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ABSTRACT

The problem of designing squarers for binary
number in serial form (with the condition of the
least possible delay between input and output) is
treated.

Several schemes are illustrated, derived from
fast multipliers for binary numbers in serial form,
described in a previous paper.

It is shown that some of such multipliers offer
a considerable saving in components when they are
reduced to squarers. Some schemes are illustrated,
both for positive and for two’s-complement numbers.

INTRODUCTION

The problem of designing multipliers for binary
numbers in serial form has been discussed in few
papers. {2, 7, 10, 11]. 1In this paper the
particular problem of multiplying a serial binary
number by itself, i.e, of squaring a binary number,
will be considered.

A squarer can, of course, be obtained from a
regular multiplier, to whom the same number is
applied as a multiplicand as well as a multiplier;
but a regular multiplier used as a squarer will be
redundant, since it is designed for two independent
factors. It is therefore interesting to investigate
on how a regular multiplier scheme could be
simplified if it used as a squarer.

Such an investigation has been done, in the
case of squarers for binary numbers in parallel
form, by Chen [4] and Totadry Jayashree and Dhrube
Basu [6], who were interested in using squarers for
the synthesis of multipliers based on the quarter
square algorithm.

In this paper, the case of squarers for binary
numbers in serial form will be treated. It will be
shown how the multipliers schemes illustrated in
[10] can be easily reduced to squarers, some of
them with a considerable saving in components.
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GENERAL CONSIDERATIONS

The schemes for serial multipliers illustrated
in [10] produce the products bits with the least
possible delay with respect to the factors bitsg,
i.e., each product bit 1is produced whenever its
computation is logically possible with the
available factor’s bits.

The least significant product bit, y,, can be
generated immediately after the factor’s least
significant bits have been provided; the same holds
for the following product and factor’s bits.

As soon as the last factor’s bits are applied,
the last bit of the least significant half of the
product can be produced. Moreover, the circuit
contains all the information necessary to compute
the most significant half of the product. It {is
therefore possible to conceive multipliers which
produce in parallel the most significant half of
the product as soon as the last factor’s bits have
been introduced.

Alternatively the most significant half of the
product can be generated in serial form, following
immediately the last bit of the product’s least
significant half.

The above considerations apply also to
squarers, with the additional remark, see fig.1,
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that the second least significant bit, y,, 1is
always zero (as it will be shown in the foliowing
with reference to fig. 2); y, can be computed as
soon as Xy has been provided, ‘etc.

The serial multipliers described in [10] can be
partitioned into two cascaded parts: the first,
(the "array generator'), whose inputs are the two
factor’s bits streams (the least significant bits
being the first), generates the elements of the
multiplier array; the second part (the "summer")
receives the latters and computes the product bits.

The array generator can be designed in various
forms, depending on the way the array elements are
produced to its outputs: all the array generator
schemes comprise two registers, for storing the
factor’s bits, and a set of gates producing the
multiplier-array elements.

The factor’s registers can be conventional
shift registers or stack registers (i.e. a set of
binary cells in which the subsequent factor’s bits
are stored by means of a pointer, so that a given
factor bit remains in the same cell once it has
been written in). In some schemes both registers
are shift-registers or stack-registers, some other
schemes use one shift-register and one
stack-register.

In using a multiplier as a squarer, both
registers will contain the same number, but if both
registers are of the same type only one will be
needed, since the variables provided by the second
register can be replaced by the variables stored in
the first. In the case of registers of two
different types this cannot be done, since a given
input bit is in a fixed cell in the stack-register
while it is moved from cell o cell in a
shift-register.
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Fig.2 : a) The squarer array
b) The reduced squarer array

Consider now a multiplier array, see fig. 2a.
In the case of two equal factors, i1.e. in the case
of a squarer: X X, =X, X, 80 that the part of the
array below the Jnté—&iagonal (composed by the
terms x,%) is equivalent (i.e., it gives the same
contribution to the product) to the part which is
above the anti-diagonal.
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The original array (fig. 2a) can thus .be
replaced, see [4], by a reduced, equivalent array,
comprising the anti~diagonal and one of the above
parts s%ﬁ%ted by one position to the left, see
fig. 2b

As a consequence, the number of terms to be
generated by the array-generator is smaller than in
the case of a regular multiplier and a reduction in
its complexity would then result. Moreover, the
terms x belonging to the anti diagonal reduce to
X, sinCe we are consildering base-2 numbers.

