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Abgtract

One can naively view a computer number system as a
pair (F,P) consisting of a finite set F of real
numbers and a rounding rule P. One such number
system is a hyperbolic rational number system which
has as F a finite set of rational numbers and as P
the so-called mediant rounding rule. In this paper
we demonstrate how one can simulate a hyperbolic
rational number system in any high level language
that supports floating point computation. Fronm
this simulation we infer that hyperbolic rationat
number systems form viable alternatives to
traditional binary floating point number systems,
Many properties of hyperbolic rational number
systems are derived from the relationship of their
rounding rule to the well-developed theory of best
rational approximation.

1. Introduction and Summary

One can naively view a camputer number system as a
pair (F,P) consisting of a finite set F of real
numbers called the machine representable numbers
and a rounding rule P which maps real numbers into
machine representable numbers. One of the
fundamental purposes of the rounding rule P is to
round the result of intermediate computations into
machine numbers. Thus, if x and Y represent
machine numbers, then P(x+y) would be the machine
number which represents the computed value of x+y.

For example, a binary floating point number system
has as P those numbers in the set

{+ (O.dldz...dk)zeIdl=l=0,1L<e<U}

consisting of signed normalized birary fractions of
bounded length k multiplied by bounded powers of 2
and as P that rule which chooses P(x) to be the
value obtained by suitably truncating the
normalized binary fraction representing x. Note
that in this number system some common fractions
such as 1/3, 1/5 and 1/10 are not machine numbers.
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As an alternate number system let us consider a
hyperbolic rational number system which has as P
the numbers in the set

{+tp/q 1 pg>o, ged(p,q)=1, pg < m }

consisting of signed irreducible fractions of
bounded complexity m and as P the mediant rounding
rule. Here the complexity of a fraction p/q is
defined to be the integer pg. Although the mediant
rounding rule will be defined in Section 2 we can
briefly describe the mediant rounded value P(x) of
X as the number obtained by suitably truncating the
ordinary continued fraction representing x, thus
relating the mediant rounding rule to the well
developed theory of best rational approximation.
One important property of the mediant rounding rule
is that it is biased towards simple fractions, that
is fractions with small complexity [MK80].

The main result of this paper is the demonstration
that hyperbolic rational number systems, with their
biased rounding rule, form viable alternatives to
traditional floating point number systems. To
Ssupport this statement we show how One can simulate
a hyperbolic rational number system using the host
computer's floating point number system.,
simulation each fraction P/q is represented by the
host computer's floating point approximation of p
divided by q. To study the effectiveness of
computations performed in hyperbolic rational
number systems we consider a very special problem
frequently studied in numerical linear algebra, the
inversion of a Hilbert matrix.

The computation of the inverse of a Hilbert matrix
is interesting for two reasons. The first reason
concerns the fact the inversion of a Hilbert matrix
is an inherently ill-conditioned problem. Therefore
stable algorithms for computing matrix inverses,
such as the Gaussian elimination algorithm to be
described in Section 3, will have difficulty
producing an accurate estimate of the inverse of a
Hilbert matrix. The second reason concerns the
fact that the numbers which arise during the
computation of the inverse of a Hilbert matrix can




be described using simple fractions. In Table 1 we
present formulas describing the order n Hilbert
matrix and its inverse [Ch83, Co39, ™67, X78].
The ill-conditioning of the Hilbert matrix
manifests itself in the large magnitude of some of
the entries in the inverse of the Hilbert matrix,
with the condition number of the order n Hilbert
matrix growing like exp(3.525n) [To54]. For
example the order 5 Hilbert matrix
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bas as its inverse [GK78]
25 -300 1050 -1400 630

