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ABSTRACT

A network for performing multiplications of two tvio’s
complement numbers is proposed.The network can be
implemented in a synchronous or an asynchronous way. If the
factors to be multiplied have N bits, the area complexity of the
network is O(N2) for practical values of N as in the case of cellular
multipliers. Due to the design approach based on a recursive
algorithm, a time complexity O(log N) is achieved.

INTRODUCTION

Multipliers are fundamental components of computer
arithmetic units and special purpose systems conceived, for
example, for signal processing. The design of parallel multipliers
has received considerable attention in the last thirty years.

A fundamental contribution to the design of
combinational or simultaneous multipliers has been given by
Wallace [26] who proposed a network of Carry Save Adders (C5A)
for adding Partial Products (PP) generated by two integer factors
represented in binary code, one with M bits, the other with N bits
and obtaining in O(log MN) time two addends whose sum is
equal to the product of the factors. A pipelined version of this
design has been implemented in commercially availakile
machines.

Wallace'’s design approach was improved by Dadda (6]
who proposed to use Parallel Counters (PC) instead of CSA in
order to reduce cost.

Capello and: Steiglitz [S] have recently reviewed Dadda’s
approach and derived a pipelined multiplier that could he
reduced to a simultaneous one by eliminating memory elemerts
associated with PC outputs. This multiplier uses a network
containing different types of counters and a fast carry-lookahead
binary adder. This adder is based on a design by Brent and Kung
(3] and adds the two numbers generated by the PC network. An
adder of this type will be indicated in the following as Special
Adder (SA). Assuming, for the sake of simplicity, that both the
factors have N bits, the time complexity of the (SA) is Oflog M)
and the area complexity is O(Nlog N). The area complexity of the
multiplier is O(N2iog N). Other interesting ideas along this
approach are reported in [22] and [24).

At the end of the sixties, a number of multiplier desigrs
were proposed based on iterative arrays of equal cells
[9,14,15,16]. These structures have an area complexity O(N2) and
time complexity O(N). The basic cell of the iterative multipliers
was a gated full-adder and “cellularity” was considered an

CH2146-9/85/0000/0044$01.00 © 1985 IEEE |

advantage for Large Scale Integration. Using the same cells,
networks for multiplying signed numbers were proposed
{1,2,8,10,20] having the same area and time complexity.

In order to increase the speed of iterative multipliers
having time complexity O(N), some macrocellular structures have
also been proposed (7,11,12,17,23).

An extended review with interesting comments and
contributions to the design of parallel multipliers can be found in
the book by Hwang [18].

The purpose of this paper is that of introducing a recursive,
rather than an iterative, algorithm for designing parallel
multipliers. This algorithm will bring to an implementation with
design advantages similar to those of iterative multipliers, but
with the fundamental difference that it can be implemented by a
recursive application of the same design procedure rather that by
the repetition of the same cell design.

The multipliers implemented with this algorithm have area
complexity O(N2) and time complexity O(log N). This new
solution combines the advantages in area complexity of the
iterative multipliers and the advantages in time complexity of
designs based on pseudo-additions performed by CSAs or PCs.

Making these multipliers pipelined with period complexity
O(1) is easy as it is for those designed with cellular iterative
networks. In this case the latency complexity becomes O(log N).

Capello and Steiglitz [5] have compared available
multiplier designs using a figure of merit F = AP2T2 derived for
VLS| implementation. A is the area complexity, T is the latency
complexity and P is the period complexity. A lower bound, LBF,
for F is reported [S] to be:

LBF = N¥og?N (1)
The structure proposed by Capelio and Steiglitz is the best

one proposed so far for simultaneous multipliers and has a
figure of meritF = N2log3N.

The structure proposed here has F = LBF and is the only
structure proposed so far for simultaneous multipliers with
A=N2and T=log N.

The structure can be adapted to multiply two two's
complement numbers with the same performance, and these
properties make the structure proposed here, the fastest one
with O(N2) area complexity for multiplying two's complement
numbers. The design proposed here is based on moduli whose
connection can be easily programmed in such a way that either




four single precision multiplications, or one double arecision
muitiplication can be performed under the control of some
specification variables.

THE ALGORITHM FOR RECURSIVE
MULTIPLIERS

In order to introduce the algorithm for designing recursive
multipliers, an iterative algorithm denoted Algorithm IM for
multipliying positive binary integer numbers will be first
presented. This algorithm leads to the implementation of cellular
multipliers with time complexity O(N). A design for a batic cell of
these is proposed in [11]. With these cells, multipliers “or small
values of N can be designed with practically good performances.
Furthermore these cellular multipliers are implemented by
repeating an elementary cellular structure which is a big
advantages from the point of view of automatic design,
manufacturing and testing.

Algorithm IM (Iterative Multiplication)

Let
N-1 )
H= 3 h2' @)
i=0
and
N-1 )
K=Y k2 (3)
j=0

be the factors and
2N ~1
P=HK= ) 82" (4)
r=0
be the product. h;, k;, gr are binary variables.
Let N=LG with L and G integers.