In the following paragraph it will be shown
that the above general remarks lead to varilous
squarers schemes for positive integers.

In the last paragraph, the extension of the
above schemes to the case of two ' s—complement
numbers will be comsidered.

The notations used to describe the logic
diagrams of the squarers are those adopted in [10,
11]. All the logic diagrams are based on the use of
parallel counters [5,9].

SQUARERS FOR POSITIVE BINARY INTEGERS

Using the criteria exposed in the preceding
paragraph, the various multiplier schemes given in
[10] have been examined: in the following the most
interesting schemes (i.e. those offering the least
complexity) will be illustrated.

a) A group of schemes is based on the
generation, at each step (i.e. whenever a new x. is
applied), of all the new array elements that caa be
computed using x, and the operand bits already
applied. In fig. the squarer array elements that
can be generated at each step are linked by a
dotted line.

An array generator based on the above principle
is shown in fig. 3. It is composed with an n stage
shift register (n=5 in fig. 3), whose outputs feed
an array of (n-1) 2-input AND gates. The figure
shows the content of the register at the succeeding
clock times, and the outputs of the circuit: it can
be verified that these correspond, at each step, to
the array terms which in fig. 2b are linked by a
dotted line.

It can also be seen that, in order to have the
correct weights, the initial weight of the leftmost
output must be 27, and that all the weights must be
multiplied by four at each step.

The outputs of the array geaerator are fed to
the summer, in order to obtain X“: the summer adds
all the array terms generated in the succeeding
steps.

More precisely, if S -1 is the sum of all the
elements of the sub—arra; generated at the (j=-1)th
step (S is therefore function of x.,...,%x. ),

-1 0 j-1
then:

(1) It can be seen from fig. 2b) at y,, the
second least significant bit of X )is always
zero.
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S.=§ +x ,+D

S5 g#Ds (§=0..m=1) (1)

(811=0)
For j=n~1 (last step) :
2
n-1 X
The above operation is performed by the summer. The

logical scheme of a summer is given in fig. 4,
where:

- the first two rows represent the wvariables
produced by the array generator of fig, 3;

- the Ehird row is a register where § -1 is
stored; 3

- the 1last row represents S

» obtained by
addition of the preceding rowsg

It can be seen that the leftmost four columns
contain two variables each: they feed a four stage
parallel adder, whose outputs are represented by
the five dots in the last row that are linked by a
line. The rightmost five variables of the third row
are geeded only to store the least significant bits
of X". The eight leftmost significant bits of the
last row are fed back to the register (third row)
after shifting them right by two positions: this
shifting accounts for the multiplication by four
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Fig.4 : a) Logical scheme of a summer
with a carry propagation adder.
b) The operation of the scheme,
at various clock times.

of the outputs of the array generator.

The operation of the logical scheme 1s
represented in fig. 4b, where those variables that
can be affected at the various steps are denoted by
a dot, while a point is used for those variables
that remain zero.

It can be seen that the squarer bits are
generated at different outputs, the five least
significant bits in the first five steps: at the
last step, also the five most significant bits are
generated, in parallel.

The speed of the scheme of fig. 4 1is limited
mainly by the adder (for which carry look-ahead
circuilts can of course be used).

If a greater speed 1is desired, the logical
scheme of fig. S5 can be used: it has more memory
elements, but it does not suffer the speed
limitation of fig. 4 scheme, since no carry
propagation occurs. Its operation is as follows.
The first two rows represent the array outputs, as
in the previous scheme. The third and fourth rows
represent a set of two registers (composed by n-2
and 2n-2 cells respectively) whose sum 1is
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5a): Logical scheme of a summer using an adder with no carry propagation.

b): The operation of the above circuit, at various clock times.

c): idem: the most gsignificant half is generated serially.
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equivalent, at each step, to the sum of all the
array elements generated in the preceding steps,

This set of four rows can be reduced to two
equivalent rows, using full-adders or half adders
as shown in fig. 5a. The two rows thus obtained are
fed-back, after shifting them right by two places,
to the third and fourth rows.