-300 4800 -18900 26880 -12600

= 1050 -18900 79380 -117600 56700

-~1400 26880 -117600 179200 -88200
630 -12600 56700 -88200 44100 J

Since the base 10 logarithm of the condition number
estimates the number of digits of accuracy lost
during the computation of the inverse of the
Hilbert matrix we expect to lose about 1.53n digits
of accuracy when we attempt to canpute the inverse
of the order n Hilbert matrix.
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Table 1: Properties of the Order n Hilbert Matrix
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In Figure 1 we present curves describing the base
10 logarithm of the condition number of the Hilbert
matrices and the number of digits of accuracy lost
when the inverse of the Hilbert matrices are
computed using binary floating point arithmetic and
simulated hyperbolic rational arithmetic. These
computations were performed on a CDC 6600, the
floating point computations utilize 96 bit
fractions while the simulated rational computations
allocates an equivalent number of bits to the
storage of its fractions. Note that for Hilbert
matrices of orders less than 20 the floating point
computation shows a steady loss of accuracy as
predicted by the graph of the base 10 logarithm of
the condition number while the comparable similated
rational arithmetic computation is exact! Of course
the fact that rational arithmetic computation can
be exact is a property of this problem. The
significant observation is that in our floating
woint simulation of hyperbolic rational arithmetic
simple rationals must be approximated by floating
point numbers inevitably introducing rounding
error. The cancellation of these errors in
subsequent computations is clearly a property of
the bias of the rounding rule towards simple
fractions. This behavior on problems with a
preference for simple rational results leads to our
characterization of the rounding derived from best
rational approximation as an "intelligent"
rounding. With this intelligent rounding we can
compute inverses of Hilbert matrices eight orders
higher with the same underlying 96 bit floating
point representation on the CDC 6600,

Of course one might feel that for problems in which
simple fractions do not play an important role that
computations performed in a hyperbolic rational
number system might be significantly less accurate
than when performed in a floating point number
system. To test this hypothesis we considered the
inversion of scaled Hilbert matrices, Hilbert
matrices which were scaled on the left and right by
the same diagonal matrix. This diagonal scaling
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had the property that the entries of the scaled
Hilbert matrix were no longer simple fractions, nor
were any of the intermediate results that occured
during the computation of the inverse of the scaled
Hilbert matrix. 1In Figure 2 we present curves
describing the number of digits of accuracy lost
when the inverses of the scaled Hilbert matrices
are camputed using binary floating point arithmetic
and simulated hyperbolic rational arithmetic of
comparable precision. Note that both computations
show the usual steady loss of accuracy as predicted
by the base 10 logarithm of the condition number,
with the floating point computation showing a
slightly greater accuracy than enjoyed by the
simulated rational computation.

From these comparisons we feel that rational number
Systems are viable alternatives to the traditional
floating point number systems currently used by
many computers. For computations in which simple
fractions play an important role rational number
systems can produce potentially exact results,
while for computations in which simple fractions
play no important role rational number systems can
enjoy an accuracy comparable to that enjoyed by
floating point number systems.,

Let us now turn to a more precise description of
hyperbolic rational number systems and of the
computational experiments performed. In Section 2
we present some properties of hyperbolic rational
number systems, in particular relating these
properties to the well developed theory of best
rational approximation. In Section 3 we describe
the computation of the inverse of a Hilbert matrix
and its scaled variant. In Section 4 we describe
how we simulate computations in a hyperbolic
rational number system using computations performed
in the host computer's floating point number
system,
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2, Hyperbolic Rational Number Systems

A hyperbolic rational number system has as its
machine representable numbers signed versions of
the numbers in a hyperbolic chain of rational
numbers and as its rounding rule the mediant
rounding rule [MK80]. In this section we will
describe both the hyperbolic chain of rational
numbers and the mediant rounding rule. In the
paragraphs that follow the letters p and q, as well
as their derivatives, will denote nonnegative
integers.

Recall that a rational number is merely a number
that can be represented as a ratio of two integers.
A fraction is just a pair of nonnegative integers
(pr9) whose associated value is the rational number
p/qQ. Without further comment we will represent the
fraction (p,q) as the rational number p/q. Two
important concepts related to a single fraction are
the concepts of complexity and irreducibility. we
say that the complexity of a fraction P/d is the
integer pq. Thus we will talk about those fractions
p/q with pg large as complex fractions and those
fractions p/q with Pq small as simple fractions.
We also say that a fraction P/q is irreducible if
the greatest common divisor of p and d, written
ged(p,q), is unity. Two important concepts related
to pairs of fractions are the concepts of mediant
and adjacency. If pP/q and p'/q* are two fractions
then their mediant, written med(p/q,p'/q'), is
defined to be the fraction (p+p')/(a3+q") . We also
say that two fractions p/q and p'/q' are adjacent
if the absolute value of the difference p'g-pq' is
unity. Since the Properties of the adjacent
fractions play such an important role in the theory
of best rational approximation we list some of
these properties in the following:

Observation 1: Let p/q9 and p'/q' be adjacent

fractions with p/q < P'/q'. Then

a) p/q and p'/q' are irreducible,

b) p/q and p'/q' have the same complexity only when
p/g=0/1 and p'/q'=1/0,

c) p'q = pg'+l = 1/2 + sqrt(1/4 + pgp'q'),

d) med(p/q,p'/q') is adjacent to p/q and p'/q*,

e) med(p/q,p'/q") lies strictly between p/q and
p'/q',

£) med(p/q,p'/q")

9) med(p/q,p'/q")
or p'/q',

h) med(p/q,p'/q') is the unique fraction lying
strictly between p/q and P'/q' of least
complexity.

is irreducible,
is more complex than either p/q

The proofs of many of these observations can be
found in [MK80, HW60]. The rational number system
we use has as its machine numbers signed versions
of the fractions in the set

{p4alpg20, ged(p,q) =1, Pg <m}.




Note that if we represent the fraction p/q by the
point (p,q) then we find that the fractions in this
set all lie under the graph of the hyperbola pg=m.
Let us therefore agree to call the ordered set
formed by listing the fractions in this set in
increasing numeric order the hyperbolic chain of
fractions H(m). From elementary number theory we
find that the asymptotic cardinality of H(m), for
large m, is given by

6m 1n(m) /Tr2 .

Note that no more than 2+log (m) bits are needed to
store the numerator and denomlnator of any fraction
in H{m).

Table 2, whose rows list the members of H(m) for
m<l0, was constructed by using a slight
generalization of a process attributed o Farey
[NZ66] . Start in row 0 by placing in order the
fractions zerc 0/1 and infinity 1/0. 'Then for each
k>0 construct row k of this table by copying down
in order the fractions in the row k-1, but
inserting between two consecutive fractions of row
k-1 their mediant if the complexity of that mediant
is equal to k. A simple proof by induction on the
rows of this table shows that any two consecutive
fractions in row k of this table are adjacent and
their mediant has complexity greater than k. We
therefore conclude, using observation lh, that row
k of this table consists of the members of H(k),
listed in their proper order. This leads us to the
following inductively established:
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0 1 1
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1 1 0

1 1 2 1
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2 1 1 0

0 11 1 1
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1 32 1 1 0

0 11 1 2 4 1
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1 4 3 2 1 1 0
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Table 2: Members of the Hyperbolic Chains
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Observation 2: Let p/q and p'/q' be consecutive
fractions in H(m) for some m>0.

a) p/q and p'/q' are adjacent,

b) p/q and p'/q* have distinct complexities,

c) med(p/q,p'/q') has complexity greater than m,

d) med(p/q,p'/q') has complexity less than 4m-1.

Recall that our rational number system has as its
rounding rule P the so-called mediant rounding
rule. To describe this rule and its connection with
the theory of best rational approximation we must
discuss some of the results from the theory of
ordinary continued fractions [HW60, Kh63, MKS80,
NZ66, Ri8l].

By repeatedly extracting the integer portion of a
number and taking the reciprocal of the fractional
remainder one is led quite naturally to the
representation

X = [ao,al,az,...] =3, + )

a2+ vee

of a nonnegative number x as an ordinary contmugii
fraction. Here the number a, is called the i
partial quotient of x and représents a nonnegative
integer when i=0 or a positive integer when i>0.
The truncated continued fractions defined by

a1+

1
P/ = [8grayse.erayl = a5 +

ces T ==

3
form important fractional approximations of x
called the convergents of x. From the theory of

ordinary continued fractions we obtain the
following:

Observation 3: The convergents of x admit the

following properties.

a) q, = (a + Y/ (a, +q ) for k>0 if
gﬁé Eefmesplf) = % 2 0/1 g.né ¥ q_,=1/0,

b) Consecutive convergents of x are aéjacent
fractlons which lie on opposite sides of x,

c) /gl < |x-p q 1| for k0,

d) If p/q satlsfles ttlae inequality
Ix-p/ql < Ix-p/q | for some k>0, then
B9, < P3.

