Floating-Point Arithmetic on 2 Reduced-Instruction-Set Processor

Thomas Gross
Department of Computer Scicnce
Carncg c-Mellon University
Pittsburgh, PA 15213

Abstract

Current single chip implementations of reduced-instruction-se
processors do not support hardware floating-point operations,
Instead. floating point operations have to be pfovided cither by a
co-processor or by software, This paper discusses issues arising
from a software implementation of floating point arithmetic for
the MIPS processor, VL.SI architecture.
Measurcments indicate that an acceptable level of performance s
achieved, but this approach is no substitute for a hardware
accelerator if higher precision resulis are required.
includes instruction profiles for the basic floating point operations

an cyperimental

‘This paper

and evaluates the usefulness of some aspects of the instruction sel.

1. Introduction

A reduced-instruction-set processor like the Stanford MIPS does
not provide instructions for floating point arithmetic {10, 2].
There are several reasons for the cxclusion of floating paint
operations from the hardware level instruction set. First, the
execution of a floating point operations takes significantly longer
than the execution of an integer
operation. Therefore, floating point operations do not fit well the
pipeline structure of MIPS: control of the MIPS pipeline relies
heavily on the fact that all instructions take the same time to

addition or load-register

execute. Second, floating point operations are encountered only
infrequently in the projected applications [2]. Furthermore. the
limitation of resources available demands to focus attention on
the most frequent instructions, And the size of the silicon area
that can be fabricated places hard constraints on the complexity
of the processor. The relevance of these arguments will change
over time (for example, advances in fabrication technology allow
implementation of larger designs), but when the design of MIPS
Started (1981). full 32-bit integer multiplication or floating point
operations could not be accomodated.

This research is supported in part by the Defense Advanced Rescarch
Projects Agency under contract # MDA903-79-C-0680.

CH2146-9/85/0000/0086$01.00 © 1985 IEEE

86

Similar reasons motivated (he designers of the Berkcley RISC
machine to exclude floating point arithnictic [91. ‘They felt that
the available area of silicon was betler spend on a large register
file 1o speed up function and procedure call. The advantages of
reduced-instruction-set architectures are discussed extensively in
recent papers [3. 12, 8].

In the absence of hardware instructions for floating point
operations. other implementations have to be found. There are
two alternatives: either attach a floating point co-processor 1o a
streamlined instruction set processor., or implement foating point
arithmetic by software routines. The firs(approach has the
advantage that it provides high-specd floating point operations.
On the other hand. the development of such a CO-pProcessor
requires a major commitment of resources. if no commercially
available co-processor fullfills the performance goals or (more

likely) the communication requirements.

We think that a floating point co-processor is the best appreach
to provide fast and high precision floating point operations. but
there are also good reasons to consider software implementations,
First, not all classes of programs involve a high degree of floating
point operations. These operations might not be frequent enough
to justify the additional hardware Second, a software
implementation of floating point operations can be achieved in
less time and with much less effort than a hardware
implementation. Lastly, software routines for floating point
operations allow further cvaluation of the architecture. These
routines provide an interesting test for a streamlined processor’s
ability to synthesize complex operations from basic primitives.

For these reasons we undcrtook a software implementation for
the MIPS processor; a similar development is reported for the
Berkeley RISC machine [13). The primary purpose of this effort
is to study the conscquences of a streamlined (or reduced)
instruction set. There are two topics that are of concern to us: the
necessary properties for floating point operations (that is, those
properties of the instruction repertoire of the processor that are
required to get the job done), and the usefulness of other
operations that faciliate the implementation but could be

substituted. Before we address these points in detail, we describe
bricily the Noating point format in the next section.

2. Floating paoint format

Several different major formats exist for the representation of
floating point numbers. Two of these formats are good
candidatces for our unplementation: the representation chosza for
DEC's family of VAX computers [7], and the IEEE floating point
standard [5]. Most of our cnvironment is based on a
VAX-11/780, our simulator for MIPS executes on a VAX-11/780.
Adopting the VAX representation would ease migration belween
these processors. Furthermore, the VAX floating point hardware
could be used as a "co-processor” during simulation. However,
the IELE floating point standard offers a portable base be:ween
different microprocessors, and the advent of high-speed floating
point multiplier and adder chips for this format simplifics the
design of a custom co-processor. We therefore decided to use the
1:EL floaling point standard. Figure 2-1 shows the layout of the
single precision format.

