgffowing relation:

2n+2-1

M =M+ + 8 .
2n+2-i

i i-1

Conso-1 (7)

This equation simply states that Mi is the
collection of the most significant bits of the
product, with a new digit produced at the end
of each step of the algorithm. The real
computation is performed to obtain Q, from Qi—

and x Y, and to obtain the new pair of ¢ ané
s bitgrlFrom (4) and (7) we obtain:

2n+2--1 n-i
= +x 2 Y (8)
Qi+, 5on40mi i-1 " n-i
n-i n-i ' " 3
Q.+x 2 Y= (23
i n-i jZ=O Vg, 0%
2n-i , "
2
> la i-1,k"? -1,k -1V n-ik 'S Y
k=n~i+1
' " 2n-i+l
+(q +

i-1,2n-1+1%9 i-1,2n-14+1
' on+2-i

(9)
* 9 4.1, 2n42-4

So far, only formula manipulations have been
carried out; at this point, it is necessary to
perform some real arithmetic operation, which
will transform the current: representation of
the numbers into a new one. The basic
arithmetic function used in our algorithm is

that performed by a full adder, which is able
to perform the following operation:

a2' 8 2° = (asbec) 2° (10)

where a, b and ¢ are the input bits, while
andp,nl are the output ones.

By applying the transformation to each term of
the second summation in the right end of (9)
we obtain:

nz—im' o =

) + 2

o it i1, +j=£§;—1(q 1,579,502
+22n+1_i(q|1-1,2n+1-i+q"2n—i+1+c5n_i.)+
+q'i—1,2n+2-i e (11)
where o is the most significant bit

P
produced rL; the trasformation (10) applyed to
the term with j = 2n-1. By applyng (10) once
again to the third addend of (11), we get:

n_i 1] "t J' 2n—i 1 1" J'
X (g +q 2ve > (q . .+q .)27+
= L s c1 s , i
j=0 i-1,3 i=-1,] jen—i+l i,J +J
[} -i 2n+2-i
2n+l-i)2 (12)

9§, on+1-i " ConeomitSonsong
In (12) the new digit of the most significant
part of the result has been expressed in order
to underline that it is the new digit to be
included in M_. From (12) and (8), it is
possible to oétain Qi' whose representation
complies with (6), hence at the next step the
same trasformations can be made to compute Qi+l°
At the beginning of the operation the values of
R and Q are set to O.

A% the (gnd of step n, both Rn and Qn are
represented by at most 2 bits per digit, and
their concatenation gives the final result P'Rn
will contain the most significant part of the

representation of P, and Q the least
significant.
Mi-1 Qi--1
. PN
° .
L]
° .
.
[] ® © D T Y []
o . . .
o
M, Q,

Fig. 1. Dot diagram of the arithmetic function
required for performing the recursion
step of the unsigned multiplication
algorithm,

Arrax

The algorithm presented above requires
arithmetic operation only for transforming (9)
into (11), and then (11) into (12). First, it
is worth noting that q' = q',_1 . and qQ" |
= q". , for 0 < j 5’%14, henée hd operat%éﬂ
is pé;%égmed on these least significant digits
and they are all set to O, given the initial
condition; furthermore, the digits of R. are
not involved in any computation. Thereforé, the
implementation of the algorithm presented
requires an arithmetic unit to perform the
operations described by the dot diagram of Fig.
1.

The array in Fig., 2 implements that operation
for a parallel operand Y rapresented by 4 bits.
The input x is the serial input for the second
operand, while on the outputs ¢ and s the
digits of R are produced, serially, one per
clock cycle, starting from the most significant
one. The memory elements, represented by bars
in Fig. 2, store the values of the digits of
Qi; hence, after n clock cycles, R has been
output serially from the outlets ¢ and s, while
the value of Qn is still stored within the

array. In order to output the full
representation of the result, the array
operations have to be continued until n more
clock cycles have been performed; in this

second phase, the serial input x must be set to
0.

The dots shown in Fig. 2 mark the position of
two optional memory elements, which lead to two
different implementations.

If they are not included, each clock cycle of
the array cannot be shorter than twice the
delay of a single full adder plus the delay of
one memory elements and one AND gate. If the

J% ’ﬁ ¥ Yo
X
) :
s t —t
C‘—O—I —Q—J [+] ‘ +
A
| memory element -5
Couvcm

¢ optional memory element

Fig. 2. Array for unsigned multiplication, with
a parallel factor of 4 bits.

memory elements
can be shortened by the delay of a single full
adder,

are introduced, the cycle t: me
however an additional delay of one clock
will be the most
significant digit of the result is produced. A
third
substituting the
2 with a fast 2x2 bit binary adder; in
this case both the clock cycle and the latency
time are kept

cycle required Dbefore

implementation option is obtained by
two leftmost full adders in
Fig.
short, while the complexity of

the implementation is slightly increased.