Wording the factors H and K in the basis 2G one gets:
L-1
K= K270
n=0

L-1
5N G
2 H 2 ™
m=0

with Hy, and K, integers less then 26 and expressibla in the
binary code with G bits.

H=

The product P can be obtained with an iterative array
proposedin [11].

A special cell design for G =2 is also proposed in [11]. This
cell design is based on four 16 input-1 output multiplexers and

introduces a propagation delay equal to the swiching time of a
multiplexer.

Let Tmbe the switching time of a multiplexer, the structure
proposed in [11] has a total multiplication delay.
= .
Td = NTm &)

Where N is the number of bits of the factors. The area
complexity of the structure is A; = O(N2) and the structure -an be
used for adding two numbers:
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to the product P=H*K, making the structure capable of
performing the operation :

Z=H*K+X+Y 6)

Which is also the expression computed by the basic cell.
Dean [7] has called such a structure, a full-multiplier.

X =

An algorithm has been proposed [10] for using full
multipliers of positive numbers in order to multiply two's
complement binary fractions with the addition of peripheral
logic.

In order to reduce the time complexity from O(N) to
O(logN) by keeping the area complexity approximately O(N2) a
new structure, called recursive multiplier is proposed in this
paper. This structure shares with the iterative multiplier
proposed in [11], the following features:

-modular layout

-possibility of pipelining and using two's complement
factors.

-possibility of using the structure of a single high precision
multiplier or as a set of lower precision multipliers.

The operation of the recursive multiplier starts with the
simultaneous execution of (N/qg)2 partial multiplications using
(N/Q)2 Pg-muitipliers.

A Pg-multiplier is a device that performs the following
operation:

g-1 q-1
_ m+iv, O n+j
Olmm) = (D k2™ k2" I8
i=0 j=0
In order to reduce the delay of the structure, O(m,n) is
obtained as a sum of three numbers:

q-1 %1 2-1
— m+n+r N +n+ +n+
O(m,n) = Z 0 2™ T 4 }_ a 2Ty Z b2mrntr
r=0 r=gq r=gq
O(m,n) = Ll(m,n) + Ml(m,n) + Mz(rn,n) 8)

Fig. 1a showns the layout of a Pgq-multiplier using the cells
whose design will be introduced in [11). The area complexity of
this multiplier is

_ (32
4,=0)

B D

and the time complexity is
T(‘7 = qu

Fig. 1b shows a schematic representation of a Pq-
multiplier.

Each macro cell in Fig. 1ais, a full multiplier with G = 2.

The output of the Pq-multipliers have to be added
together in order to give the final product. A first step towards
the calculation of the final sum is that of grouping the Pg-
multipliers into squares containning 4 Po-multipliers each and to
perform a pseudo-addition of the output of the 4 Pq-multipliers
of each square.
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FIG.1a Iterative Pq-multiplier (detailed scheme)
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FIG.1b Iterative Pq-multiplier

Fig. 2 shows how the output of four Pq-multipliers can be
added toghether using carry-save adders.

Let us call the structure of fig 2 a By-pseudomultiplier.

The output O1(m,n) of the B;-pseudomultiplier can be
expressed as follows:

Ol(m,n) = Ou(m,n) + 012(""") 9)
where
Ou(m,n) = OLu(m,n) + OLZI('"’") + OMu(m,n) + 0M21(m'")

012(""’") = OLzz(m,n) + OMlz(m,n) + OMzz(m,n)
OL, (m,n) = L (m,n)
0L21(In,n) + OLn(m,n)= M (m,n) + M (m,n) + L(m,n+q)
OMu(m,n) + OM12(m,n) = Ll(m +q,n+q) + Ml(m,n+ qQ) +

Mz(m,n+q) + Ml(m+q,n) + Mz(m +q,n)




OM, (m,n) = M (m+q,n+q)

OMn(m,n) = Mz(m.+ q,n+q)

The By-pseudomultipliers are grouped into sets of four
each. The outputs of each set are added by two carry-save adders
using the same structure as in Fig. 2 but with six inputs for each
weight.

Let us call the structure of 4 B,-pseudomultipliers a B;-
pseudomultiplier.

We continue in this way until we introducs a Bp-
pseudomultiplier that contains all the Pg-multipliers.
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FIG.2 By-pseudo-muitiplier

ALGORITHM RM (Recursive Multiplier)

The Bp-pseudomultiplier outputs two numbers Op; and
Op; that have to be added by a special adder.

The algorithm of the By-multiplier can be descrided as
follows:

By-multiplier(n,H,K,0p1,0p;);
input :H,K,n;
output:Op,0p3;
begin
if n = N/q then
Pgq-multiplier(H,K,0p+,0p,);
else
cobegin
Bp-multiplier(H[0,0},K[0,0],0p1[0,0],0p,[0,0]);
Bp-multiplier(H[n/2,0],K[n/2,0],0p4(n/2,0],0p;[n/2,0]);
By-multiplier(H[0,n/2],K[0;n/2],0p1[0,n/2],0p,[0,n/2));
Bo-multiplier(H[n/2,n/2),K[n/2,n/2],
0p1{rV2,n/2),0p2[1/2,n/2));
coend;
end;
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The algorithm of the entire multiplier can be described as
follows:

multiplier(H,K);
inputs ‘H,K;
output :multiplier;
begin
Bp-multiplier(N,H,K,0p1,0p);
multiplier: = special-adder(Op,,0p3);
end;

The multiplication is executed by the recursive algorithm
B¢-multiplier (1 < f <p).