Note that observation 3d justifies our description
of the convergents of x as best rational
approximations of x.




The recursion relation described in observation 3a
leads to the following algorithmically described
rounding rule.

Rational Rounding Algorithm
Input: A nonnegative real number x to be rounded
and an integer m.
Output: RATRND, the best rational approximation to
X with complexity not exceeding m.
1. Value=x, Pold=0, Qold=1, Pnow=1, Onow=0
2. Whole=IntegerPortion (Value)
Pnew=Whole*Pnow+Pold, Onew=Whole*Qnow+Qold
Value=Value~Whole
3. If Pnew*Qnew < m then
Pold=Pnow, Qold=Onow, Pnow=Pnew, Onow=Qnew
If Value # 0 then
Value = 1/Value, GoTo 2.
4. RATRND = Pnow/Qnow

We are now in a position to describe the rounding
rule P used in our rational number system. Given a
nonnegative real number x we define P(x) to be the
value of RATRND as determined by the above rational
rounding algorithm, For negative x we then use the
rule P(x) = ~-P(-x). Some of the more important
properties of this rounding rule are summarized in
the following [MK80]:

Observation 4. The rational rounding rule P admits
the following properties.

a) If x <y then P(x) < P(y),

b) P(-x) = ~P(x),

c) If x is a member of H(m) then P(x) = x.

If p/q and p'/q' are consecutive members of H(m)
then it follows from observations 4a,c that there
is a real number y such that P(x)=p/q when p/q<x<y
and P(x)=p'/q' when y<x<p'/q'. The theory of simple
continued fractions tells us that this *splitting
point’ of the rounding rule P is always the mediant
of p/q and p'/q'. For this reason we term the
rounding rule P the medjant rounding rule. More
precisely we obtain the following [MK8O]:

Observation 5: Let x lie between the consecutive
members p/q and p'/q' of H(m) where m>0. If p"/q"
is the least complex of p/q and P'/q' then we have

p/q if x < med(p/q,p'/q")
P(x) = { p'/q' if x > med(p/a,p'/q")
P"/q" if x = med(p/q,p'/q")

When p/q is a member of H(m) the representation of
P/q as a continued fraction allows us to determine
the neighbors of p/q in H(m). Let p/q admit the
following representation

p/q = [aorallcnrak]
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as a continued fraction with a 2 2, Then
(p'+a'p)/(q*+a'q) and (p*+a"p)/(q"+a"q) are the

neighbors of p/q in H(m) where

p'/q' = i[ao,al,...,ak_l] ¢ and

p/q" = |a0 lall coe ,ak—ll
with a'and a” the largest nonnegative integers for
which

(p'+a'p) (q'+a'q) < m, and
(p™+a"p) (q"+a"g) < m.

When numerical calculations are performed in this
rational number system the gap between consecutive
members of H{m) affects the propagation of roundoff
errors. To describe the size of these gaps we
proceed as follows. Let p'/q' be a finite nonzero
fraction in E(m). Then p'/q' is the middle
fraction in a sequence p/q, p'/9', p"/q" of three
consecutive fractions in H(m) and those real
numbers which round to p'/q' lie in the interval
between med(p/q,p'/q") and med(p'/q',p"/q"). The
relative size of this gap admits the bounds:

1 med(p'/q',p"/q") - med(p/q,p'/q") 2

¢ <—

b p'/q' b

—

were b = sqrt(mp’q'). These bounds imply that the
relative size of the gap associated with a given
fraction in H(m) is roughly proportional to the
reciprocal of the square root of the complexity of
that fraction. For this reason we say the mediant
rounding rule is biased towards simple fractions,
i.e. fractions with small complexity.

3. Hilbert Matrix Inversion
Hilbert matrices arise quite naturally when one
considers the least squares approximation of
continuous functions by polynomials [FM67]. For

example, let us suppose that we are asked to find
the coefficients cl,

P(x) = ¢ + Cyx + c3x2+ es + cnxn-l
of order n which minimizes the error

1

z=f | £x) - p(x) 12 &
0

in the approximation of a continuous function f by

P. Since E is a differentiable function of the !

coefficients of p we

find that a necessary

Cor eeer <, of the polynomial

|

condition that E be minimized is that the partial

derivatives of E with respect to c. be zero for
i=1,2,...,n. These n conditions can be succinctly
written as the matrix equation




Hc=Db

where
1
H={-——1
i+j-1

is the order n Hilbert matrix,

¢ = {Cq,Cyr...4C )", and
17-2 n .
b = (bllbzl--«,bn)'y with
b, = f A le(x) ax ,
i
0
where ' denotes transpose. Since
1 2
c'He = g Ip(x) 1© ax
0

we infer that the order n Hilbert matrix is a
symmetric positive definite, and therefore
nonsingular, matrix.

