ON THE STRUCTURE OF PARALLELISM IN
A HIGHLY CONCURRENT PDE SOLVER

Dennis Gannon

Department of Computer Sciences
Purdue University

ABSTRACT

Abstract - This paper studies a variation of
a parallel multigrid PDE solver originally due to
John Van Rosendale. This paper gives a detailed
analysis of the method and discusses the large
scale parallel structure. It will show that the
method can be viewed as a data driven “large
grain” systolic structure. At a lower level the
algorithm is seen to be built from grid operators
that are, in turn, defined by expressions involving
vector functions.

1. INTRODUCTION

Multigrid methods (studied by [Brads(], [Nico77],

~~-1VRos80] and many others) have been shown to be an

effective means of solving a wide family of elliptic boun-
dary value problems. In this paper we consider the prob-
lem of reformulating a simple, but standard multigrid
method with the objective of exposing as much inherent
parallelism in the underlying concepts as possible. As a
consequence we derive a variation on a method first con-
sidered by Van Rosendale [GaVr82] which has several
interesting properties. In particular, when the method is
viewed as a serial algorithm it is inferior to the standard
methods but when 2n? processors are available the method
can be shown to reduce the error to below that of trunca-
tion in time O(log (n)(loglog (n) + 1)) time as compaired to
0(log*(n)) for other schemes. While this result is of some
theoretical interest, the most noteworthy feature of the
algorithm is the structure of the parallelism.

Concurrency in the computation can be seen at three
distinct levels. At the highest level the algorithm takes the
form of a linear, data driven systolic array not unlike those
studied by [Kung80] and others. The primary difference is
that the basic item of data is a large array of real numbe;s.
Such computations have often been called “large grain” or
“macro” dataflow models. The intermediate levels of
parallelism are associated with grid operations and the
lowest level is in terms of vector expressions,

In .Section 2 of this paper we construct the algorithm
by starting with an analysis of recurrences in the “v” cycle

CH2146-9/85/0000/0252$01.00 © 1985 IEEE

252

multigrid method. Section 3 studies the numerical prperties
of the method and proves a modest convergence result.
Section 4 concludes with a discussion of the structure of
the parallelism and indicates a model architecture for this

method.

2. MULTIGRID ITERATIONS

Iterative methods for solving elliptic partial differen-
tial equations are based on using knowledge of the spec-
trum of an elliptic operator A to selectively reduce com-
ponents of the error of an approximation to the true solu-
tion to the equation

Au = f.

Let A be defined on a two dimensional domain D and
let My k =1..log(n) be a sequence of uniform 2* by 2
discretizations of D. Let f, be an associated family of
approximation of the function f . Using either finite ele-
ment of finite difference methods we can derive an associ-
ated family of approximations 4, to A. Let proj() be the
mapping from H (M,) - H o(M,_,) which, for finite differ-
ence operators is defined by the orthogonal projection (least
squares approximation), and for finite element formulations
is defined by the adjoint of the subspace inclusion

inj tH,(My_;) - Ho(M,).

The approximations A, are related to each other by
the formula

ProjAginj = A, 4,

as illustrated in Figure 2.1. Using either finite element or
finite difference methods, an approximation to u can be
derived so that there exists a constant C such that if u is
defined by

Ay = £,
then

I - wello = €72 [u]

The most trivial of all iterative schemes to approximate uy

is the Jacobi method which generates a sequence of
u,,(’)s =>1,2,... defined by the

where ©{®) is an initial “guess” and z, is the largest
eigenvalue of the operator 4;. The computation of the
s—fold iteration from x(°) defines an operator Rel,*) such

that

uk(s) = uk(o) + f <€lk(s)(f'k - Akuk)'

The primary measure of performance of such an itera-
tion is the rate at which the residual vector,
) =f, - Ay can be reduced to zero. It is a simple

task to show that
Rel®) = ATMI - (I - 1/2A)%),

and that) satisfies &) = (I — 1/z,4, yrio
Consequently, if the initial guess %,°) is chosen so that

©) contains no eigenvector component corresponding to

Tk
an eigenvalue less than, say, 0.25z,, then the norm of the
1 = (0.75)‘||uk(0)||. In

error at iteration s satisfies | |u{)]
other words, such a well chosen initial guess will permit the
Jacobi iteration to converge to the solution at a rate that is
independent of k. The key idea behind the multigrid
method is to use the fact that A, ; “nearly” approximates
the first quarter of the spectrum of A,. Therefore, if we
set 1) equal to the interpolant of u;_y, the solution of
Ap_1#4-1 = fr-1, Into M, we have an initial guess that
satisfies our requirements. Furthmore, we have reduced
the problem to one that is on a grid of much smaller size.

