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ABSTRACT
Schemes for designing multipliers of binary
two’s—complement numbers in serial form are

considered with the condition of the least possible
delay between inputs and output.

Such schemes are composed by two parts: the
first, the array generator, produces the terms of
the multiplier array; the second, the summer, is
fed by the array generator and produces the
product. Two classes of multipliers are
illustrated: the first generating the multiplier
array by diagonals and rows, the second by columns.

The array generators are composed by shift
and/or stack registers and linear arrays of logic
gates; the summer is shown to be conveniently built
using parallel counters.

INTRODUCTION

Fast digital multipliers are extensively used,
particularly in special purpose computers, for
applications requiring frequent multiplications to
be performed very quickly, as in signal processing.

Many different schemes have been proposzd for
implementing fast multipliers. The various schemes
can be classified according to the form in which
factors are available. If both factors s&re in
parallel form, fully parallel multipliers can be
used [1]; 1f they are in serial form (with the
least significant bit appearing as first) they
require serial multipliers [l1]; 1if one c<f the
factors 1is in parallel, the other being in serial
form, the corresponding multiplier 1s called
serial-parallel (or, Swartzlander {21,
quasi-serial).
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In a previous article [11]
treated the case of serial
sign—-and-absolute value numbers, showing that they
can be designed according to various criteria. In
this note, it will be shown how such schemes can be
modified in order to handle factors represented as
two’s-complement numbers.
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In the following section the arithmetic
algorithms for treating two’ s—complement
multiplication will be recalled, and in the third
paragraph it will be shown how such algorithms can

be implemented in the schemes described in [11}.

ARITHMETIC ALGORITHMS

An n bits integer X in two’s-complement will be
represented as
n-3
X=6xxn g XX =—§(2 +iz 1.2

where the most significant bit is denoted by o, as
it gives information about the sign of X:

q; =0 for X > 0
4 = 1 for X <O
the range of X is:
_2n <X g2 1 _ 1
The following properties of two’s-complement

numbers will be useful in the following:

~ to change sign, complement each bit and add
‘17

- X can be extended
repeating € as many
extension")?¢

to arbitrary length by
times as mneeded (''sign

e.g qX X Xo= ¢ TXYX K= O @ XX Xg =eeo
In such c?&i the leftmost ¢ has a negative
weight (-~ -2" if K ¢ ‘are used; the

remaining q; (if any) have positive weight
corresponding to theilr position;

-~ in adding m, n-bit numbers, they can be added
by columns regardless of their respective sign,
starting from the least significant bits column
and proceeding to the left, the signs column
included. The range 1is not exceeded (i.e. mno
overflow occurs) if, being ¥ the numbers of the
negative addends and C__. the total carries
from the (n-2)th column™to the (n-1)th column

(the o, column):
Cn—l = Y : the result is positive
-1 =V -1 : the result is negative

Note that the sum can be accommodated by extending
its length with a suitable number of bits.




also that if the addends have unequal
length, they must bhe brought to the same length
(the length needed to accommodate the sum) by sign
extension (see the preceding rule).

Note

The product
P = X.Y

of two, two’s-complement numbers can be computed
by: first, obtaining the usual "multiplier array",
see fig. 1, second, adding the n numbers (rows)
comprising such an array.

It must be noted that the length of a product )4
of two n bits natural numbers is 2n. (If X and Y
are 1in ;ign and magnitude form, a further bit to
represent the sign of P, oo 1is to be added: if the
convention & = 0 for posi@ive numbers, & = ] for
negative is adopted, then o, = oy e ).

y
For two’s-complement n-bits numbers, the
product length necessary to accomodate the total
range of P is 2n bits, égfluding the sign o~ . But
if the negative 11m151-2 of the X and Y range is
restricted to -2""%4 1, 20-1 bits will be
sufficient for P. The following schemes will show

both alternatives.
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Fig.1 : Multiplier array for two’s-complement

numbers gf four bits each.
. and vy have negative weight.

In fig. 1 each term in the array 1is the
arithmetic product of two bits belonging to X and

+ While in terms x,.y, the factors X, and y_  being
affected with positiée weights, the atiéhmetic
product coincides with the logical product, in

terms o .y,, x. 6 and ¢ .6 it must be taken into
account %thé ne ve weightg of o= and o, . For this
reason, in fig.l ¢ and o have been written with
an asterisk for dé%oting %Peir negative (or zero)
welght. Note that ok.a; = *x.u;-{o. 1}.

