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Abstract

A division algorithm with a simple selection of
quotient digits including prediction is possible if the
divisor is restricted to a suitable range. The conditions
that the divisor must satisfy to have the quotient digit
g;+; predicted while computing R;,; are determined.
Some implementation considerations are also given.

I. Introduction

Division algorithms have been extensively studied
to satisfy the requirements of fast and cfficient selection
of quotient digits and computation of partial
remainders, and compatibility with other frequent arith-
metic operations such as multiplication [ROBESS,
ATKI68, ATKI74, TAYLS1]. A class of these algo-
rithms is based on prescaling the divisor into a suitable
range [SVOB63, KRIS70, ERCE77]. In this article a
division scheme of this class, in which the quotient di-
gits are obtained by rounding [ERCES3], is extended to
allow prediction of the quotient digit. This results in a
significant reduction of the iteration step.

The division algorithm presented in [ERCES3]
has the following characteristics:

- It uses the recurrence

R[i+1]} = r(R[i]-¢X)
where X is the divisor, R[0] is the dividend, and g;
is a digit of the quotient 2 = ¢g.¢142 * * * Gm-
- The quotient digit-set is redundant such that
“p=gSp.

- The quotient digit is selected by the following sim-
ple function on an estimate of the partial remainder
R[i):
) {mmd(ém) it R[] =ep
“” 1 it R > e

- The estimate R[i] is obtained by truncating the
carry-save representation of R[i] after the kth frac-
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tional digit. That is,
R[i] = R[] = R[] +27**!

- For this selection function to produce the correct
quotient the divisor has to be in the range
1—-a<X=1+a. Consequently, the divisor has to be
transformed before the iteration into this range.
The value of a is related to the error in the esti-
mate by

ey - LG 2,

The transformed divisor is called X' in
[ERCES3]. To simplify the notation here we call it just
X.

In this paper we extend the previous algorithm by
introducing the prediction of the quotient digit. This
permits the computation of ¢;;; to be performed con-
currently with the calculation of R[i+1], and therefore
reduces the execution time of the iteration step. This
modification produces a reduction in the bound for a,
so that more transformation steps are required.

II. Quotient Digit Prediction
The division process outlined in the introduction

consists of a sequence of iterations, each of which is
formed of four steps (see Figure 1):

Estimate Rlil ' aill !

Select g, .__i____‘

Select multiple Xai
Add/subtract ; R{i+1] \

Step time

Figure 1: Basic lterstian




- Determination of the remainder estimate R[] in
assimilated form.

- Determination of a quotient digit ¢; (rounding).

- Selection of a divisor multiple ¢,X.

- Subtraction to obtain the new partial remainder
R[i+1] in carry-save form.

The time of an iteration step is
T=t,+t+t,+1,+1

where
1, = time for assimilation of R[]

t, = time to round

1, = time to select the divisor multiple

f.; = time of subtraction in carry-save form

f; = time to load the registers

To reduce the time of an iteration step it is possi-
ble to precompute the quotient digit in the previous
iteration step. This results in an iteration step consisting
of two paralle]l paths. In one the next partial remainder
is obtained while in the other the next quotient digit is
computed.

Using the quotient calculation procedure present-
ed before, the quotient digit ¢;,; depends on R[i+ 1). In
order to predict this digit it is nex to base the
prediction on R[i] (and maybe X) since R[i+1] has not
been computed yet. Since

R[i+1] = r(R[i]-¢X)
it is possible to determine g, by
Qi+1 = round(R[i+1]) = round(r(R[i]-q,X))
which could be approximated by
Gi+1 = round(estimate (r(R[i] - ;X))

(where round(d) is p if d=p.)

However, this prediction does not produce a sig-
nificant reduction in time since the path requires the
same steps as the iterative step without prediction: selec-
tion of the multiple, subtraction, assimilation, and
rounding (sec Figure 2).

A more promising approach is to introduce an
additional approximation and compute the quotient digit
as

9i+1 = round(r(R[i]~q,))

which substracts g, instead of gX.