A crude, but simple, variation on the standard “V”

cycle formulation of this algorithm can be stated as follows:

253

approximations
recurrence U=0; up:=0; u, :=0; p, :=f;
- 1
1) = D + ;(fn: — Agla),

JSsSSISSSES w) A4

i e = M - - M
AR e 4
A],.0 l .
SRS | a0 | pred O

P N A T 3 M

i e o 3

A A N | _
(7] ;/ I] L} I Ini () I'Pro; O

¢ T 1 A

I oM, — A2y
/ 7 [3 2 2
; ! f %

T T Iaj() Proj ()

J'! { I| Al
;" } 5 M i - + M]

Figure 2.1: Subgrid Relationships
repeat
for k ;= m downto 1 do

Pr-1:= proj(p;) ;
for k :=1tom do
Uy 1= inj (ug_1) + Rely(py — Apinj (u,_y)) ;
=U +u, ;
=f - AmU s

U
Pm

until ||p,|| < tolerance ;

5
where Relp = Rely® for some predefined constant s,. The
outer iteration repeats the inner approximation sequence
until an acceptable tolerance has been achieved. In gen-
eral, we will not use an explicit reference to the inj()
operator, and the second inner iteration will be written as

fork :=1tom do
Up = upy t Rely(py — Apug_y).

@1

The body of code inside the outer iteration improves
the approximation U to the solution in grid M,, at each
pass. If we “unroll the loop” we see a data flow diagram

illustrated in Figure 2.2.
Because of the counterposed order of the for loops it

is impossible to execute this sequence in parallel in less
than O(m) = O(log (n)) time steps. To carry out the compu-
tation in a faster parallel time one must break this “V”
cycle. Unfortunately simple reorderings of the code will
not break this chain of dependences, and we must look for
a fundamental reformulation of the algorithm. To do so

 —_—

f*ﬁmU
i

[prof f"" P
N

f orof l""' P

S m-1
N

(oros J=
<

.\—

"y

Figure 22: “V” Cycle Data Flow

we will rewrite the forward recurrence (2.1) as an iteration
of backward recurrences involving a family of differences.
Let 8uy =uy —wp g, vy =py —pyg, and dy = A (Su).
From (2.1) we have

Suy = Rely(py — App_y)
= Rely(p — Px_1 + Pr_1 — Aviyyiy)
= Rely (v + pig — Apiy_y)

= Rely(vi + proy — Mgt + (Aey - Ay).

Defining the residual vector r, = Pir — Axly, we have
the pair of recurrences

Suk = Relk(v,‘ + Ty + (Ak—l - ‘Ak)uk_i) (2.2)

i = 5§ _o(Bu,) (23)

In a similar manner we can show that the resicuzl
vector satisfies the recurrence:

ry = - ARel)i + (Ago — Ay +1iq) (24)

To compute the vaue of u, using these relations we
can use the code segment shown below

for ¥ = 0 to m do begin (initialize)
8w, =d, =0; vy =p, ~pr1 ;
end;
for j =1 to m do begin
Up = Uy + Duy, ;
for k = m downto 1 do begin
Buy := Rely(vy + dy_y — Ay (Buy_y) ;
di™ = A (Biy) ;
Vi1 = Vi tdpo - A (B) - df
end ;
end ;

254

.—-—.ﬂ‘ .
e o B) .

Uy

S freD
-+ p—ﬂ! by

a1

74!..___

Uk-1

where the superscript new is used only to indicate where
old values are overwritten.