Let A be a matrix of order n. In numerical linear
algebra the following three step process is
frequently recommended as an algorithm to solve the
linear system Ax=b [FM67].

Solution of Ax=b.

1. Compute the triangular factorization A=LU of A
using the Gaussian elimination algorithm (nc
pivoting.) Here L is a unit lower triangular
matrix and U is an upper triangular matrix.

2, Solve the lower triangular system Ly=b for y
using the forward elimination algorithm.

3. Solve the upper triangular system Ux=y for x
using the backward substitution algorithm.

Wilkinson has shown that when the effect of
roundoff error is considered the above algorithm
produces not the exact solution x of Ax=b but
rather the exact solution x* of the linear system
(A-S)x"=b, the matrix S accounting for the effect
of the roundoff error that accumulates during the
solution algorithm [Wi65]. When the matrix A is a
symmetric positive definite matrix, e.g. a Hilbert
matrix, it has been shown that this algorithm is
stable in the sense that the entries of S have a
size that is comparable to the size of the error
which is incurred when the entries of A and b are
rounded to machine numbers, To assess how accurate
an approximation x"™ is of x let us follow Turing's
analysis in which we suppose that S is a matrix of
random numbers, the numbers being uncorrelated but
having the same_lvariance‘. To first order in S we
find that x"=x+A "Sx, and so it follows that

RMS error in x 1 _, EMs size of S
- N(A)N(A

RMS size of x n

1

)

RMS size of A

where RMS denotes
example,

root mean square and, for

N(3)
RMS size of x
RMS size of S

sqrt (trace(A'A))/n ,
sqrt (x'x/n), and
sqrt(trace (E[S'S]))/n

where E[.] denotes the expected value function. If

M(a) = max{ Iai'jl }
i3
then

1 4 4
- N(A)R(A ™) < nMA) MA ™) .
n

Turing sug_gfsted that the easily computed number
nM(A)M(A ~) be used as a measure of the
conditioning of the problem of solving Ax=b [Tu48].
We will call this number Turing's maximum element
condition number of A, or simply the condition
number of A. Note that this condition number is a
statistical quantity which estimates how an initial
error in A is amplified into a final error in the
computed solution of Ax=b [FM67, Wi65]. Therefore,
the base 10 logarithm of the condition number can
be viewed as a statistical estimate of the number
of digits of accuracy that could be lost during the
computation of the solution of Ax=b. Note that we
use the maximum element condition number rather
than other condition numbers since rigorous
estimates of the maximum element condition number
of Hilbert matrices exist [To54].

When the identity

is viewed as a collection of n linear systems, one
linear system for each column of the order n
identity matrix I, one arrives at the following
frequently recommended algorithm for computing the
inverse of A [FM67].

Inversion Procedure

1. Compute the triangular factorization A=ILU of A
using the Gaussian elimination algorithm (no
pivoting.)

2. Solve, on_? column by column basis, the linear
system LL “=I for the inverse of L using the
forward elimination algorithm,

3. Ssolve, on_ cgiumn by column basis, the linear
system UA “=L ~ for the inverse of A using
the backward substitution algorithm,




When A is a symmetric positive definite matrix,
€.g. a Hilbert matrix, we know from our previous
omments that this is a stable algorithm for
—..amputing the inverse of A [Wi65]). Therefore the
only way this algorithm can fail to compute an
accurate estimate of the inverse of A is for A to
be ill-conditioned, i.e. for the ocondition number
of A to be large.