S|Exponent Fraction

31 30 23 22 0

Figure 2-1: Single precision format

The fraction, F, is slored in bits 22 through 0: the leading '1” is
hidden for normalized numbers. Bits 30 to 23 hold the exponent
F, which is stored with a bias of ~127. Bit 31 is the sign bit. Zero
is represented by £ = 0 and F = 0. Thus the number n is defined
by n = (-1)"S x 2nE-127 (] 4 2723 n.F).

The value E = 255 is reserved to represent NotANumber (NAN)
and (signed) infinity. The combinations of E=0and F = 0 an be
used to encode denormalized numbers. One advantage of this
format over the VAX representation is that it places the sign of
the floating point numbers in the leftmost bit This position
simplifies to test if a number is greater or less than zero. Table
2-1 shows some further data that characterize our floating point.
The precision of this floating point representation is ¢ = 2723 =
119 x 1077, that is the seven leading decimal digits can be trusted
at best.

Maximum positive number 1.7 x 10%8
Minimum positive number 12x 1073
Minimum positive number denormalized 1.4 x 104"

Table 2-1: Range of the floating point format

The current implementation uses the IFEE floating point data
Jormat but does not fulfill the requirements of the IEEE floating
point standard. Only onc rounding mode, round to nearest, is
supported. A trap is taken whenever underflow, overflow, or

87

gradual underflow occurs, but the trap handler maintains only
counts of the frequency of these events!, That is, Not-a-Number
and denormalized numbers are detected. but they are not treated
as required by the standard. Adding the functionality required by
the standard would involve some tedious programming. But the
instruction frequencics reported in this paper would hardly
change since exceptions occur rarcly.

No implementation of double precision or cxtended arithmetic is
available at this time, but Scction 4.4 contains estimales for
double precision arithmetic. The primary purpose of our study is
to investigate the characteristics of a software realization of
floating point arithmetic for the MIPS processor. The inclusion
of extended single precision arithmetic does not provide any new
insights but should be included in a stabilized version [4]. Our
first goal is to provide a basic level of support for those programs
thal require some floating point computation. The execution of
floating point intensive programs is not a target for a sofiware
based implementation. Double precision software routines can
be added when the need arises.

3. The MIPS instruction set

The architecture and instruction sct of the MIPS processors has
been described in previous papers (2, 10, 1]. It is useful for the
understanding of the next scction to keep in mind that MIPS is a
load/store architecture. Only register operands can be used for
MIPS provides addition and
subtraction for 32-bit integers. To implement multiplication and

arithmetic or logic operations.

division, a two-bit Booth multiply-step or a onec-bit non-restoring
divide-step can be executed repecatedly. The Booth operations
require that the operands reside in two special registers; these
registers are called the High (Hi) and the Low (L.o) register.

~The datapath of the MIPS processor contains a barrel shifter that

implements arithmetic shifts, logical shifts, and rotation. The
shift amount (in the range 0 to 31) is either an immediate value
taken from the instruction or supplied by the Lo register. That is,
a gencral purpose register cannot hold the shift amout, this value
has to be moved to the special register.

The MIPS hardware instruction set allows the comparision of
signed and unsigned integers in a "test-and-branch” instruction.
Unfortunately this hardware cannot be used directly to compare
two floating point numbers, which are in a signed magnitude
format. A quick look at the format (sce Figure 2-1) convinces
that it is permissible to interpret two floating point numbers A
and B as signed integers unless both A and B arc less than zero. If
both arguments of a comparision are less than zero, the bits of the

180 far the floating point routines are used with performance
benchmarks - and these programs do not contain cxecptions.

¢exponent and mantissa must be negated. This operation produces
two numbers A" and I3, which deliver the correct result when
tested as integers by the hardware.

The data in the subsequent sections are gathered with a simulator.
We assume in our translation [rom cycles to real time that the
fabricated chip executes at a rate of two million instructions per
sccond [11].

4. Floating point operations

Our implementation of the floating point operations consists of
code sequences for single precision addition, subtraction,
multiplication, and division. Furthermore, we have routines to
convert between integers and floating point numbers. These code
sequences contain conditional branches and therefore the
execution time (for example, for an addition) depends on the data
values of the input. The data presented in this soction are

averages obtained from the execution of three sample programs:

Matrix Mult multiplies two matrices of dimension 40 by 40
the matrix elements are random numbers

Euler computes the Euler's constant ¢ with a Taylor
series

FFT a 256-point complex IFFT.

