A Fast Algorithm for the Symmetric Eigenvalue Problem

J.J. Dongarra and D. C. Sorensen

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

1. Introduction

The symmetric eigenvalue problem is one of the most
fundamental problems of computational mathematics. It
arises in many applications, and therefore represents an
important area for algorithmic research. It is also one of
the first eigenvalue problems for which reliable methods
have been obtained. It would be surprising therefore, if a
new method were to be found that would offer a significant
improvement in execution time over the fundamental algo-
rithms available in standard software packages such as
EISPACK (7). However, it is reasonable to expect that
eigenvalue calculations might be accelerated through the
use of parallel algorithms for parallel computers that are
emerging. We shall present such an algorithm in this
paper. The algorithm is able to exploit parallelism at all
levels of the computation and is well suited to a variety of
architectures. However, a pleasant bonus of this research
is that the parallel algorithm, even when run in serial
mode, is significantly faster than the best sequential algo-
rithm on large problems, and is effective on moderate size
(order > 30) problems when run in serial mode.

The problem we consider is the following: Given a
real n Xn symmetric matrix A, find all of the eigenvalues
and corresponding eigenvectcrs of A. It is well known [8]
that under these assumptions

1y A=QDQT , withQTQ =1,

s0 that the columns of the matrix Q@ are the orthonormal
eigenvectors of A and D == diag(é,,6,,...,5,) is the diago-
nal matrix of eigenvalues. The standard algorithm for
computing this decomposition is to first use a finite algo-
rithm to reduce A to tridiagonal form using a sequence of
Householder transformations, and then to apply a version
of the QR-algorithm to obtain all the eigenvalues and

Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research

eigenvectors of the tridiagonal matrix[8]. We shall describe
a method for parallelizing the computation of the eigensys-
tem of the tridiagonal matrix.

The method is based upon a divide and conquer algo-
rithm suggested by Cuppen[2]. A fundamental tool used
to implement this algorithm is a method that was
developed by Bunch, Nielsen, and Sorensen(l} for updating
the eigensystem of a symmetric matrix after modification
by a rank one change. This rank-one updating method
was inspired by some earlier work of Golub[3] on modified
eigenvalue problems. The basic idea of the new method is
to use rank-one modifications to tear out selected off-
diagonal elements of the tridiagonal problem in order to
introduce a number of independent subproblems of smaller
size. The subproblems are solved at the lowest level using
the subroutine TQL2 from EISPACK and then results of
these problems are successively glued together using the
rank-one modification routine SESUPD that we have
developed based upon the ideas presented in [1].

In the following discussion we describe the partition-
ing of the tridiagonal problem into smaller problems by
rank-one tearing. Then we describe the numerical algo-
rithm for gluing the results back together. The organiza-
tion of the parallel algorithm is laid out, and finally some
preliminary computational results are presented.

2. Partitioning by Rank-One Tearing

The crux of the algorithm is to divide a given prob-
lem into two smaller subproblems. To do this, we consider
the symmetric tridiagonal matrix

U.S. Depariment of Emergy under Contracts W-31-100-Eng-38, DE-AC05-840R21400 and DE-FG02-

85ER25001.

U.S. Government Work. Not protected by 338
U.S. copyright,

el T

T, ﬂ‘k‘xT
(21) T = peed T,
T, o

ot‘g r r
. 1
o 1,7 ﬂ(r‘e, l("‘* Fer)

where 1 < k < n and e; represents the s—th unit vector
of appropriate dimension. The k-th diagonal element of
T has been modified to give 7', and the first diagonal ele-
ment of T, has been modified to give T,. Potential
numerical difficulties associated with cancellation are
avoided through the appropriate choice of 4. If the diago-
nal entries to be modified are of the same sign then

=4 1 is chosen so that —#8 has this sign and cancella-
tion is avoided. If the two diagonal entries are of opposite
sign, then the sign of @ is chosen so that —03 has the same
sign as one of the elements and the magnitude of ¢ is
chosen to avoid severe loss of significant digits when 8- 15 is
subtracted from the other. This is perhaps a minor detail,
but it does allow the partitioning to be selected solely on
the basis of position and without regard to numerical con-
siderations.