To see that this iteration computes the same value of
U, as (2.1) define 8u;(j) to be the value for variable 3u,
computed at outer iteration j. Assume inductively that 1
2/200u1()) = w_q and TrJ4_1G)) = vey + rey. By -
a sequence of variable substitutions one sees that]

vi™ = (I - ARel)(vy + dy_q - A (B _y)).
If we then sum the values of v, (j) we have

2jk=0(vk(j)) =V + (I - AkRezk)(z‘:’t=lvk-1(j"1)
+ R 1@ U -1) - Ay (3w _2(G-1))

=vi (- ARel)(viq + fro + (Agoa - Ay iy _y)

=V .

The sum of the values |

3E 081, () = Reiy (Sfgvy () + =
2 o(de () — Ap(Brgy 1 (7))
=Rel(vp +ri + (A - A y) = ;.

This decomposition of the residual and solution vector
into a set of “differences” motivates the following algo-
rithm:

Pm=fm; fork =0tom-1dop, :==0; i
U:=0; fork =0tomdod; :==u :=w, :=0;]

Repeat 1

for k = m downto 1 do begin
Pio = Pt T proj () ;
vi = p —proj (i) ;
end

Wy ™ iy

For k = m downto 1 do begin
u,:"”' = wy + Ri.1 + Relk(vk + dk—l -Akuk_l)

’
dg™ = Apwy ;
e = v A+ Awy
end ;
until ||f — Antm|| < tolerance ;

To see that this is, in fact, a consistent algorithm, we

proceed as follows. An examination of the first loop
reveals that we have the invariant

Zkvk == kak,
and for k =m,

new

Pm
Summing from 1 to m

+ dr’r:m =Vm + dm—l + dm-

o™ + Zpdg™ = Ty + Lidy.

Combining this with the first invariant and the initial condi-
tions we have

P + Lpdg™ = Im-

At the end of each outer iteration the “current”
approximate solution is given by Z,/*". It is not hard to
show that, at each stage, the residual error is dominated
according to the relation

W m = AnGru) || < [1Zape]] + 1|24y - Ape |-

In Section 3 the term on the right is shown to be
reduced at each outer iteration. In practice we never actu-
ally form the sum 3,4/, but rather, we wait while 1,
k < m near zero and the residual error f, — A,u, on the
finest grid is within acceptable limits.

To see where the parallelism in the new algorithm is
we consider the large scale flow structure. Rewriting the
algorithm in terms of the two multivalued functions

function P (f , pin : array|[1 .. 2%, 1 ..2*] of real)
returns (v : array[l ..2%, 1 ..2*] of real,
pout :array[l..2%1 1. 2571 of real);
begin
pout = proj(f + pin);
v :=f + pin — inj (pout) ;
end ;

255

function R (vin : array[1 .. 2%, 1. .2*%] of real ;

uin din : array{1 .. 2%71, 1. . 2571] of real)

returns (p, uout , dout :
array[l .. 2%, 1..2¥] of real) ;

begin

uout := inj (uin) +

Rel (vin + din — A(inj (uin))) ;
dout = A(uout) ;
p =vin +din - dowt ;

end ;

The new algorithm takes the form

Ppi=fm; fork =0tom-1dop, :=0;
U:=0; fork =0tomdod, =u =w, =0;

Repeat
for k = m downto 1 do vy, pp_1 == PV, Pi) ;
For k = m downto 1 do
P> U dk = R(vk’ W1 dk—l) H
Wy =wy tu,
until ||f , — Apwn||< tolerance ;

The data flow graph for this computation is shown in Fig-
ure 2.3 below.

To see the additional parallelism generated in this
computation that is not part of the V cycle algorithm
notice that as a data flow structure, the computation can
move in a wave front from the upper left corner, sweeping
to the right. Another formulation is to restructure the
algorithm so that it is represented as a
Macro, Data Driven Systolic Array illustrated in Figure 2.4
below.

In this case we “unroll” the loops and view each
instance of a function invocation at a given level as an
instance of a set of messages to a process which executes
that function when all data arguments are available. Fig-
ure 2.4 can be viewed as a folding of the dataflow graph in
Figure 23 (actually a quotient structure).