The difference in the averages that arc obtained from the
individual programs is neglegible, but not all operations are used
in every benchmark.

All floating point routines require the use of registers to carry out
the computations. Since we intend to use a floating point
Cco-processor when it is available but do not want to maintain two
different code generators for the two different environments, all
responsibility for storing and restoring registers rests with the
floating point operations. The code generator is unaware of the
presence (or absence) of floating point hardware. If no floating
point co-processor is available, a filter program converts a
floating point operation into the call of the appropriate
subroutine.

Although this arrangement places no demands on the rest of the
compiler, it creates a high overhead. If two floating point
operations are executed in sequence, everyone of them saves and
restores the set of working registers. Two options exist to reduce
the overhead. One option calls for a simple peephole optimizer
that removes redundant restore/save operations. An alternative is
to reconsider the decision to handle floating point operations
independent of their implementation. This option requires that
the code generator frees some registers for use of the floating
point routines.

Table 4-1 gives the basic execution times for single precision
operations. It provides a breakdown in time spend computing the
result and time required to save and restore the temporary

registers.
Operation Generic Overhead
Opcration
addition 25 us 9 us
subtraction 27 us 9 pus
muliplication 14 s 7 us
division 19 ps 7 us
conversion (integer to float) 15 us 7 us
conversion (float to integer) 19 us 4 us

Table 4-1: Exccution times for operations

There are several reasons why addition and subtraction are more
expensive than multiplication. For addition and subtraction,
computing the sign bit and the result exponent are more complex,

and the leading one (of the sum) can be in any bit position.

The next table shows the contribution of the fioating point
operations to overall program exccution for the three benchmark
programs. The first row cxcludes the overhead, which is
separately given in the sccond row. The final row shows the
overall contribution of floating point opcrations (including
overhead) (o total program exccution. We note that about 20% of

the total exceution time is spend on overhead.

I'TT MatrixMul I2uler
add/sub 4041 % 33.58 % 24.05%
overhead for add/sub 13.85% 11.40 % 7.90 %
mul 12.85% 1938 % 0.00 %
overhead for mul 6.51% 8.86 % 0.00 %
div 211% 122% 17.03 %
overhead for div 0.77% 0.44 % 6.14 %
conversion 1.65% 0.99 % 14.04 %
overhead for conv. 072 % 0.44 % 6.14%
total FP 78.90 % 76.31 % 75.30 %

Table 4-2: Contribution of floating point operations
[of total program execution]

The basic execution times given in Table 4-1 represent only one
viewpoint. Measurement of total execution time is another
important aspect. Table 4-3 presents the execution times for the
Pascal versions of the benchmark programs.

Program Time

Euler(1000 times) 114 sec
MatrixMult 5.05 sec
FFT 5.85 sec

Table 4-3: Execution times for benchmarks

Execution of the C version of the MatrixMult program on RISC-1
takes 22.5 sec[13] and was timed at 57.7 sec on an § MHz
M68000. For comparision, a VAX 11-780 with a floating point
accelerator executes this program in 2.1 sec with double precision
arithmetic.

In the remainder of this seclion, we now discuss the
implementation of the five basic operations in some detail. The
code for cach of the floaling point operations can be broker down
into four parts. First, the registers that are needed to carry out the
computation (and to hold intermediatc results) are saved. ‘Then,
the cxponent and fraction are moved into separate registers.
Nexl, afier some preliminary checks (i.c.. divisior = 0)). the
computation of the result takes place. Then, the result is
assembled and exponent and fraction are placed inlo one register.
Finally, the registers saved in the first part are restored, and
execution resumes in the main program. Since the overhead (the
first and the last pant) are due to our decision to provide
transparency to the code generator, we exclude these parts from
our summary,

4.1. Addition/Subtraction

The implementation of addition and subtraction provces to be the
most difficull. Both operations are implemented by the same
routine; the sign of the subtrahend is changed for subtraction.
These operations take the longest amount of time (compare
Figure 4-1), and they also require the most instructions statically
(89 instructions. 24 of which count the leading zeroes and are also
used in other parts of the floating point system). Seven rezisters
are necded to compute the result and one register holds the
returnaddress: that is. eight registers have to be saved and
restored. The pre-addition alignment and post-addition
normalization are responsible for the number of registers needed.
64% of the instructions are dedicated to this phase. Computation
of the fraction and exponent is a mere 21%: the rest of the space
(15%) is divided among the field extraction at the beginning (9%)
and negation of the operand for subtraction (6%). Table 4-4 gives
the actual instruction usage for a series of- additions and
subtractions.