Fig. 3 showns a schematic layout for a By-multiplier,
connection between macrocells and networks of CSA have been
omitted for the sake of simplicity.
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Fig. 3 Recursive multiplier layout

Fig. 4 showns an example of the multiplication executed by
a recursive multiplier using positive numbers represented in the
decimal code.

The pseudo-adders are represented in Fig. 3 by dashed
lines. The maximum number of input addends is 6 and wires
carrying pairs of addends are already ordered in such a way that
wires carrying bits of the same weight are adjacent.

The layout of a pseudo-adder is sketched in Fig 5. Capital
letters indicate addends and lower case letters indicate bits.

The time complexity of the structure is O(3).

The area complexity of the pseudo-adder of all the By-
multiplier is O(aN/2). Where a is the ratio between the area
complexity of a pair of wires and the area of a Pq-multiplier
divided by the number of bits of the Pq-multiplier.

TIME COMPLEXITY

Assuming that D is the delay introduced by an AND/OR
expression implementing the basic functions of a CSA and the
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FIG.4 Recursive multiplication example

Special Adder (SA), assuming T(q) to be the delay introduced by a
Pq-multiplier, if p recursions are applied, then the total delay can
be expressed as follows:

T = (log2N + 3p)D + T(q) 10)

Using the just described desing aproach, a cellular Pg-
multiplier of N/g-bit can be design with a delay:

N
T(@) = (—)D
2q

The P4-mulitiplier could be also implemented with a Read
Only Memory (ROM) making T(q) independant of N. In this case
the (10) can be rewritten as :

T = (log2N + 3p) + T(ROM)
A technologically acceptable solution could be a ROM with
a number of bits less that 212,

In order to find a relation between p and g, notice that
there are q2 Pq-multipliers that are grouped into group of 4
giving g4 By-multipliers. By-multiplier are grouped into groups
of 4 giving q2/42 B-multipliers and so on until 1 By-multiplier is
obtained. Thus:

p=Tlog,g1

Where ''A1 means A if A is integer or the least integer
greater than A.
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Notice that

g<N; p <logN
In order to mantain logarithmic the time complexity of the
structure, several condition on p can be imposed. A very simple
one is the following:

¥ o oe N
P 8 'q—logN (11)
AREA COMPLEXITY

The area complexity of the recursive muitiplier can be
computed by inspection of Fig. 3 as follows:

A= O(A(B, — multiplier)) + ONlog N)

= 0(4A(B1 — multiplier)) +

N
+ O(NlogN) + area of 2 Py pseudo—adders

=01 6A(Pp— multiplier)) +

N
area on;pseudo —adder +

N
area of 4 n pseudo—adder + O(N,logN)

The area complexity of g2 Pg-multipliers is O(q2(N/q)2) =
O(N2),

There are p=log q = log(N/logN) levels of pseudo adders.
Their overall area complexity is:

2 2

a=0aeX 48X 4 )= ocd Nt (12)
= als — - L) = -
4 16 g P
The overall area complexity is:
A=0WN% + %logq) + O(Nlog N) 13)

Thus the overall area complexity is O(N2) as far as (a/2)logq
<1

Given the proposed structure and the cell design proposed
in [11], a is the ratio between the area complexity of two wires
and the area complexity of a 16 input multiplexers plus 20 circuits
implementing boolean functions of 4 variables.

An acceptable estimation could be a = 1/20.

The area complexity of the proposed structure can be
assumed to be O(N2) as far as

N
log(——) < 40 1
g(logN) (14)

which is an acceptable condition for a
practical muitipliers.

large class of

VLS| COMPLEXITY
A relation is currently used for measuring the VLSI
complexity of a proposed structure [3,5]:
F = AP?T?
where, A is the complexity, P is the period complexity and T is the
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Fig. 5 Pseudo-adder scheme
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latency complexity. We will first assume that the structure 1s not
pipelined, for the sake of simplicity. The latency complexity T i
O(fogN) and the area complexity A is O(N2).

CONCLUSION

A network for performing multiplication of two binary
numbers has been proposed. The network can be implemented
in a synchronous or in an asynchronous way. If the factors to be
multiplied have N bits, the area complexity of the networks is
O(N?2) for practical values of N as in the case of cellular
multipliers. The time complexity is O(log N).

With some additional circuits the multipliers can be used
either independently for performing four separate single
precision multiplications or connected to perform a single double
precision multiplication.

These details as well as pipelining and making the cell
capable of muitiplying two two's complement numbers are
omitted for the sake of brevity.

The proposed recursive scheme for parallel muitiplication
combines the advantages in area complexity of cellutar
multipliers with the advantages in time complexity of tree
multipliers and may hopefully, suggest new design ideas for
other types of units.
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