The node denoted with X is used to accumulate the
partial results after each invocation at the top level. All
synchronization is based on inherent dataflow synchroniza-
tion inherited from the diagram in Figure 2.3. In Section 4
we considerthe lower levels of parallelism that can be
obtained by exploiting the structure within each of the
processes invocations.

3. NUMERICAL ANALYSIS

The algorithm constructed above has several interest-
ing numerical properties that will be described in this sec-
tion. Of particular concern is, of course, the rate at which
the algorithm converges to the solution, or, at least, the
rate at which the residual error is reduced to zero. In
order to prove anything about the algorithm we must make
certain assumptions about the structure of the family of
approximating operators:

@ M ~R* k= 0..m = log(n)).

In particular, we will need to make two assuniptions
about how well 4, approximates Ag+1- These assumptions
take the form:

rectangles. In this paper we shall not consider the problem
of justifying these two properties for more complex (and
interesting) grid structures such as those involving local
refinement or re-entrant corners.

The basic iteration step in the algorithm takes the
form shown in Figure 3.1 below. The computations can be
summarized as follws: Rel, is the approximate inverse to

Figure 2.3: Macro Data Flow Graph

m (=)
l | [— o dm
)__L_, . | P
Umlh{m}lﬁm
profip y ——3] FI— -1 dm-l
" s Ym-1 J_L“]\; s
(P =D o e
proj{p T Yo dm-z

m-l) Zv g —
L‘(B)2—2'(R])—J P2
* e h:— T:——

Praf(p)y —=—==3 24
2 r—i—\ "jl /'L'l—fU:: a 1 dl
Lo Gl s

Figure 2.4: Macro Data Driven Systolic Array

Property P1: Let v be in M,. There exists ¢ < < 1
such that:

@ eq - AL || = c“Akw”.

Property P2: Let v be in M, _;. In this case:
(@41 - A || = 1/4]] (A, - - e-0v]|

Property P2 states that most of the error in approxi-
mating 4, ,y by A, _; for vectors in M, _,; is accounted for by
the failure of 4;_; to approximate A,. It is tedious but not
difficult to verify these claims for simple uniform grids on

256

Ay, defined on M, by Jacobi smoothing and P is the projec-
tion splitting operator defined in the previous section. We
then have:

ug™ = uy_y + Rely_1(ve_y + dy_y — A1y _y)

_ new
di™ = Ag_1ug
P = Vg tde g - di™

Vi =P(r")

Two important identies are derived from the definition of
P. Namely,

sz]:ww =3re

and

f =2 +dy) = Z (™ + df™)

In addition to the two assumptions made above we
will need one further property of the smoothing iterations
that make u the relaxation operator Rel,. In particular, all
multigrid iterations are based on the idea that for vectors x
in M, that are orthogonal to M,_;, the operator Rel, is a
good approximation to the inverse of A,. We write this as:

Property 3: Let s be the number of inner iterations
used in Rel,. There exists a constant r <1 such that
for all x in M, that are orthogonal to M, _,,

[|¢ - Acrety)s|| < r|]x}].

I, e T R e Y R T

i
1

u o d v ’ }._..
m m m HJEI‘“,,

u new d e

. e new
X i)
¥ -n\‘ P_,,H t m

m m m
e e 2 P
Yot g U ;_—EZ}" ure d rk”-'(:?:)-»ul:'f"“
DN o T T *(ﬁ'{}* "
“k-1 dk-luk—l.]_'{:ﬁ_f!lk_-l‘; war o P

YV et he,

Figure 3.1: Single Stage of Parellel MG Iteration

The projection splitting operator P turns the vector
family r. into a family v. such that for all K v; is in M,
and is orthogonal to the subspace M;_;. In other words, v,
is orthogonal to v; if j<>%k and we have
||1Zevi][> = Z¢||vel|? Similarly, observe that the identity
PA, 4i = A, implies that for any vector x in M;, the vec-
tor (Ag4 —Ag)x in Mgy, is orthogonal to M,. This
implies:

Property P4: Let x, be in M, for k =0..m, then
the following identity holds:

HEx B+)12 = Sl Aes1 = 4] |2

In order to study the rate of convergence of this algo-
rithm we must show that there is some function of residual
data after each iteration is less than the corresponding
value before hand. The most natural choice for a residual
function to try to minimize is ||f - A,(S41)||. While
this has a certain esthetic appeal it is difficult to approxi-
mate because the algorithm never computes the term 3, u, .
On the other hand, the residual expression ” f - EkA,,u,‘”
can be bounded by quantities that are related to some
aspect of the computation:

[If - St]| = |2 + s - Al
= [[2ve]] + |26 - Acm)])-

We shall show that the term on the right hand side of
this inequality is reduced at each iteration. More
specifically,

Theorem 3.1: There exists constant ¢ <1 which
depends on a value s, that grows as
log(m) = loglog(n), such that if s > s, inner itera-
tions are done at each smoothing step. Then:

257

55| + |15 - A
< CE|l| + Z|lde - Ax|])-

Proof: We first consider the second term on the left hand
side. From the definition of d{™ and 4" we have

[12@f - Agufo)|| = |12 - Ac_Duil |
+ || 2(Ag -1 — A)Rely g5 4],

where we define,

@ = vy tdp — Ay
From Properties 3 and 2 we have

HEG - A]| = E[A — Ay 4] |HV?
= /4| |(Ax-y - Ay 4| [HY?

< 1/4(]|=(Ac - A2])

= 1/4(| |2y -1 - 4 0)]])

From Properties 4 and 1 we have

[[ZA - Ay _DRely_yg4]| =
G]|@Ax - ApDRely g, 4] |HV>
= c (2|4 _1Rely 1q 4| [HV2.

But Rel, is an approximate inverse of A, and we can easily
show from Property 3 that ||4, Rel, 4q,]| < 2||gx)]-
Furthermore each of the g, are orthogonal to each other,
so we have

|12, - Ap-DRely_1g5 4] | = 2¢ (] |24, I
=< 2C I lek ” +c Hz(dk - A‘_,uk)l I

Combining these results we have
|26 ~ agufnl] = 2¢ [0 || +
(2 + W)||2(d; - A
The remaining term is

22|] = 112] = 15001 + decs - Ao
= 112 ~ A sRely Dt + dyy - Ay)|
= 3||¢ - Ac_Rely vy + dy_y - Ay)|
=roY||vee +dpg - Ak-ll“k-lll
< mUZrsE vy + dyg - Ay 2
=mV2r5 |20 + dy_y - Ay)|
= m 2 ([2veall + |2t - Ay)]

Adding these two ine?ualities the result follows when we
set C =1/4 + 2c + mY2r5 and choose spsothat C < 1.

4. ARCHITECTURAL IMPLICATIONS

There are three distinct Jevels of parallelism with the
“~~algorithm derived here. At this level, the algorithm was
given in Section 2, we see that it is composed of linear
operations on grids of size 2 by 2*,k =1..m. In each
case these operators, namely A, inj(), and proj(), consist
of sparse matrix multiplications. [For example if
Ay = a(i,j, s, 1), then the usual definitions for piecewise
bilinear finite elements has a, (i, j, s, f) < > 0 if and only if
li -s]=1and |j ~¢| <1. The operator 4, for a “five
point difference” is given by:

i

function A, (u : array[1..2*, 1 ..2*) of real)
(returns w :array[1..2%,1 .. 2%]
of real) ;
begin
Fori,j=1..2% do
W(i,j) = ak(i’j’ i,j)ll (i’j)
+ ak(i’j’ i"l’j)u (i-lsr j) +
ay (l ’ j: i; j—l)ll (l ’]'1)
+a (i, j, i+Du (i +1, j)
ta(i,j,i,j+Du(i,j+1) ;
end ;

Distributing the loop makes this a linear combination
of vector operations. That is let
ad ',) = a(,j, its,j+t) for s,t=-1..1, then the
product is given by the vector expression:

258

Ay =@l (* *Yu(*) + af’l(*,*)*u(* S+ +
alo(* FPu(* + 1,%) + af "I(x * yhy (*,x-1) +

ag o (* * b (*-1,%).