Instruction group Static Dynamic
Add/subtract 20.22 % 20.82%
Bit operations 674 % 703 %
Booth operations 0.00 % 0.00 %
Byte insert/extract 187 % 795%
Load/store Hi/Lo register 11.24 % 7719 %
Load/store normal register 337% 4.50 %
Rotate operations 6.74 % 522%
Shift operations 2245% 23.23%
Total ALU operations 78.65 % 76.55 %
Branch uncond. 449 % 225%
Branch conditionally 12.36 % 1522 %
Load direct 225% 299%
Trap conditionally 25% 299%

Table 4-4: Instruction frequencies for addition/subtracticn

89

The load-dircet instructions are used cxclusively to retrieve
masks and constants. ‘I'raps test for illegal results, for example an
underflow, and transfer controt to the exception and interrupt
handler. The contribution of branches (conditional and
unconditional) is much higher for this routine than for the
multiplication or division routines. The reason is the extensive
case analysis that must be done in this routine. This topic is

discussed again in Section 5.3.

4.2. Multiplication

The core of the multiplication routine requires 49 instructions.
‘The implementation of this operation is greatly faciliated by the
special features for integer multiplication and division [6]. The
Booth multiply instructions allow the multiplication of two 24-bit
numbers in six words, since two AlLU operations can be
performed in one instruction cycle. This routine requires six
temporary registers. Computation of the fraction consumes 30%
of the 49 instructions, rounding and result composition 44%,
computation of the exponent (and test for zero operands) 12%.
and ficld extraction 14%. ‘Table 4-5 gives the detailed breakdown
of instructions used for the multiplication routine.

Instruction eroup Slatic Dynamic
Add/subtract 10.20 % 10.16 %
Bit opcrations 612 % 440 %
Booth operations 2653 % 26.44 %
Byte insert/extract 10.20 % 1083 %
Load/store Hi/Lo register 18.36 % 18.30%
Load/store normal register 2.04 % 203%
Rotate operations 816 % 8.80%
Shift operations 612 % 6.10 %
Total ALU operations 87.76 % 87.13%
Branch uncond. 204 % 203%
Branch conditionally 408 % 473%
Load direct 204 % 203%
Trap conditionaily 408 % 407 %

Table 4-5: Instruction frequencies for multiplication

22.38% of all instructions are Booth multiply-steps, which
compute two bits of the product: the large number of multiply-
steps overshadows the other ALU operations. Loading the Lo
register is the next frequent operation (10.17%). This register is
loaded for two purposes: the multiplier must be moved into this
register, and it contains the byte selector for insert/extract byte
operations.

4.3. Division

The software routines for Moating point division on MIPS 1akes
30% more time than multiplication. but division is still faster than
Division is about 50% shorter than
addition; it contains 61 instructions. The one-bit divide-step
instruction is useful in forming the quotient. 57% of the total
space is dedicated to the computation of the fraction, 13% are
used for field extraction and operand test. and 27% for quotient
assembly and adjustment of the exponet. The division routine
nceds six working registers.

addition or subtraction.

Instruction group Static Dynamic
Add/subtract 6.56 % 521%
Bit operations 328% 1.712%
Booth operations 44.26 % 46.51%
Byte insert/extract 820% 8.62 %
Load/store Hi/Lo register 984 % 1033 %
Load/store normal register 328% 345%
Rotate operations 164 % 172%
Shift operations 1148 % 10.38 %
Total ALU opcrations 8852 % 87.94 %
Branch uncond. 164 % 172%
Branch conditionally 328% 3.45%
Load direct 164 % 172 %
Trap conditionally 492 % 517 %

Table 4-6: Instruction frequencies for division

The divide-step instruction produces only cne bit of the quotient
in each step. 44.79% of all instructions are divide-steps. Load Lo
register and shift right with sign extension are the two next
frequent operations (6.89%).

4.4. Double precision operations

Our library of single precision operations allows us to estimate the
timing of double precision operations. Double precision addition
or subtraction takes approximately 35us (plus 12ps overhead),
and a double precision multiplication requires 42us and an
additional 11us overhead to restore temporary registers. The
multiplication routine is dominated by mstep operations that
compute four partial products, which are combined to form the
53-bit fraction.