The addition of the array terms, in order to
obtain the product P would, then, to consider the
negative terms comprising the ‘row’ Ry and the
‘diagonal’ Dy+ It seems preferable to transform the
array in such a way that it contains all positive
terms (being of course equivalent to the original
array). This can be done in several ways: among
them, the following appear as the most convenient
for the purpose of designing a multiplier for
numbers in serial form :
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~ The first way is to extend X and Y, by their o,
and obtaining then the multipliers array for
the extended X and Y, see fig. 2.
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Fig.2: A multiplier array for two’s-complement
numbers of four bits, composed of non-
~negative terms only, obtained by
extending the sign bits d;, a}.

The array can then be limited to the leftmost
2n~-th (or 2n-1)th) column, the columns to the left
being irrelevant for the computation of P (if more
columns were used, more 6} would be obtained);

~ A second way of transforming the original array
is to replace R4 and Dy~ (containing zeros and
negative terms) with equivalent numbers
comprising only zeros and positive terms.

This can easily be obtained,
example shows:

0-1-10-1=(~-1)x(0110 1) =
=10010+1=10011

In words: a binary integer composed of 0 and -1
bits 1s equivalent to the negative of a number
obtained from the given number by changing -1
into 1.

as the following

By applying the above rules to Iy one obtains:
« » <
k=..0 0 oy, %% Y1 O Yy "

= ...l 1 oi y2 o, Y1 o; y0 + 1
Re- is a binary number in which
bit: ,k,--{o,l}, and the remaining bits are:
x, 00 ={0,-f}. The latters, which compose the part Ry
0 ¢ With negative weights, can be transformed as

done for Dy :

the most significant

» » »
Lom L., 0 -
Rv 0 XZO} xlo; xoo;
= ... T o
1 1 xzo; xld; x2 v + 1




The sum of the leading 1°s of Dy and of Rg is:
++:1 0, so that the new array, composed by
non-negative terms only, appears as in fig. 3. Note
that the two "1" to be added to the least
significant bits of D, and R, are replaced by a
single "1", one column to the left.

The above method is similar to the one proposed
by Baugh and Wooley [4] for parallel multipliers.

weights: | 27 | 28, 2% 2%, 2%, 2%, 2" 2O
G Yo | %2 Yo %1 Yo [XaYo
Y1 X291 %1 ¥4 [Xo ¥y
Gx Y |X2¥2| X1 Y2[¥oY2
6, Xy %1 Oy{*a0y
1 1

Fig.3 : An equivalent array composed by
non-negative terms only.

A third form of equivalent array is represented
in fig.4, where the first three rows of fig. 1 have
been transformed by sign extension (thus taking
account of D).

As far as R, is concerned, note that it can be
considered as a binary two’s-complement number,
where the signs of the welghts have been reversed.
The sign blt, g _ o, can ‘thus be extended
indefinitely. Trans%o%ming then the five least
significant bits (the only ones affecting the
product), the result is as in fig. 4. Note that the

corrective "1" for Ry can be represented by the
group of "1" enclosed in the dotted line in the
figure,

Several more variations of the arithmetic

algorithms illustrated can be devised, see [5]. The

ones shown here have been found to be the most
suitable for the implementation of serial,
two’s-complement multipliers.
MULTIPLIERS SCHEMES
It has been shown in [11] that serial
multipliers can be composed by cascading two
networks: the first, (the array generator) fed by

the factors bits, generates the array elements,
which are input to the second network (the summer),

generating the product by summing the array
elements received.
Two classes of multipliers can be devised,

characterized by the method used for generaiing the
array elements,

The first class generates, for each new couple
of factors bits, the corresponding (partial) "row"
and (partial) '"diagonal": they contain all the
elements that can be computed using the new factors
bits and the factors bits which have been
previously input: see fig. 1.
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weights: 27 26 25 24 23 22 o1 50
Ox Yo [Ox Yo O Yo |Ox Yo [Ox Yo%, Yo X1 Yo [%o Yo
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Fig.4 : An equivalent multiplier array composed
by non-negative terms only.

The second class of multipliers 1is based on
generating the array "by columns", (starting from
the rightmost, l-element column xoyo).

Various schemes can then be proposed for each
class [11]: only some of them will be considered
here, for sake of brevity and because the criteria
explained in the following can be easily extended
to the remaining schemes,

Let us first consider the case of multipliers
based on rows and diagonals generators.

One of such generators (implementing the array
of fig. 3) 1s represented in fig. 5: it comsists of
two shift registers feeding a first linear array of
AND gates. A second array of gates acts in such a
way that for t ftr (tr.ﬂs the bit time for the
factors sign ts; 1n the example qr-t3) the
outputs of the first array are reproduced at the R
and D outputs, the outputs of the array generator.
At time t,, the outputs of the AND-gates array
appear complemented at the outputs R and D. (The
AND array and the inverting array have been
considered as distinct for reason of clarity: of
course, they can be implemented as a single,
equivalent array).