Finally, if the full adders are modified so
that they include the function performed by the
AND gates, the cycle time can be shortenzd,
with an increasing complexity of the

implementation.

3. Signed multiplication/addition

The 2's complement is the most widely used
representation of signed numbers in the digital
system. Hence, this representation is assumed
for the input factors of the array presented in
this section.

The two factors are given in the following form:

m-2
n-2 J m-1
j -1 Y= ¥y .2% =} 2
X:Z X ,2J—x 2n ! Z jj Jm—l .
j=0"j n-1 j=0 113)
while the result P is produced in the following
form:
men—1 m+n—2 .
+N-
P = {(c +s 2 > (c_+s,)2J
m+n-1 m+n-1 X Jj 3)
j=0 .14)
In order to take advantage of the algorithm

developed in the previous section, we must use

a 2's complement multiplication algorithm based

solely on the addition of positive numbers as
the unsigned number multiplication algorithm.
This characteristi¢c holds for the Baugh and
Wooley algorithm , which is now briefly
recalled.
Given the representations in (13), the product
is given by:
m+n-2 n-1 m-2 J
XY=x _y -x .2 > y.2 -
n-1"m-1 n-1 - 3
j=0
m-1 n-1 J n-2]m—2 k _m+n-1
-y 2 X X2 > ijZ‘Zy 2 =2 +
j=0 j=0 k=0
- - m+n-2 m2 —_— ;02 — _k
+(1+xn_1ym_l)2 +.an_.1yj2-‘i-z ym—lxk2 +
j=0 k=0
n-2 jm_z k n-1 m-1
+ z xj2 z yk2 +ym_12 +xn_l2 (15)
j=0 k=0
The additions of (15) can be performed, by

means of a recursive procedure, where a new bit
of X is entered at each step. The algorithm is

as follows.

3l

R -3 . ™2 (16.2)
0
m--1 s
— — _m+n-2 — n-1+] n-1
= 2 +y .2
R _R0+xn—1ym—12 +xn—lz yj m-1
=0 (16.b)
i-1 m-2 n-i+j
— m+n-i- -
R.=R, _+x_ . 2 +X _izz'Y.z
i i=1 n-i"m-1 n J (16.¢)
j=0
ifn-m+1
m+n-i-1 n-2 n-i+j
— +n—-i- -i+j
R =R
i 11 -1V me1 2 Y52 *
i =0
J (16.4d)
m-1
+X 2 i=n-m+1l
n-1

It is worth noting that this algorithm is quite
similar to the algorithm presented in section
2. They differ only in the third operand at the

right end of the first and last step, and in
some complementations of ths operand bits.
Hence it 1is possible to perform the same

manipulation of the formulas (16) as those of
the previons section, assuming that the values
of R, are represented as in (4), (5) and (86).

The %esulting array is shown in Fig. 3. It is
essentially the same as that of Fig. 2, with a
line of exclusive-or gates used to perform the
complementations of the factor bits required by
the formulas (16). Furthermore, one extra full
adder is used to accomodate the addition of the
in the first step and in the step
Since the initial step
signal,

last term
n-m+1 of the algorithm.
is slightly different, an additional
START, has been introduced in Fig. 3; it is set
to 1 when the first digit of the serial operand
then START is reset
Hence,

is applied to the X input,

when the second digit is using

input.

l memory element (in.value 1)
§ memory element (in.value 0)
s Optional memory element

Fig. 3. Array for signed multiplication,
parallel factor of 4 bits.

with

START, all the different complementations and
additions required by the first step are
generated. Another signal, END, is activated to
add the term xn , required in step n-m+1.

The same traded?%s shown in section 2 arise for
the implementation of this second array; in
addition, since the logic between the array
inputs and the full adder inputs has now been
increased, a significant reduction of the clock
cycle can be achieved by pipelining the
operations of this input logic and those of the
full adders, this can be achieved by
introducing memory elements on the outputs of
the AND gates.