Double precision division is more expensive: the divide-step
instruction cannot be used directly in the computation of a
quotient A + B. Division must be decomposed in the evaluation
of the reciprocal 1/B, followed with a multiplication by A. The
evaluation of the reciprocal can be based on the well-known
Newton-Raphson algorithm with a seed obtained by successive
divide-step operations. A seed that is accurate in 30 bits requires

9

only one Newton-Raphson iteration step to yield the 53-bit
fraction of the reciprocal, and computation of the quotient is
complete after 131ys (plus 12us overhead).

5. Experience with floation point
operations for MIPS

The measurements allow us 1o evaluate some aspects of the
instruction set of the MIPS processor. Of special intercst are
those instructions that proved difficult to implement [10] and the
potential benefits of the count-leading-zero instruction. This
latter instruction was proposed but removed from the final
architecture.

5.1. Instruction packing

The MIPS processor executes two ALU operations in one cycle,
and the compiler (rcorganizer) altempts to rearrange instructions
so that two useful operations are executed. Often the instructions
formats used prohibit full utilization of the hardware resources;
encoding constraints disallow packing. Table 51 shows the
dynamic density of the assembled floating point routines. A
densily of 115.48% indicales that 115.48 instructions are executed
per 100 machine cycles. The density of the multiplication and
division routines is significantly higher than the density found in
other benchmark programs: the high density is onc reason for the
short execution time.

Operation #Instructions #MIPS Density
Words
Addition/Subtraction 89 75 115.48 %
Multiplication 39 32 15289 %
Division 61 40 15266 %

Table 5-1: Packing of floating point routines

5.2. Unused ALU instructions

The floating point programs use a wider spectrum of ALU
operations than our set of integer Pascal benchmarks. Shift
instructions occur in all routines, their contribution ranges from
23% (addition) to 6% (multiplication).

Nevertheless, several ALU instructions are not used at all by the
floating point routines. Bit-wise "or" and "not" are two examples
of bit operations that do not occur in these routines, Shift-logical,
which extends the shifted argument with zeros, is used only with
an immediate shift-amount. That is, the shift-amount is never
supplied from the Lo register for logical shifts (both right and
left).

‘The routine for addition and subtraction requires that the shift-
amount is determined at run time, depending on the input data
value. Two instructions read the shift-amount from the Lo
register: they occur during the alignment of opcrands and in the

normalization phase. Thesc instructions amount to 3.00% of all
Both of these
operations could be replaced with a sequence of tests and shifis to
obtain the same result. This substitution increases the static size
of the subroutine by 42 words (that is 45%), but the dynamic
Using the data about the frequency and
range of shifi operations gathered by Sweency [14]. we esiimate

instruction cxecutions in the addition subroutine.

effect is less severe.

that the execution time of floating point addition increascs by 14
cycles. This is an increase of 7 ys - an increase of about 27% . The
inclusion of dynamic shift amounts in the data path and
instruction set cannot be jusiified in light of this isolated
performance loss.

5.3. Count leading zeros

The first architecture document of the MIPS processor included
an instruction to count the number of leading zeros of an
operand. The implementation turned out to be cumbersome, and
the designers decided against wasting a great deal of effort for this
instruction. Instcad, the plan called for a software routine to
implement the desired functionality. This cvaluation indlicates

that this decision was correct.

The code o count the leading zeros has a length of 23 MIPS
instruction words. On the average, 18 cycles (9 ps) are spend in
this section of the addition routine. The code sequenc: uses
extensive case analysis: 50% of all conditional branches in the
addition routine are found in this section. A single cycle count-
leading-zeros instruction would decrease the cxecution time of
addition to 16 ps (and subtraction to 18 ps), but the effect on
overall program exccution would be less pronounced. The
cxecution of FFT would be shortened by 12%, the effect on

MartrixMutlt is 10%.

5.4. Summary

Table 5-2 summarizes the influence of these architectural features
on the exeuction times for the floating point primitives. The
execution times (as measured by the number of instruction
executed) are scaled relative the MIPS bascline as implemented; a
number greater than 1 indicates that the operation is slowed down
by the proposed change. Similarily, a factor less than 1 represents
a potential speed up — if the feature can be included without a
negative effect on the basic cycle time of the processor.