Thus, at the lowest level the computation can easily exploit
vector computation, but the basic operators of the algo-
rithm involve sums such as above of five or more vector
computations. From the point of view of hardware, we see
that it would be easy to use processors with a large number
of independently scheduled but “chainable” vector pipe-
lines. An alternatiave would be to have a system where a
processor controls as “Illiac IV’ style array unit that carry
out the sparse matrix operation as illustrated in Figure 4.1.

The lowest level of easily exploited paralelism is then
vector operations. (This is not surprising for a scientific
computation). At the next level up we see that we can do
many vector operations concurrently to get the fastest
parallel computation of the basic linear operators Ay ,inj()
and proj(). At the next level up we see that the operators
P and R are easily described as simple acyclic graphs
whose nodes are the array operators described above.

On the other hand, there is another important form of
second level parallelism that is important. In many applica-
tions the multigrid structure is determined by a local
refinement process. One approach to building grid struc-
tures that are easily fitted to complex geometries and are
easily refined is to use a simple uniform building block such
as a 2F by 2* grid for some fixed value of k. As illustrated
in Figure 4.2 a wide variety of structures can be generated
from these objects.

If we define the basic array operation to be a matrix
product of a sparse array times a solution or data vector
defined on one of the uniform subgrids, then the higher
operators like P and R can be expressed as a computation
on a network of connected grids defined at the same level
in the refinement graph. This idea is discussed in greater
detail in [GaVR83).

At the highest level, as we have already seen in Sec-
tion 2, the computation can be seen as a “large grain”
macro systolic array. As with the lower levels the syn-
chronization is all based on dataflow concepts, but at the
highest level, the unit of data is a complete array data asso-
ciated with one complete grid level. The advantage of this
is twofold. First, the large granularity allows us to
schedule rather large computations on processors at one
time and any associated overhead will appear small. The
second advantage is that if each processor has the ability to
exploit lower levels of parallelism, (as illustrated in the
diagram in Figure 43 below) then a “local controller” can
schedule the fine grain computation, We have, therefore,
substructured the scheduling problem.

5. REFERENCES

[Bran80] Brandt, A., "Multigrid Solvers on Parallel Com-
puters”, ICASE NASA Langley Research Center, Hamp-
ton, Virginia Report No. 80-23, 1980,

e

s
1
i
?:

L " [I . [
[/H\ui-l_. i JH' l
{ L I [_p |
{ui' -1 uu ui.i+1 H 7

Aln) -

.
i3 1.1

+
ij
a u +a L SR
i-1,§ i-1.§ isl,j i+l
., ta u, .
85’5-1 ui,]—j[i+t i3+1

Figure 4.1: SIMD Array Multiplication Structure

Figure 42: Locally Refined, Block Structured Grids

Figure 43: Cluster of Low Level Parallel Structures

[GKLS83] Gajski, D., Kuck, D., Lawrie, D., Sameh, A,
(1983) "CEDAR, A Large Scale Multiprocessor,” Technical
Report, Cedar project, Dept. of Comp. Science, University
of Hlinois at Urbana-Champaign.

[GaVR83] Gannon, D., Van Rosendale, J. (1983), "Highly
Parallel Multigrid Solvers for Elliptic PDEs: An Experi-
mental Analysis,” ICASE Report 82-36, ICASE, NASA
Langley Research Center, Hampton, Vizginia.

[GaVR84] Gannon, D., and Van Rosendale, J., "Parallel
Architectures for Iterative Methods on Adaptive, Block
Structured Grids,” in Elliptic Problem Solves N, Birkoff
and Schoenstadt eds. Academic Press (1984) pp. 93-104.

[Kung80} Kung, H.T., Leiserson, C.E. (1980), “Algorithras
for VLSI Processor Arrays,” in Mead and Conway, Intro-
duction to VLSI Systems, Addison-Wesley, Reading, Mas-
sachusetts, pp. 271-292.

[Nico77] Nicolaides, R. A., "On the L2 Convergence of an
Algorithm for Solving Finite Element Equations”, Math.
Comp. 31, 1977, 892-906.

{VRos80] Van Rosendale, J. R., “Rapid Solution of Finite
Element Equations on Locally Refined Grids by Multi-
Level Methods”, Department of Computer Science,
University of Illinois, UIUCDCS-R-80-1021, Urbana, Dli-
nois, 1980.

259

-