Signed multiplication/addition

The array for signed multiplication can be used
as the kernel of an arithmetic unit able to
perform the following computation

G=XY+A (17]

where X and Y are represented in 2's
complement, with the notation shown in (13), 2

is represented as P in (14) and G is
represented as follows:
m+n-1 5 (18)
m+n . J 18
= f 2+ (c+s) 2 ;
G (em+n+ m+n) Z: J o J
3=0

Note that the presentation of G is basically
the same as for A and the product XY, the only

difference is given by the larger number of

digits used for G.
The function (17) can be performed as follows:

m+n-1
Ry=38.2 (19.a)
R =R +(c)2m+n—1 2m+n—2 (19.b)
10 m+n—l+sm+n—1 *)
R =R +(c m+n—2:—- —_— m+n-2
21 men-2™ 30,00 o1V me1
"2 iene1 1
- _j+n- m—
X 2 -
+ n-lz yj +xn_12 (19.¢)
=0
’ m+n-1i m-2 k i+l
R =R +(c - +n—-i+
i i-1 m+n—i+sm+n—i +xn-i-rlz yk2 +
k=0
:: v m-1-i
n-i+1"n-1
+Ln (19.4d)
R =R. +(c s m+n-i_T- m+n—i
i i-1 m+n-i+2m+n_i 2 Fxn—i+1ym—1
m—
m=1 n-i+k+1 R
+xn_12 > yk2 ; i=n-m-2 (19.e)
k=0

In this algorithm the first step is introduced
only to perform the sign extention of the
operand A (if needed), then from step 2, it is
- similar to the signed multiplication algorithm,
«ith a new addend given by the input digit of

the operand A.

Once again the partial result R is represented
by the addition of M and 9, owever in this
case we have:

M =M =M =0

0 1 2
M =M +(e L ,M+n-143
i i-1 (min—i+3 T fm+n—i+3)2 (20)
m+n-i+3

' " + (@ . +q .)2

Qi:q i mens3-i*d i,m+n+2-1 ;E: i,k i,k

k=0

(21)

Note that the new difinition of Qj is slightly
different from that given in section 2. The
recursion step can be written as follows.

ie1 M2 jen-i+l
m+n-1i+ -
X 2 + x . 2 -
i—l+ n-i+1ym—1 ZE n—1+1y3
i=0
vl m+n+3-1 K
m+n—-1i+
-le . . *S L.)2 = ;E: q . 2+
m+n-i+1 m+n-i+l . i-1,k
k=m+n-i+1
" m+n—i+1
+
+(Cm+n—i+1+Sm+n~—i+l+q i-1,m+n-i+1
' " m+n-i
+q . +
+(xn—i+1 + ym—l+q i-1,m+n-i a i-1,m+n-1
m+n-i-1 | ")zj
+
* :E (a j,j+q i,j+xn-i+1yjnn+i—l
j=n-i+l
n-i) 1] j
+Zla, o+)2 (22)
J=° i-1,] 1—17J

By applﬁng the usual transformation {10) to the
previons equation we get:
m+n—1i m+n-i+l

= . . ,]
%1141 men-i+1 men-is1’
! m+n—1i+2
=q . : +(U
i-1,m+n-i+3 m+n-i+1
! m+n-i+2 .
*a m+n—i+2 2 +(ﬂ(m+n-ii".?m+n—i+l
men-i i

' -i J
)2m+n+1 i, Z (q YIS j)2 (23)

*4 51, men-i+l o i '

A double application of (10) leads to:
m+n~i 2m+n—i*l_

c] .
Qi—1+xn—i+1ym—l + m+n—i+1+ m+n-i+1
)

=(q m+n-i+3

s « +
1-l,m+n—i+3+ m+n—i+2)

+P 2m+n—i+2+ﬁ

m+n—-1+2

m+n-1i ,

m+n-i+1
.- (@ | +
m+n—i+l kZ=O i,k

+q i’k) (24)
which gives the new digit of the result to be
included in Mi and the new value of Q. as well.
The array implementing this algorithm is shown
in Fig. 4.

It is basically the same as that in Fig. 3 with
some additional full adders used to add the ¢
and s inputs, representing the serial digit of
A.

However, some difference in the operation
First, the most significant digit of A
must be applied one clock cycle before the most
significant bit of the factor X; then, in the
following clock cycle, the most significant
digit of A is repeated and the most significant

digit of X is entered, with START set to 1.

exists.

4. Discussion

Since most of the computer systems in use today
represent the 2's
the the
manipulating numbers in ‘'non

numbers in complement

notation, arithmetic

advantages of
units standard"

form are more evident when computation
intensive applications are considered. In these
cases, the time spent performing the
conversion from and to the 2's complement are
more than compensated by the
achieved by ''non
representation.