This eliminates the step of selecting the multiple
of the divisor and simplifies the subtraction, since qis
an integer (see Figure 3). The time of a step is now

T=max(1;,+tq+q,,t,+tc,+t,)
where ¢, now includes the subtraction of ¢; and the
rounding. This is reasonable since it is feasible to imple-
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Figure 2: Prediction based R[i] and Xq;

ment the function round(r(R[i]-g;)) in two logic levels.
We refer to this approach as scheme A.

The smallest step time is obtained when both
paths are balanced. If the path for calculating g;,, is
longer than that to compute R[i+1], it is possible to bal-
ance the two paths by including the assimilation in the
second path, as shown in Figure 4, and store R{i]
(Scheme B). In addition, to reduce the critical path, it is
possible to use faster circuts in the slice required to
compute R (even duplicating this slice to reduce the
complexity of the interconnection might be convenient).
In this case the time is

T=max(ty+ 84,8, +1,+1,+1)

As a third alternative, it is possible to decompose
the assimilation step and compute part of it in each of
the two paths. For example, if the addition is done us-
ing carry lookahead, the propagate and generate vari-
ables could be computed in the remainder path, while
the computations of the carry and sum could be done in
the quotient path (scheme C).

The actual step time depends on the radix, the
technology, and some implementation decisions. For
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comparison oses, consider the radix-4 case. The
number of bits over which the estimate of the remainder
has to be assimilated depends on the range of the
transformed divisor (value of a, sce next section), and
the choice for this is influenced by the time of transfor-
mation. A possible choice results in an assimilation over
six bits as described in detail in [ERCESS). Not: that
the rounding requires only four bits of the estimate
(three integer bits and one fraction bit), so that the

network for assimilation consists of a 4-bit CPA and a
two-level network for the computation of the carry into
the CPA (Figure 5). Since the actual times are very
technology dependent, we limit our comparison to a
description of the blocks required for the proposed ap-
proach and for the SRT radix-4 scheme as described in
[TAYLS81]. This comparison is given in Figure 5. It
suggests a significant reduction in the iteration step.

II1. Determination of o

Since this procedure of quotient digit prediction
introduces an additional approximation (using g; instead
of gX) it requires an additional restriction in the range
of X to produce the correct quotient. We now determine
this restriction so that
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Figure 4: Prediction based on Rli] end Q;

(a) Step Time
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R[i+2] = p+B

as required for the algorithm to produce the correct
quotient [ERCES3].

The basic recurrence for i+ 1 can be written

R[i+2] = T(R[l+1] - qH-lX)

Replacing R[i+1] in terms of R[i] we get
R[i+2] = r(r(R[{] — 9X) — 9i+1X)
 This can be transformed into
R[i+2] = r(rRi] = @) — gis1 + r(1-X)g; + (1-X)gi+1)

We now consider the two limiting cases, that is,
those that might produce the largest value of R[i+2].

CASEL |g| = lgis1l = 0
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Figure 5. (8) Quotient Generation in the Proposed Scheme
(b) Quotient Generation in the SRT Radix-4 Scheme

Since the bound on the remainder is
R[] = p+8
we obtain that
Rli]-q) = B
and
IrRl) — ¢) — qisal s B - p

Therefore,
R(i+2] < r[(rB—p) + rap + ap]

Consequently, to have R[i+2] < p+B we need

that
p+B=rg - rp + r(r+1)ap
From this we obtain
p+B-—rB+rp
as= r(r+1)p
That is,
o < PAED) + B(1-rF)
r(r+1)p
which results in
as 8O- _ 1, Be-D),
rp r p

This is the same value as without prediction.
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CASEIL g; = p and ¢;, = p—1.
ASinccinthiscasethepredictionisdonebyround-
ing r(R[i]—q;) we obtain
rRli]-¢g) s 12+ 8

whercbisthccn;orproduccdipthcestimatcofthe
remainder (that is R[i] < R[i] < R[i]+8).