Addition Multiplication
MIPS baseline 100 1.00 1.00
Elapsed time [Table 4-1) (34us) (Qlps) (26ps)
Only 1 instruction/word 112 135 1.39
No shift amount in register 120 1.00 1.00
Only 1 bit Booth multiply step 1.00 119 1.00
Include "Count leading zeros” .71 1.00 1.00
Compiler optimizes overhead .74 it 77

Table 5-2: Contribution of architectural features

91

6. Concluding remarks
We have demonstrated that single precision arithmelic can be
This

implementation illustrates again that it is advantagous to

implemented on a reduced-instruction=scl processor.

synthesize complex instructions from a set of simple operations.
The performace of this implementation compares favorably
apainst software implementations for other processors but cannot
replace special arithmetic units for floating point operations.

The current linkage conventions for floating point arithmetic
occur a high overhead but simplify the code generator. This
organization should be rcconsidered in an environment that uses
these routines extensively.

The inclusion of logical and arithmetical shift instructions, two-bit
multiply-step instruction, and one-bit divide-step instructions
simplified the implementation of the software routines. The
ability to obtain the shift-amount from a register {(and not only
from an immmediate ficld) is not essential: it saved 7 ps in the
routine for addition. The penalty imposed by the absence of a
single-cycle count-leading-zero instruction is in the same range (9
©9).

Instead of adding new instructions, other alternatives provide a
higher speed-up. For example, if the code generator frees the
working registers for the software routines, cach floating point
operation is shortened (on the average) by 6 ps. And the overall
improvement wiil be higher than any single modifiction of the
instruction set can achieve.

Acknowledgments

Many persons contributed to the MIPS project, and John
Hennessy, John Gill, Norman Jouppi, Steven Przybylski, and
Christopher Rowen are major contributors. John Bumett started
the first implementation of floating point operations for MIPS.
John Hennessy. David Patterson, and Steven Przybylski provided
comments and advice on earlier versions of this paper.

References

1. Gill, J., Gross, T., Hennessy, 1., Jouppi, N., Przybylski, S., and
Rowen, C. Summary of MIPS Instructions. Technical Note
83-237, Stanford University, November, 1983.

2. Hennessy, J.L., Jouppi. N., Baskett, F., and Gill, J. MIPS: A
VLSI Processor Architecture. Proc. CMU Conference on VLSI
Systems and Computations, October, 1981, pp. 337-346.

3. Hennecssy, J.L., Jouppi, N., Baskett, F., Gross, T.R., and Gill,
J. Hardware/Software Tradeoffs for Increased Performance.
Proc. SIGARCH/SIGPLAN Symposium on Architectural
Support for Programming Languages and Operating Systems,
ACM, Palo Alto, March, 1982, pp. 2 - 11

4. llough, D. "Applications of the Proposed Standard for
Floating-Point Arithmetic". IEEE Computer 14, 3 (Mar 1981),
70-74.

S. IEEE Computer Socicty Working Group. A Proposed
Standard for Binary Floating-Point Arithmetic”. Computer 4,3
(March 1981), 51- 62.

6. Jouppi, N. Multiplication and Division Features in MIPS.
Project Report, Stanford University.

7. Levy, HM., and Eckhouse, R.H.. Computer Programming and
Architecture ~— The VAX-11. Digital Press, 1980.

8. Patterson, D.A. and Ditzel, D.R. "The Case for the Reduc:d
Instruction Set Computer”. Computer Architecture News 86
(October 1980), 25 - 33,

9. Patterson, D.A. and Sequin, C.H. "A VLSI RISC". Computer
15,9 (September 1982), 8-22.

10. Przybylski, S., Gross, T., Hennessy, J., Jouppi, N. and
Rowen, C. "Organization and VLSI Implementation of MIPS”,
Journal of VLSI and Computer Systems 1, 3 (Fall 1984).

11. Przybyiski, S. The Design Verification and Testing of MIF'S.
Proceedings, Conference on Advanced Research in VLSI, Boston,
January, 1984, pp. 100-109.

12. Radin, G. The 801 Minicomputer. Proc. SIGARCH/SIG
PLAN Symposium on Architectural Support for Programming
Languages and Operating Systems, ACM, Palo Alto, March,
1982, pp. 39- 47,

13. Sippel, T.N. Floating RISCs: Implementation and analysis of
floating point on RISC I. Research Project at the University of
California, Berkeley.

14. Sweeney, DW. "An Analysis of Floating Point Addition".
1BM Systems Journal 4, 1 (1965), 31-42.