The operation of the circuit is shown in fig.
5b. At clock times ¢t *t, the square bits y %y4
appears at different cutputs, as shown (note that
at t,, both y, and y, are available, at t s, ¥, and

0 0 1 1 1
Yys étc..).

At time t,, also all the remaining most

significant bits, vy ~"9 could be obtained in
parallel with Y5 ugimg an additional parallel
adder.

Alternatively, the same bits can be obtained
serially, with the circuit as in fig. 5c, whose

operation is shown in fig. 5b, t. tHrough t_ (note
that in t_, ¢t and t,, somé bits shown as
significant, 1.€. represented by a dot, are in

effect always zero: this is due to the fact that
the value of the squarer array 1s represented
redundantly by two rows instead of a single row as
done in fig. 4).

In fig.5b and ¢) it is also shown that the
circuit can be provided with additional memory
elements (shown at the right of a vertical dotted
line in fig. 5b) in order to store the complete
result.

b) A second type of squarer scheme is shown in
fig. 6, for the case n=5.

It is composed by an n bit shift-register and
two sets of 2-input AND gates, generating the
squarer array column by column. More precisely, two
columns are generated_gﬁmmltaneously.

The operation of the circuit is shown in
fig. 6b, where the content of the shift-register is
shown at each step, t through t (compare to

0 8
fig. 2).

In steps t. and t,, no outputs are obtained
(i.e., all outputs of tée AND gates are zero).

At step t,, the element ‘00’ of the array is
obtained; at step t,, the elements 11 and 10 (i.e.
the third column of the fig., 2 array) and the
element 20 (i.e., the fourth column of the array)
are obtained; at step t,, the fifth column
(22,21,30) and the sixth column (31,40) are
obtained.

The remaining columns are produced in the same
way (the last columns is produced at step t6).

The columns thus generated can be handled by a
suitable circult (see [10]) which provides the
result by generating two product bits at each of
the steps t, through t,. The above column generator
can be easily extended for a larger n.

SQUARERS FOR TWO’S-COMPLEMENT NUMBERS

Being the square of a number always positive,
no problems arise in the case of negative numbers
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Fig.6 : a) Circuit for generating the
squarer array by column
(two columns at a time)
b) The operation of the above
circuit, at various clock
times

represented with sign and absolute value.

In the case of a negative number represented as
two’s-complement, one could change its sign using a
simple circuit. In the case of a number to be
squared, whose sign can be either positive or
negative, it is desirable to have a squarer which
can accept both positive and negative
two’s-complement numbers. The following well known
properties of two’s-complement numbers will be used
in the following:

~ the most significant biingi)an n-bit number has
a negative weight, -2 ; 1t 1is zero for
positive numbers, one for negative numbers (it
will be denoted in the following by x the

r)
sign bit)

- a two’s-complement number can be extended to
the left by repeating the sign bit x.:
e.g. X=xrx2xlx0 == ,,.,00 xrxrxrxlexo

All the x, have a weight corresponding to their
position and the leftmost x,, has a negative
weight, according to the preceding property. In

order to remind the negative weight of the
leftmost sign bit, it will be marked by an
asterisk

»
X ﬁ:xlexo ] xbxrx,xlexo
- In order to change the sign of a
two’ s~complement number, complement all the
bits and add a "one" into the least significant
position

=(0011) = 1100 + 1 = 1101 (-3)

Observe also that the largest negative value of
an n bit two’s-complement number is:
o _o(n=1)
Xmin 2

(whereas X =2n—l
max

~1).

It can be easily shown that, {if —Z(n—l) is
included in the range of X, then x2 will require
2n-1 bits; if i n£i)excluded onm the range of X
(i.e. if xmin--z +1) then X° will require 2n-2




bits).
In the following, both cases will be
considered.