Now we have two smaller tridiagonal eigenvalue prob-
lems to solve. According to equation (1.1) we compute the

two eigensystems

Ty = @D, , T,=Q,D,Qf

This gives
QD.QT o [aet] . s
(22) T = 0 @.0,QT + f fle, (fei, 07cy)
Q, 0[(D, ©
=[0 Qzl (o Dzl

0q, QT 0
+ Blo—lq2](0qlT y rlqu) ‘l 0 Q2]

where ¢, = Qle; and g, = @Je¢,. The problem at hand
now is to compute the eigensystem of the interior matrix
in equation (2.2). A numerical method for solving this
problem has been provided in [1] and we shall discuss this
method in the next section.

It should:be an-ly \nons how to proceed from here
' £ 1y repeats the tearing on
the original

to exploit parsll
each of the two

problem has been divided into the desired number of sub-
problems and then the rank one modification routine may
be applied from bottom up to glue the results together
again.

3. The Updating Problem

The general problem we are required to solve is that
of computing the eigensystem of a matrix of the form

(3.1) ODOT =D + pa:T

where D is a real n Xn diagonal matrix, a is a scalar, and
z i3 a real vector of order n . It is assumed without loss of
generality that z has Euclidean norm 1.

As shown in [1], if D = diag(6,,5,, - - - ,6,) with

6 <84 < :-+ < 4§, and no component ¢; of the vector z is
zero, then the updated eigenvalues 3; are roots of the equa-
tion
2
(3.2) FN)=1+ pE = 0.
=6 -2

Golub[3] refers to this as the secular equation and the
behavior of its roots is completely described by the follow-
ing graph:

—_———— it

o
ok
c.!

o
o
ot
Ne
+
o

Figure 1. The Secular Equation

Moreover, as shown in 1] the elgenvectors (i.e. the
columns of @ in (3.1)) are. pven ‘

(3.3) &= 1872

with v, chosen to make || || =1 , and with
A; = diag(6,-8; ,6,-8;, - -+ ,6,~8;). Due to this strue-
ture, an excellent numerical method may be devised to find
the roots of the secular equation and as a by-product to
‘ompute the eigenvectors to full accuracy.

In the following:discussion we assume that p > 0 in
(3.2). A simple changeof:wariables may always be used to
achieve this, so there:isinoiloss of generality. The method
we shall describe was izspired by the work of More' [4]
and Reinsch{5,0], and relies on the use of simple rational
approximaﬁqn‘l;;w:construct an iterative method for the
solution of equation (3.2). Given that we wish to find the
i—th lootz the function f in (3.2) we may write this

TN =14+ &N+ ¥(\)

. 9
1 gj"
M=pY —1
W=l
and
”n Sy2
M=, ¥ —L_.
) j=zi+16j - A

From the graph in Figure 1 it is seen that the root 3; lies
in the open interval (§;,6;,,) and for X in this interval all
of the terms of ¢ are negative and all of the terms of ¢ are
positive. We may derive an iterative method for solving
the equation
-Pp(A) =1+ ¢\)

by starting with an initial guess), in the appropriate
interval and then constructing simple rational interpolants
of the form

P
r 4+ ——
6 A

g-)’
where the parameters p, ¢, r, 8 are defined by the inter-
polation conditions

s

(3.4) 7 —p>‘0 =P(X), r + T #Xo)
—P =), — = (\) -
TEW: ¥' (M) Gy é' (M)

The new approximate X\; to the root 3‘ is then found by
solving

- 8
(3.5) PEunb R e
It is possible to construct an initial guess which lies in the
open interval (§;,5;). A sequence of iterates {\i} may
then be constructed as we have just described with X\,
being derived from X\; as X\, was derived from)\, above.
The following theorem proved in 1] then shows that this
iteration converges quadratically from one side of the root
and does not need any safeguarding.

ROt st

340

THEOREM (3.6) Let p > 0 in (3.2). If the initial iterate
Ao liea in the open interval (6,,8;) then the sequence of
sterates { My } as constructed in cquations (3.4)43.5) are
well defined and satisfy N\, < Nes1 < b, for all k > 0.
Moreover, the sequence converges quadratically to the root
3

In our implementation of this scheme equation (3.5) is
cast in such a way that we solve for the iterative correction
7= A-A¢ The quantities 8; =Xz which are used in the
eigenvalue calculations are maintained and iterative correc-
tions may be applied directly to them and to the eigen-
avoided
because the corrections become smaller and smaller and are
eventually applied to the lowest order bits. These values

value approximation, Cancellation is thus

are then used directly in the calculation of the updated
eigenvectors to obtain the highest possible accuracy. The
rapid convergence of the iterative method allows the
specification of very stringent convergence criteria that will
ensure a relative residual and orthogonality of eigenvectors
to full machine accuracy. A complete discussion of these
stopping criteria is given in {1]. The algorithm did not
suffer the effects of nearly equal roots as Cuppen suggests
2] but instead was able to solve such ill conditioned prob-
lems as the Wilkinson matrices W, , (9 p.308] to full
machine precision and with slightly better residual and
orthogonality properties than the standard algorithm
TQL2 from EISPACK.