The algorithms whien can be solved by means of
systolic arrays are,

intensive;

for
higher speed

using standard"

in general,
hence in

computaticnal
order to show the

effectiveness of the solutions proposed, we
shall now be examining the performance of a
linear systolic array for matrix-vector

6
multiplication .
First, it is worth noging that the algorithms

presented are on-line respect to the serial
operand{s), since they produce the result
serially starting from the most significant
one, and to produce each digit it is not

necessary to know all the digits of the serial
operand(s). Formally, it can be seen from (20)
that when the third digits of
factor and the serial addend are

both the serial
input in the

START.

memory element (in.value 1)
memory element {(in.value 0)
e optional memory element

- 1

Fig. 4. Array implementing the addition/
multiplication, with parallel
factor of 4 bits.

kX]

array then the output digit with weight m + n
This is the most significant
since the whole operation
whose most

is generated.
digit of the result,
includes a mxn bit multiplication,
significant digit has a weight m + n-1, and an
addition of this product with another number,
which leads to a weight of m + n for the most
significant digit.

Hence, the on-line delay for the
addition/multiplication algorithm is 2.
However, this 1is only a theoretical delay,

because the length of each clock cycle has to
be taken into account.
If we want to obtain a real latency time equal

to 1 clock cycle, all the optional memory
elements of Fig. 2 should be omitted. In this
way the clock cycle length will be

(25)

t =30 + ¢t
c m
where @ is the delay of a single full adder
and t is the delay of a memory element. Thus,
we ha&e shortened the latency time, but we have
lessened the steady-state throughput of the
pipelined unit.
and have
array

when

Grnarov
performances of a
matrix-vector multiplication,
arithmetic units are used.

The structurg considered here is the same as in
their paper with the difference that the
matrix coefficients are entered in parallel 2's

analyzed the
for band
on-line

Ercegovac
linear

complement form, the mulitiplication/addition
units used are those shown in the previons
section, and the vector components are input

2's complement form. Since these
the result on-line respect to

the same formulas also

serially in
units produce

their serial inputs,

hold in this case. Hence the total operation
time is:
TG = tcts +1+(p-1)n+nN] (26)

where p is number of non-zero coefficients in
the first now, N is the matrix and vector size
and § + 1 is the latency time of each multi-
plication/addition including the delay
introduced by the pipelining scheme.

unit

As shown before, both and t depend on the
degree of pipelining chosen for the
implementation. One of the two extreme

solutions is that obtained by omitting all the
optional memory elements of Fig. 4.

With this solution, the total operation time
becomes:

T = (303t, +t) (3+(p-1)n+nN) (27)
G in m

The opposite solution uses all the optional
memory elemernits; this leads to:

T = @+t +t) (5+(p~1)n+N) (28)
G in m

where tin is the delay of the input
addition/subtraction logic.
Of course, the selection of the best solution
depends on the values of py n, N and on the
relative values of o, tin and tm
Bit-level pipeling is also
conventional serial/parallel
used. However, in this case, if we want to
obtain only the n most significant bits of the
result, the first bits output by each unit have
to be discarded.
Assumning the operands are represented by n
bits, we have to wait until the (n + 1)-th
output bit in order to start the subsequent
operation. Hence the latency time becomes:
T = [n+l+(p-1)0] ¢ (29)
L c
and the total operation time is:

Tc = [n+1+(p-1)n+2nrﬂ tc

possible when
arithmetic is

(30)

The term 2nN is derived from the fact that, for
each result, each unit produce at least n least
significant bits to be discarded. The clock
cycle 1is the same as in (28), since the
implementation of a conventional
serial/parallel multiplier leads to an array
based on the same cells ag_%g Fig. 4, but with
different interconnections .

The only difference in cost between the
proposed adder/multiplier and the conventional
ones derives from two extra full adders used in
the array proposed in this paper. Hence, with a
minimal additional cost, it is possible to
achieve the speed advantages illustrated by

Fig. 5 , where the values of TC and TG are
plotted.
On-line arithmetic is another possible

competitor of the solutions proposed, since the
latter share some characteristics introduced by
the former.

The performance of a systalic array for band
matrix-yector multiplication has beenrreviously

studied , where it has been shown that the
total operation time is:

= - N} t (31)
Ton [2+(p 1)+n] on

It can be seen that the number of clock cycles
is smaller tham for T . However, the greater
complexity of the implementation leads to
longer clock eycles, or, if we want to shorten
the clock cycle, to a larger number of clock
cycles for Ton'

Our evaluation is based on the implementation
of a multiplication division unit presented in
the literature’.

The unit is composed by n processing elements
plus additional control logic. Each PE

requires, with radix 2, 344 gates, leading to a
cost of at least 344n gates.