In fig. 5b the outputs D and R having the same
weight are represented on the same column, and the
dots represent the significant array terms
generated at various clock times.

It can be seen, by comparing fig. 5 with fig. 3
that at each step, the weights of the R and D
outputs must be multiplied by four in order to have

the correct weights (see{ll]). This will be
accounted for in the following summer circuit,
whose logical scheme 1is represented in fig. 6a

(with symbols and conventions as used in {11]) and
whose purpose 18 to sum-up the R and D bits
generated by the array generator, and to produce
the product bits. The first two rows represent the
D and R outputs of the array generator; the third
row contains two inputs fed by a logical ‘one’ at
time t3: it represents the two '"1" in the scheme of
fig. 3%

The following three rows represent memory
element used to store the carries produced at the
various steps.
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Fig.5 a): The logical scheme of a generator of
diagonals and rows of fig. 3 array.
b): the dots repregsent the significant
terms of the diagonals and of the rows at
various clock times,

All the above variables are arranged so that those
belonging to the same column have the same weight,
the weight to the left of a given column being
twice as much.

All 1input variables 1in any given column are
used as inputs to a parallel counter, i.e, a
combinatorial circuit whose purpose is to "court"
the number of input variables whose value 1is ",
and to represent the count as a binary number at
the outputs, [3, 7, 10]. A horizontal line
separates the 1inputs variables from the outputs
variables, lying below.

The outputs of a counter will belong to
different columns: the least significant bit will
lie on the same column to which belong the inputs,
the second least significant bit will lie on the
column to the left, etc. All cutputs of eaxh
counter will be connected by a line, in order to
signify that they are outputs of the same counter,

In fig. 7 it is shown how counters with more
complex properties can be defined. For instance a
4-bit parallel adder can be congsidered as a
counter, whose 1Inputs have different welghtg
(non-simple counter), As an additional convention,
whenever an input variable is not used as input to
a8 counter, it 1is reproduced as an isolated dot
below the horizontal 1line. The scheme of fig. 6a
(and the following) 1is build-up using the above
convention and it can be described as follows.
Starting from the two leftmost column, it is seen
that they are composed by a single input, which is
reproduced as output (without being used as input
to a counter). The next column contains three
variables, which are used as input to a (3;2)
counter (i.e., a full adder). The third column
contains six variables, that input to a (6;3)
counter. The next column uses a (5;3) counter, and
all the remaining a (2;2) counter each,
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Fig.6 a): The logic scheme of the summer part of a
multiplier, using the array generator of
fig. 5. b): the operation of the logic scheme
weights: 2 1 2.1 4.2 1
: : o7
>~ >~ *—o—oe
a) a(3;2)counter  b)a(2;2)counter c)al(7,3)
or full adder or half adder counter
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5 [ 55

—5 ———
e) a(2,2,2,3;5) counter  f}a(5,5;5) counter
or a4 bit adder

d) a(5;3)counter

Fig.7 : Graphical representation for various
types of parallel counters.

As shown in the figure, three output bits will
belong to the leftmost column, three to the second;
two to the next two columns, and a single bit to
the remaining column.




WP ,pg»..., appear at the

The product bits, p
corresponding clock times s Ciy Toyee., At
different outputs, as shown in the  figute. (If a
single output for P 1is desired, an additional
(2n=-1)-inputs OR will be required). Finally the
output bits are fed back as carries as shown in the
figure. Note that they are fed back shifted two
position to the right: this accounts for the change
of the next D and R’s weight by a factor of 4, as

required by the array generator (see preceding
figure).

The operation of the above circuits at the
times to, tl’ t,sy++., 1s shown in fig. 6b, where

the significant bits (i.e. those that can assume 0
or 1 values) are shown as dots. It can easily be

verified that the above operation implements the
scheme of fig. 3.

The array generator of a multiplier for
positive factors 1s obtainable from the one
necessary for two’s—complement factors by omitting
the bottom linear array of switches in fig. 5 (no
information for D and R 1is required). Moreover,
the t, inputs in fig. 6a are not required. In other
words;, the summer of the two’s-complement
multiplier is only slightly more complex than the
one for positive factors, while its array generator
requires 2n-1 switches for the transformation of o,
and R..
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a) b)
Fig.8 a): The logic scheme of a generator by
diagonals and rows of fig. 2 array.
b): The dots represent the significant
terms of the diagonals and of the rows
at various clock times.