At the outset of this discussion we made the assump-
tion that the diagonal elements of D were distinct and
that no component of the vector z was zero. These condi-
tions are not satisfied in general, so deflation techniques
must be employed to arrange their satisfaction. A
deflation technique was suggested in [1] to arrange for dis-
tinct eigenvalues which amounts to rotating the basis for
the eigenspace corresponding to a multiple eigenvalue so
that only one component of the vector z corresponding to
this space is nonzero in the new basis. Those terms in
(3.2) corresponding to zero components of z may simply be
dropped. The eigenvalues and eigenvectors corresponding
to these zero components remain static. In finite precision
arithmetic the situation becomes more intesting. Terms
corresponding to small components of z may be dropped.
This can have a very dramatic effect upon the amount of
work required in our parallel method. As first observed by
Cuppen[2] there can be significant deflation in the updat-
ing process as the original matrix is rebuilt from the sub-
problems.

This has been a brief description of the rank-one
updating scheme. Full theoretical details are available in

—_—

[1]. More on the computational and implementation
details will be reported elsewhere. This calculation
represents the workhorse of the parallel scheme that we are
about to describe.

4. The Parallel Algorithm

Although it is fairly straightforward from Section 2 to
see how to obtain a parallel algorithm, certain details are
worth discussing further. We shall begin by describing the
partitioning phase. This phase amounts to constructing a
binary tree with each node representing a rank-one tear
and hence a partition into two sub-problems. A tree of
level 3 therefore represents a splitting of the original prob-
lem into 8 smaller eigenvalue problems. Thus, there are
two standard symmetric tridiagonal eigenvalue problems to
be solved at each leafl of the tree. Each of these problems
may be spawned independently without fear of data
conflicts. The tree is then traversed in reverse order with
the eigenvalue updating routine SESUPD applied at each
node joining the results from the left son and right son cal-
culations. The leaves each define independent rank-one
updating problems and again there is no data conflicts
between them. The only data dependency at a node is
that the left and right son calculations must have been
completed. As this condition is satisfied, the results of two
adjacent eigenvalue subproblems are ready to be joined
through the rank-one updating process and this node may
spawn the updating process immediately. Information
required at a node to define the problem consists of the
index of the element torn out together with the dimension
of the left and right son problems. For example, if
n == 50 with a tree of level 3 we have

This tree defines 8 subproblems at the lowest level. The
beginning indices of these problems are
1,7,13,19,26,32,38,44 and the dimension of each of them
may be read off from left to right at the lowest level as
6,6,6,7,6,6,6,7 respectively. As soon as the calculation for
the problems beginning at indices 1 and 7 have been com-
pleted a rank-one update may proceed on the problem
beginning at index 1 with dimension 12. The remaining
updating problems at this level begin at indices 13,26,38.
There are then two updating problems at indices 1 and 26
each of dimension 25 and a final updating problem at
index 1 of dimension 50.

Evidently, we lose a degree of large grain parallelism
as we move up a level on the tree. However, there is more
parallelism to be found at the root finding level and the
amount of this increases as we travel up the tree so there
is ample opportunity for load balancing in this scheme.
The parallelism at the root finding level stems from the
fact that each of the root calculations is independent and
requires read only access to all but one array. That is the
array that contains the diagonal entries of the matrix A,
described in Section 3. For computational efficiency we
may decide on an advantageous number of processes to
create at the outset. In the example above that number
was 8. Then as we travel up the tree the root-finding pro-
cedure is split into 2,4,and finally 8 parallel parts in each
node at level 3, 2, 1 respectively. As these computations
are roughly equivalent in complexity on a given level it is
reasonable to expect to keep all processors devoted to this
computation busy throughout.

