Multiprocessors For Evaluating
Compound Arithmetic Functions’

t A dynamic network approach is proposed for
g multifunctional arithmetic processors to support
22 , interval, vector, matriz, polynomial, and other
und arithmetic operations. This arithmetic-network
roach is extended from the multipipleline chaining
concept implemented in Cray Research supercomputers.
The proposed design methodology offers a viable way of
eveloping very powerful and flexible arithmetic
multiprocessors for scientific supercomputing.

1. Introduction

Reviewing the history of computer arithmetic, we
observe a constant trend of shifting from software to
hardware implementations of various arithmetic functions.
Early processors had rather a rudimentary capability of
performing only bit-serial addition and shifting, while
today's fast processors like FPS$ 164/Max and Cray
X-MP (7] are equipped with multiple arithmetic pipelines
which can be linearly chained together for processing
various arithmetic/logic operations. With the advent of
VLSI technology, the time has arrived to implement
complez,interval,matriz and other compound arithmetis
functions directly in hardware.

The common approach at present is to use a special
hardware device for each dedicated function. For instance,
the Cray X-MP has 15 dedicated functional pipelines for
logic, fixed-point, floating-point, scalar, and vector
operations. This approach demands high memory
bandwidth and a large number of dedicated functional
units. This will definitely increase the hardware cost and

d to the control and scheduling overhead. With
icated functionality, the utilization of the arithmetic
r may be low, if concurrency cannot be fully
in ‘user programs. Furthermore, the application
is rather limited and the fault tolerance can not
ced with fixed hardware functions.

tive approach is to interconnect a number of

able arithmetic units to implement
functions. We have proposed a
maultiprocessor architecture, called

'This reseaicl.iﬁ supported in part by AFOSR grant 84-0385.

CH2146-9/85/0000/0266$01.00 © 1985 IEEE

Kai Hwang and Zhiwei Xu .

Computer Research Institute .
University of Southern California
Los Angeles, CA 90089-0781

Remps [9], based on this approach. This paper describes
the arithmetic aspects of the Remps computer. A new
concept of arithmetic networks is introduced. The key
idea is to set up a network of arithmetic pipelines, which
will best match the data flow pattern of any given
arithmetic algorithm.

In this paper, we first identify major compound
arithmetic functions, such as complex Sfunctions, interval
arithmetic, vector/malriz operations, and polynomial
evaluations. We also consider butterfly computations used
in FFT and arithmetic loops containing IF statements.
Special arithmetic network architecture and necessary
functional features are presented. Supporting compound
arithmetic functions is demonstrated with benchmark
studies.

2. Compound Arithmetic Functions

It has been recognized that in addition to conventional
arithmetic, other arithmetic types such as interval,
complex, vector/matrix are also important for a computer
system that supports extensive numerical computations.
The arithmetic design requirements of these compound
arithmetic functions via the real arithmetic operations are
specified below:

A. Compler Arithmetic: Let a,b,c,d be real numbers. A
complex number is represented by a pair (a,b) = a + jb.
The four basic arithmetic operations on complex numbers
are specified below:

Complex Add/Subtract
(a,b):b[c,d):(a;l:c, b:td)

Complex Multiply
(a,6) X (c,d)=(ac—bd,ad+bc)

Complex Divide
(a,8)/(c,d)=((ac+bd)/(c*+d?),(bc~ad)/(c2+d2))

B. Interval Arithmetic: An interval is represented as a
pair of real numbers, (a,b), where a is the lower bound
while b is the upper bound. Interval arithmetic operations
are formulated as follows:

266

Interval Add corresponding vector addition/subtraction. Polynomial
(a,b)+(c,d)=(a-+c,b+d) multiplications can be realized via FFT and vector
' ' multiplications. The value of a polynomial is evaluated by

Interval Subtract
(a,b)——(c,d)z(a—d,b-—c)

Interval Multiply
(a,b) X (¢,d)=(min (ac,ad,bc,bd), max (ac,ad,be,bd))

Interval Invert
(a,b)" = (1,1)X(1/a,1/b)

Interval Divide
(a,b)/(c,d) = (a,b) X (c,d)”!

C. Vector Arithmetic: We only consider vector, matrix,
and polynomial arithmetics over real numbers. The
corresponding complex and interval extemsions can be
treated similarly, once the scalar operations of complex
and interval arithmetics are defined. Consider two vectors
v,u € R", and a scalar a € R. Let o € {+,-,X,/} be any of
the four primitive arithmetic operators.