Consequently
Rli+2]} = r(12 + 8 + rap + a(p—1))

Introducing the bound on R[i+2] we get
p+B =r(122 + 8 +rap + a(p—1))

This results in
p+B—-ri2—r8
a= rirp+p-1)
which is roughly 1/r times the value without prediction.

IV. Range Transformation of the Divisor

The previous algorithm requires the divisor X[0]
tobctransformedintoXﬁinthcrange
(1-a) < X = (1+a). Secveral alternative algorithms
for this transformation have been examined. The objec-
tive is to have a fast transformation that utilizes the
blocks required by the division step.




In [ERCES3] a transformation based on the con-
tinued product normalization algorithm [ERCE73] is
given. The implementation is complex and does not use
cffectively the division blocks. Another possibility is to
use the recurrence

X[i+1] = X[i] + 5,4, X[0]2~(+D

with
12=sX[0]<1
and
1-277 < X[p]=X < 1+277

The selection of s, is done by
1 if X [i]=0 and X;,[i]=0
siv1 = 11 if XJi]=1 and X;,[i]=1
0  otherwise

where X[i] is represented by the bit vector
Xolil.X4[i]. ...

The resulting transformation requires p steps,
where 277 1<a. As for division, the redundancy in
the representation of s can be used to utilize a carry-
save addition and limited assimilation for the sclection
of s;. Since the transformed divisor is required in as-
similated form, a carry-propagate addition is required at
the end. We explored the possibility of using the divisor
in carry-save form; however this would complicate: signi-
ficantly the remainder calculation path.

This transformation approach has the disadvan-
tage of being radix-2 and, therefore, it is relatively slow
and cannot use cffectively the radix-4 network of the
division recurrence step. Its generalization to higher ra-
dix results in a complex selection function, whose imple-
mentation would have a large delay.

A third approach for the transformation is to use
a series expansion of the reciprocal 1/X[0]. That is,
M = 1/X[0] + ¢
X = X[o]M = 1 + X[0]
The value of € has to be chosen so ihat X satis-

fies the range requirements. That is, € < a since
X[0]< 1.

We use McLaurin’s expansion of the reciprocal
of D = 2X[0], to have 1 < D = 2. Decomposing D into
two terms, such that

D =D, + 27D,
results in
1 1
R= == —
D p,+27%p,
1

Dy(1 + 2-*0231]-)

1
R————
Y1+ 27*D,R,

= Ry[1 — 27*D,R; + 27%*(DR)? - ...]

Therefore, an approximation to 1/X[0] is
R = Ry - 274D,
where R,, R?, and D, correspond to truncated versions
of Ry, R{, and D,, respectively. The number of bits re-
quired for each of these quantities, as well as the value

k are determined so that the error is bounded as indicat-
ed previously.

The implementation of this scheme requires a
network to generate R, and filz, the multiplication of ﬁlz
by D,, and the subtraction (Figure 6). The resulting
network is quite simple and fast.
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Figure 6 : Scheme for Approximation of t/X[0]




The resulting R has to be multiplied by X[0] to
determine X. This multiplication can use the carry-save
adder of the division recurrence. In order to use the
left shift capability available there, the multiplication
should be done most significant digit of R first. Usually,
this type of multiplication requires an adder of increas.
ing precision. However, in this case, the most signifi-
cant bits of X are 1.00000 or 0.111111, so that a few ex-
tra bits are sufficient to determine X. Note also that,
due to the redundant nature of the recoded R, its most
significant digits can be computed without waiting for
the carry of the subtraction to propagate. This allows
the multiplication to begin without the additional delay
of the subtraction. Implementation details are given in

[ERCESS].

V. Conclusion

A scheme for higher radix division has been
presented. It consists of a transformation of the divisor
and the dividend into a range which allows use of a
higher radix division recurrence with a simple predictive
quotient selection method. A detailed derivation of the
conditions required for the quotient digit prediction and
the comparison of several implementation alternatives
have been described. The implementation details and
the performance are discussed elsewhere [ERCESS].
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