Several comments must be made before we describe
the results of our computations on inverting
Hilbert or scaled Hilbert matrices. The first
comment concerns how these computations were
performed and the second comment concerns the
errors which are reported. All computations were
performed on a CDC 6600 using the University of
Minnesota's FORTRAN 77 compiler. This version of
the FORTRAN language supports both single and
double precision binary floating point computations
in which 48 and 96 bits respectively are allocated
to the storage of the normalized binary fraction.
To make computations in the hyperbolic rational
number system of comparable precision we chose to
limit the cogg)lexi% of our fractions to be less
than either 2°° or 2°°, From the statements made in
the previous section we recognize that this choice
of complexities means that approximately 48 or 96
bits are needed to store both the numerators and
denominators of the fractions in the rational
number system and that the relative size of the
smallest gaps in both number systems are of
~omparable size. During the computation of the

7erse of a Hilbert or scaled Hilbert matrix A we
“monitored, using the formulas in Table 1, the
maximum relative error of the onzero_fntries in
each of the matrices L, U, L, and A~ and found
that A~ was always the matrix which had the entry
with largest relative error. Therefore, in the
figures described below the error we are reporting
is always the value of

1

(exact A7) ; - (computed A-l)i’j

Rerr = max =y
i, 3 (exact A )i,j

From Rerr we computed the number of digits of
accuracy }gst by compldtsing the base 10 logarithm of
either 2°°Rerr or 27°Rerr depending on which
precision was used during the computations.

As stated in the introduction the inversion of a
Hilbert matrix is interesting for two reasons. The
first reason concerns the fact that the inversion
of a Hilbert matrix is an inherently
ill-conditioned problem and the second reason
concerns the fact that the numbers which arise
during the computation of the inverse of a Hilbert
matrix can be described using only simple
fractions. In Figure 3 we illustrzte these facts by
plotting two curves. The first curve is a plot of
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the base 10 logarithm of the Turing condition
humber of the Hilbert matrices, note that this
curve ascends almost linearly with a slope of about
1.53 [FM67, GK78, To54]. The second curve is a
plot of the base 10 logarithm of the maximum
complexity of the fractions which arise during the
computation of the Hilbert matrices, this maximum
complexity was computed using a FORTRAN package
which allows one to perform exact rational
arithmetic. It is somewhat surprising to observe
the rather close correlation between the
statistical condition number and the maximum
complexity involved in the computations.

Let us now consider the computation of the inverses
of Hilbert matrices. 1In Figure 4 we display the
growth of the error when the inverses of the
Hilbert matrices are computed in single and double
Precision in both the binary floating point and
simulated hyperbolic rational number systems.
We emphasize that the results of the rational
computation in Figure 4 are derived from a
simulation using floating point approximations and
floating point arithmetic ag a host, and are not
the straightforward exact results of exact rational
computation. The methodology of the simulation is
described in Section 4.

Several conclusions can be drawn from this figure.
The first conclusion is that the base 10 logarithm
of the condition number is a reasonable estimate of
the number of digits of accuracy that is lost in
the floating point computation. The second
conclusion is that the number of digits of accuracy
that is lost in the floating point computation
Seems not to depend significantly on the underlying
precision of the floating point number system used
in the computations. Based on this conclusion our
later computations involving the inverse of scaled
Hilbert matrices will be done using only double
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precision arithmetic. The third conclusion is that
the plot of the maximm complexity of the fractions
which arise during the computation of the inverses
of the Hilbert matrices allows one to accurately
estimate at what order Hilbert matrix the
computations in the rational number system fail to
be exact. It is interesting to note that when the
computations in the rational number system are
first inexact the number of digits of accuracy lost
appears to be approximately one-half of the maximum
number of digits of accuracy possible. This leads
us to believe that the first number that is
inaccurately computed in the rational number system
is a number which is rounded to a simple fraction
since the relative size of the gap which rounds to
a simple fraction is proportional to the reciprocal
of the square root of maximum complexity allowed in
the rational number system. The fourth conclusion
is that when the numbers which arise during a
computation can be described by simple fractions
the rational number system is likely to produce
more accurate answers than the usual floating point
number system.