With an additional circuit, the most
gignificant part of the product could be obtained
in parallel, at time t,: it is equivalent to the
sum of all the carries Trom t., to t,. This sum can
be obtained by first reduéﬁng t%e three rows
comprising those carries to an equivalent set of
two rows (this can be done without carry
propagation) and then adding these two rows in a
parallel adder (with carry look-ahead circuits, if
a greater speed is desired).
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Fig. 9 a): The logic scheme of the summer part of
a multiplier, using the array generator of
fig. 8a). b): the operation of the logic
schemes.

The scheme illustrated in fig. 6 is one of the
several treated in [11} for positive factors: they
can all be easily transformed for two’s-complement
factors following the rules here described.

For sake a brevity only a second scheme based
on D and R generator will be illustrated, see fig.
8 and fig. 2.

Y

It is composed by two stack registers ( , and
two auxiliary memory cells, connected as shown in
the figure, and an array of two-input AND gates.
The operation of the circuit is shown also in
figure 8a. In fig. 8b, the outputs composing D and
R at the succeeding clock times are shown (compare




to fig. 5b). After time t., no changes will take
place in the registers, so” that D and R will be
present at the outputs from t, to t.. While in the
scheme of fig. 5, the weights of D’and R outpurs,
must be multiplied by four, in the scheme of fig. 8
the weights must be multiplied by two at each stzp:
this can be verified by comparing fig. 8b with
fig. 2. Fig. 9a represents the logical scheme of
the summer, whose operation is represented in filg,
9b.
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Fig.10 : The logic scheme of a multiplier based
on an array generator producing the
subsequent columns of the fig. 4 array.
The summer is composed with a single
parallel counter.
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Fig.1ll : The operation of the scheme of fig. 10,
illustrated by the product of
X-lllob (-2) and Y-IllOlb (~3).

This multiplier for two’s-complement factor is
exactly the same multiplier illustrated in [11] for
positive factors. The only difference s in the
operation of the circuit from t, to t,: while for
the case of positive factors D ahd R are zero from

t4 to t7, in the multiplier for two’s-complement
factors, D and R nmust be mantained to the same

value during F3 to t7.

We shall now consider the case of mulfipliers
based on column generation.

A first scheme for such a multiplier 1is given
in fig. 10.

The column generator is composed by a shift
register (for X) and a stack register (for Y).

The same figure shows the operation of the
column generator: it can be seen that the columns
are generated according to the arithmetic scheme of
fig. 4.

The summer part can take various forms (see
[8]): one of them is represented in fig. 10: it
comprises a 6 inputs parallel counter; 4 inputs are
fed by the column generator, the remaining two by
the feedback lines connected to the weight 4 and
weight 2 counter outputs, through a 2-stage and a
single stage register respectively. The product P
is available at the weight 1 counter output. The
only difference between the two’s—complement
multipliers of this type and the corresponding
absolute value multipliers for the same number of
factors bits is given by the negator placed at the
bottom output of the column generator. Fig. 11
represents an example of multiplication with the
above sgheme.

Fig. 12a represents a second scheme for a
column generator, composed by two shift registers X
and Y. This scheme differs from the corresponding
scheme for positive factors (11} for the extension
of the two registers with the stages marked with an
asterisk.

The operation of the-circuits is illustrated in
fig. 12b. The two registers Y and X are clocked
alternatively, at times t’, and t" respectively.
The column terms will be” zero until the first
stages of both registers have been filled with some
of the least significant bits: in fig. 12b, "
represents the last clock time producing all zeros
in the column generator. At the first clock t’
following t" , the content of both register is suc%
(see fig. 126, t’.) that the term x Y, 1s generated
(i.e., the first “column of the muf& plier array).
At the next clock, t"., the content of the
registers 1s as shown in éig. 12b, t", where it can
be seen that the second column, comprising the
terus xoy1 and xlyo is generated; etc,

It can be easily verified that the scheme
11llustrated generates the multiplier array columns
according to the arithmetic scheme of fig. 2. The
summer necessary to obtain the product bits will be
composed, as in fig. 10, by a parallel counter with
a suitable number of inputs.

(1)Note the graphical symbols used for
representing the two different types of
registers: for the shift register the arrow
from the input points to the first stage of the
register, where the subsequent bits will be
stored, while the previous bits are shifted

ahead; in the stack register the arrow points
to the last stage, where it will stay until the
register is cleared, the second bit will be
stored on top of it, etc.
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CONCLUSIONS

The problem of designing multipliers for
factors represented as serial binary numters in
two’s-complement form has been considered., The
proposed multiplier schemes have been derived from
schemes illustrated in a previous paper for
positive factors, and based on decomposing a
multiplier into a first part, the array geierator
whose scope 1is to generate the terms of the
multiplier array and a second part, the summer of
the terms produced by the first part.

It has been shown how such schemes can be

easily modified to handle number:; in
two’s-complement form.
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