Two’s-complement numbers can be
following two different approaches.

squared

In the first approach, the sign Xg of the
operand X is extended to the left at least n times,
and the squarer array is then constructed, see

fig. 7.
- X6 Xg X6 Xg Xg Xg Xg X3 X» X; Xg
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Fig.7 : A squarer array for
two’s-~complement numbers,
in which the sign bit has
been extended indefinitely

The square Y=X2
usual way by
squarer-array.

can then be computed in. the
computing the value of the

The squarer-array elements can be generated
elther "by diagonal” (see fig. 7) or "by column",
as shown in the preceding paragraph,

It can be easily verified that, for the same n,
the complexity of the circuits for "a
two’ s-complement squarer 1s about twice the
complexity of a positive integer squarer.

A better solution can be achieved by observing
in fig. 7 that after Xy has been introduced, the
same diagonal (comprising the terms ¢3, o2, &l, ¢0)
must be added in three more steps (t_..t_) in order
to obtain the result. Moreover, the’ same diagonal
must be ghifted left one place at each step: this
can be obtained in the logical scheme of fig.8 by
shifting S  one place left (instead of two), from

l'.S to t7.

At t,, the sign bit Xg has been applied, and
the bit y_. generated. At t » the outputs from the
array generator remain dnchanged, but § is
transferred to the register S, by shifting it

j=1
right one place only.

The same is done in t_, and, 1if Xm n-—24, also
in t,. Note also that, only part of terms belonging
to t‘\e diagonal ¢-3, ¢2, ¢l, ¢0 affect the final
result: those terms which do not affect the result
are circled with dotted line (pseudo-significant
bits) f&)r xmm--z and with a continuous line for

xmina—z +1.

A second approach to the design of squarers for
two’s-complement numbers is based on the squarer
array constructed by assuming that the weight of
the most significant bit 1s negative: see fig. 9a

where the symbol 0-for the most significant bit has
been marked with an asterisk for denoting that it
has a negative weight. The product can be obtained
by computing the value of the array, taking jntg
account the signs of the elements (noté that oo
is zero or a positive one).
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Fig.8 : The logical scheme of a
squarer for two’s-complement
numbers, fed by the array-
generator of fig. 3

The array can be transformed into an equivalent
one, comprising only zeros or positive elements,
see fig. 9b: it is obtained from fig. 9a Array, by
rgplacing its leftmost diagonal (g 3, o 2, ol,
ocQ by, a _di\_agclr_\ik composed by the complements
(03,002, 01, 50), and adding a "1" igto the
least significant column (corresponding to o 0).

Such an array can be generated by diagonals
with the circuit of fig. 10a, which {is obtained
from the circuit of fig. 3 by providing at the
outputs of the register X an array of gates,
capable of producing the squarer array elements by
diagonals, and, at time t, the complements o3, &7,
5-—1, 0 of the last diagonal. The "1" needed in the
array of fig. 9b is implemented by providing, at
time t,, an auxiliary input, as shown in fig. 10a.
The su%sequent partial sum of the array is stored
in the register Sj—l'

All the variables lying above the horizontal
line are transformed into a single vrow of
variables: no processing is required for the five
rightmost variables, while those belonging to the
five leftmost columns are inputs to a five stage
parallel adder (whose outputs are linked by a
line). The six leftmost bits of S. are fed back in
the § -1 register, after shifting them right two
placesj.
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circuit at various clock times

ty
CONCLUSIONS
Xj Squarers for binary numbers in serial form,
) Dj capable of providing the result with the least
- P ROEEEE O Si-i possible delay between input and output, can be
designed according to a scheme already used by the
"ty author for designing serial multipliers. Such a
scheme 1s composed with an array generator and a
e e . g summer. The array generator produces the elements
to M Yo of the squarer array as soon as new bits are
ty Y2 ¥y Yo applied to the inputs: the array elements produced
ts Ya Vo Yo ¥ can be generated by "diagonals" or by "columns".
372 1 Jo
t The summer accumulates the array elements thus
3 Ya Y3 Y2 ¥y Yo generated, and produces the bits of the square.
ty Yo Y7 Yo Y5 Y4 Y2 ¥ ¥y Yo Various schemes are illustrated, some of them
providing the most significant half of the square
in parallel, some other in serial form. The case of
Fig.10 : a) A squarer for two’s—complement squarers for negative numbers represented as
numbers, composed by: an array two’s~complements has also been considered.
generator "by diagonal" and a
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