5. Performance

In this section we present and analyze the results of
this algorithm on a number of machines. The same algo-
rithms has been run on a VAX 11/785 and a CRAY X-
MP. The algorithm has not yet been implemented on a
parallel machine. Those tests are in progress and will be
reported elsewhere along with the algorithmic details
required to achieve parallelism at all levels. Our implemen-
tation uses a tree of level three as shown in Figure 2. We
have not yet fully examined splitting the problem into
more parts.

We have compared our implementation of the algo-
rithm described in this paper to TQL2 from the EISPACK
collection. The table below gives the ratio of execution
time for TQL2 from EISPACK and the algorithm
presented here when run sequentially.

n Ratio of time TQL2 SESUPD TQL2 SESUPD
Az -] ||Az-Xz]] |1QT@-I|] ||QTQ-1]]
50 78 1.6X10712 48Xx10712 1.9X10712 1.2X10718
100 1.26 2.6X1072 7.6X1071 3.9X107 2.5X10712
200 1.93 6.1X1072 1.8X107"2 7.0X107% 5.8X101!
300 3.62 11x1071 3.3X101? 11x10" 2.8X1072
400 4.70 1.2x10™" 3.8X107 rL4x10™ 3.8X1072
A comparison on the CRAY X-MP for
TQL2 vs the parallel algorithm run sequentially
n ' Ratio of time TQL?2 SESUPD TQL2 SESUPD
[lAz -2z)| |lAz->s}| |l|Q@T@-I|| |]|QT@_-1I]]
50 1.38 1.2x107 5.7X1071° 1.3X107% 1.9X107°
100 1.89 2.5X10°1 7.7X1071° 2.1X10718 1.1X107%®
150 2.69 2.6X107" 6.1X107 2.6X107% 3.2X107'
A comparison on the VAX 11[785 for
TQL2 vs the parallel algorithm run sequentially
As can be seen, the performance of the parallel algo- [4] JJ. More The Levenberg-Marquardt Algorithm:
rithm as implemented to run on a sequential machine is Implementation and Theory, Proceedings of the Dun-
quite impressive. The surprising result here is the observed dee Conference on Numerical Analysis, G.A. Watson
speed up even in serial mode of execution. This is ed. Springer-Verlag 1978.
unusual in a parallel algorithia. Often more work is associ- [3] G.H. Golub, Some Modificd Matriz Eigenvalue Prob-
ated with synchronization and computational overhead lems, SIAM Review, 15, pp. 318-334 1973.
required to split the problem into parallel parts. These test
problems are a bit misleading, however, because there was
considerable deflation involved. Matrices do exist[2] for (4 J.J. More' The Levenberg-Marquardt Algorithm:
which this dramatic deflation does not occur. However, an Implementation and Theory, Proceedings of the Dun-
operation count reveals that when the eigenvectors are dee Conference on Numerical Analysis, G.A. Watson
sought along with the eigenvalues, there should be a factor ed. Springer-Verlag 1978.
of 1.33 improvement in performance. The observation of
Cuppen that this deflation occur.s m mzm‘.y cases.was very [5] C.H. Reinsch, Smoothing by Spline Functiens, Numer-
fortuxfate. It brought our attention to this algorithm, but ische Mathematik 10, pp. 177-183, 1067.
we did not really expect the remarkable performance
observed here. In the case where many eigenvectors are
sought along with the eigenvalues this algorithm seems to [6] C.H. Reinsch, Smoothing by Splinc Functions II,

be very promising.

8. References

[t] J.R. Bunch, C.P. Nielsen, and D.C\. Sorensen, Rank-
One Modification of the Symmetric Eigenproblem,

Numerische Mathematik 31, pp. 31-48, 1978.

[2] J.J.M. Cuppen A Divide and Conguer Method for the
Symmetric Tridiagonal Eigenproblem,

Mathematik 36, pp. 177-195, 1981.

Numerische

&

G.H. Golub, Some Modified Matrix Eigenvalue Prob-
lems, SIAM Review, 15, pp. 318-334 1973.

7

(8]

[9]

342

Numerische Mathematik 16, pp. 451-454, 1971.

B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow,
Y. lkebe, V.C. Klema, and C.B. Moler, Matriz Eigen-
system Routines - EISPACK Guide, Lecture Notes in
Computer Science, Vol. 6, 2nd edition, Springer-
Verlag, Berlin, 1976.

G.W. Stewart, Introduction to Matriz Computations,
Academic Press, New York 1973.

J.H. Wilkinson, The Algebraic Eigenvalue Problem,
Clarendon Press, Oxford 1965.