For problems in which simple fractions do not play
an important role one might believe that
computations performed in a hyperbolic rational
number system might be significantly less accurate
than when performed in a floating point number
system. To test this hypothesis we considered the
computation of inverses of scaled versions of
Hilbert matrices, scaled versions of the form DHD
where D is a diagonal matrix and H is a Hilbert
matrix. To construct a typical diagonal matrix D
we first chose a 108 binary digit random number
scaled tghlie in the interval (0,1) t?xnd then took
as the i~ diagonal entry of D the i~ root of that
random number. Note that if L and U are the
trigfgular factors of the Hilbert matrix H then
DLD © and DUD are the corresponding triangular
factors of the scaled Hilbert matrix DHD. In
Figures 2 and 5 we display the number of digits of
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accuracy lost in the computation of the inverses of
the scaled Hilbert matrices when the entries of the
scaled Hilbert matrix were initially rounded so as
to be machine numbers in the floating point and
rational number systems respectively. Note that for
each order matrix the number of digits of accuracy
lost represents the worst case loss in accuracy
over a sample of 25 different scaled Hilbert
matrices. From these figures we conclude that even
for problems in which simple fractions do not play
an important role a comparable loss in accuracy
occurs in both the floating point and rational
number systems, with the computations in the
floating point number system enjoying a slightly
greater accuracy.

4. Hyperbolic Rational Number System Simulation

In our simulation of a hyperbolic rational number
system we choose to represent the rational number
p/q as the floating point number obtained by
dividing p by q, and we choose to implement the
rounding rule by writing a function subprogram R(x)
which accepts as input a floating point number x
and returns as output the appropriately signed
value of RATRND as determined by the floating point
implementation of the rational rounding algorithm
described in Section 2. Thus if the floating point
numbers x and x' represent the rational numbers P/q
and p'/q' respectively, then we will use the
floating point value of R(x+x') as the value of the
rational number P(p/q+p'/q').

In Table 3 we illustrate how one can use this
function subprogram R(.) to simulate camputations
in the rational number system by listing the
algorithm used to solve the linear system Ax=b as
described in Section 3. Note that every floating
point number is rounded by the function subprogram
R(.) before it is used in the next computation., We
emphasize that the floating point arithmetic of the
host computer is used to simulate the computations




performed in the hyperbolic rational number system,
During a sequence of operations the result of one
operation is rounded using R(.) before it is used
in the next floating point operation. Thus if some
rounding errors have accumulated, but the exact
result would have been some simple rational number,
then the bias of mediant rounding towards simple
rational numbers can allow the computation to
produce the correct simple rational number as its
result [MK79].

We would like to stress that our simulation of the
hyperbolic number system is used only to determine
the potential advantages and disadvantages of using
this form of rational arithmetic. We do not
suggest that our simulation is efficient, estimates
of the average running time of R(.) can be obtained
from Knuth's [Kn69] analysis of Euclid's algorithm,
An efficient arithmetic unit to realize this
rational arithmetic has been described in [KM83].

For further details on the properties of several
rational number systems we refer the reader to
[MK80, MK83, PVB4].

Input: A ... the order n coefficient matrix, and
b ... the order n inhomogenous vector.
Output: b ... the order n solution vector x of Ax = D

Comment: The values of A and b specified on irput are destroyed
during the calculation.
Algorithm:
1. Determine the triangular factorization A = LU of A using the
Gaussian elimination algorithm (no pivoting).
1.1 For k = 1 upto n-1 do
1.2 For i = k upto n do
1.3 a{i,k) = - R(a(1,k)/a(k,k))
1.4 For j = k+1 upto n do
1.5 a(i,) = Rali,3)+R(a(1,k)*a(k,i)))
1.6 Next j
1.7 Next i
.8 Next k
2. Solve the lower triangular system Ly = b using the forward
elimination algorithm.

2.1 For § = 2 upto n do

2.2 Sum = 0

2.3 For § = 1 upto i-1 do

2.4 Sum = R{Sum+R(a(i,j)*b(j)))
2.5 Next j

2.6 b(i) = R(b{i)-Sum)

2.7 Next i

3. Solve the upper triangular system Ux = y using the backward
elimination algorithm.
3.1 b(n) = R(b{n)/a(n,n))
3.2 For i = n-1 downto 1 .do

3.3 Sum = 0

3.4 For j = 1+ upto n do

3.5 Sum = R(Sum+R(a(i.j)*b(J)))
3.6 Next J

3.7 b(4) = R(R(b(i)-Sum)/a(i,i))
3.8 Next i

Table 3: Algorithm for Solving Ax = b Using Ratfonal Arithmetic
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