Or the other hand, assuming that 9 gates are
required by a full adder, 6 gates are required
by a memory element and 3 gates are required by
an EX-OR gate, the total complexity of the
array for addition/multiplication is only 29 n,.
This higher slower
operations since on algorithm step can be
performed in 29 times the single pgate delay;

complexity leads to

while the solutions proposed here, can have a
clock cycle equal to 7 times the gate delay,
assumming 2=0,t, =3, t =2.

In the light of thénreal vg&ues of the clock
cycle, can be seen from (31) and (2F), that the
solution proposed is considerably faster than
the corresponding on-line implementation.

This comparison with the on-line arithmetic
could not be considered fair, without mention
of the advantage of the on-line units. Namely,
the uniform representation of the input and the

T |

e

/TG

1000 .- /

500 t,

\

10 20 30 0
N
T
1500t P=6 N=20 T
Te G
1000 t,
500 t.
16 y Vil
6 32 48 64

Fig. 5. Evaluation of the operation time T for
the conventional, Tc, and the proposed,

TG' implementations.

outputs, which on the one hand causes cost
increase and slower operation, but on the other
hand allows the wuse of these units for

implementing any possible arithmetic algorithm.

In conclusion the above discussion confirms the
major claim of this paper. The units presented
here are a very good solution for implementing
processors for on important,

class of arithmetic

special purpose
though restricted,
algorithms.

5. Conclusions
are an attractive

Non redundant number systems

solution for implementing special purpose
processors devoted to the excution of some
arithmetic algorithm(s). Their major feature is
the high speed often achievable by wusing
redundant representations, which becomes
cost-effective when a large number of
computations 1is required, so that the final

conversion of the result requires only a small
fraction of the total operation time.
Three arrays have beeri presented in this paper,

they achieve the same speed as other similar

units based on different number represen-
tations, with a cost substantially identical to
the wunits processing number in non-redudant
representation.

First an array for positive integer
multiplication has been introduced.

Then two arrays for signed number

ad multiplication/addition have
It is assumed that one factor
is input in parallel, while the other(s)
the array digit by digit, with the
most significant one first.
The result is also generated serially starting
with the digit, and it Iis
represented in redundant form using 2 bits per
digit. Both factors assumed to be
represented in 2's complement, while the addend
(for multiplication/addition
represented in the same way as the result.

multiplication
been presented.

enter(s)

most significant
are
input only) is
The non-uniform choice for the

the applications of
though important, class of

input and output

numbers restricts these

arrays to a limited,

algorithms, including signal correlation,
non-recursive digital filtering and matrix
multiplication.

However, with this choice, the arrays achieve
the same advantages as other units based on
redundant number representation, with a

significant reduction of cost.

35

10.

11.

12.

REFERENCES

Avizienis, A. "Signed Digit Number
Representation for Fast Parallel
Arithmetic, IRE Trans. Electron. Comput.,
vol. EC-10, 10(1961) pp. 389-400.

Ercegovac, M., D. "An On-Line Square
Rooting Algorithm", Proc. 4th Sym. on
Computer Arithmetic, October 1978, pp.
183-189.

Trivedi, K., Ercegovac, M., D. "On Line
Algorithms for Division and
Multiplication'", IEEE Trans. Comp.' vol.

C-26, 7 (1977), pp. 681-687.

Ercegovac, M.D., "A General Method for
Evaluation of Functions and Computations in
a Digital Computer'", PhD. Thesis, Report

No. 750,
University of Illinois, Urbana, August 1975.

Department of Computer Science,

Ercegovac, M.D. and Grnarov, A.L., "On the
Performance of On-Line Aritmetic", Proc.
1980 International Conference on Parallel

Processing, August 1980.

Grnarov, A., L., Ercegovac, M., D. "VLSI
Oriented Iterative Networks for Array
Computations", Proc. ICCC, October 1980,
pp. 60-64.

Gorij-Sinaki A., Ercegovac M.D. "Design of
a digit-slice on-line arithmetic unit",
Proc. 5th Sym. on Computer Arithmetic,

April 1981, pp.72-80.

L. Dadda, D.Ferrari: Digital multipliers a

unified approach, Alta Frequenza, vol. 37,
11(1968), pp. 1079-1089.

E.E. Swartzlander Jr., "The quasi serial
multiplier", IEEE Trans. Comp., vol. C-22,
4(1973) pp. 317-321, April 1973.

Am 25L514 and Am 25LS15 data sheets, in AMD
Bipolar microprocessor logic and interface
data Book, 1981.

Garner H.L. "Number systems and
arithmetic", in Advances in Comp., vol. 6,
1965, pp. 131-195,

Baugh C.R., Wooley B.A., "A two's
complement parallel array multiplication

algorthm", IEEE Trans.
(1973) pp. 1045-1047.

on Comp., vol. C-22,