Vector Arithmetic wov==(u,ov,, - - - ,u ov)
n
Inner Product uT-v:::z uw;
=1
Outer Product aXu=(au, - -- au)

D. Matriz Arithmetic: Let A::(a'.].), B=(b'.j) be two

n X n matrices. Matrix arithmetic often includes:

Matrix Add/subtract A+B = (a,.,’.:};b‘.j)

n
Matrix Multiply AXB = (:E aikbkj)
k=1
Matrix Inversion
(1). L-U decomposition A == L-U;
(2). Triangular matrix inversions, L! and Ul
(3). Matrix multiplication A™! = U'xL-L.

E. Butterfly Computation in FFT. Each butterfly
computation has two complex input and two complex
output vectors, apart from the constant coeffecients (sing
and con¢). Eight real vectors are involved, denote by
A,B,C,D.E F,G H.

procedure Butterfly(A,B,C,D,E,F,G,H,1,])
parallel begin

A(j):= E(1)+G(i)cosg-H(i)sing
B(j):= E(1)-G(i)cos¢+H(i)aing
C(j):= F(1)+G(i)sing+H(i)comd
D(j):= F(1)-G(1)sing+H(i)con¢

parallel end

F. Polynomial Arithmetic: The addition/subtraction of
single-variable polynomials are carried out by the

267

Horner's form:

y=qy+az+ - +an:c"
=((~~-(anar:+an_l):c+ -~~)I+ao

G. Arithmetic Loops with IF statements: A typical

example is given below:

DO 10 I=1,0%
X(D) = A1)*C(1)-BD*D(D)
IF X(I) < 0.0 THEE Y(I) = A(1)*B(I)+C(I)*D(I)
ELSE Y(I) = A(I)*B(I)-C(I)eD(I)

10 CONTINUE)

3. Arithmetic Networks

Compound arithmetic functions demand a
supercomputer which has the following functional
capabilities:

A, Multiprocessing: Many compound arithmetic
functions demand the concurrent executions of multiple
real arithmetic operations. For example, to realize a
Complex Divide, we need to coordinate the
multiply, add, subtract, and divide operations.

B. Pipelinability: In vector and matrix arithmetic,
pipelining is an economic way to implement the component
computations. If we have m pipelines each of k stages, the
maximur speedup is km over a non-pipelined scalar
processor.

C. Recon figurability: The implementations of compound
arithmetic functions do not follow a fixed interconnection
pattern. A /dynamic arithmetic multiprocessor must be
reconfigurable to achieve different networking patterns
with low overhead.

D. Delay matching: When two operand streams arrive at
a certain arithmetic unit in the network, they may have
traversed through data paths of different delays. These
delays must be equalized in order to have the correct
operand pairs arrived at the right place at the right time.

The concept of multiple arithmetic networks to be used
in the Remps is extended from the pipeline chaining in
Cray X-MP. The Remps is a reconfigurable
multiprocessor system, as redrawn in Fig.l. A dynamic
arithmetic processor in Remps consists of five major
components. The m Processing Elements (PEs) and the
routing network constitute an arithmetic network, which is
used to evaluate various arithmetic/logic operations. The
dllocation network interconnects the memory modules with
the m PEs. The controller coordinates the operations of
the entire system.

o

ire its PEs into different
erent times to match with

cally, an arithmetic network is modeled by a
rected graph G(V,E,W), where the node set V
e PEs, the arc set E represents the inter-PE
and W is a time delay function from VUE to
t I which specifies the delay of each PE and
fonnection link. Special graphic properties and
nts in making the network pipelinable are to be

eedforward links are allowed in the network. An
arithmetic network with (or without) feedbacks is denoted
by a cyclic {or acyclic)graph. Almost all the compound
arithmetic functions defined in section 2 can be evaluated
by an acyclic arithmetic network. Other functions such as
linear recursive systems may have to use a cyclic network
with feedbacks. Any user job is processed in the Remps
with the following sequence of operational steps:

(1). Partitioning: A job is partitioned into a number of
tasks, each ‘of which is executable by a proper arithmetic
network. Different tasks may be assigned to one or more
processor for concurrent execution.

(2). Mapping: The dataflow graph of a task is mapped into
an arithmetic network. This includes: (1) Matching the
node functions of the dataflow graph with the node
functions of the arithmetic network. And (2) Necessary
delays are inserted into the data paths of the network.

(3). PE networking: The controller checks the PE demand
with the PE resource availability. The routing network is
programmed to achieve a special connection pattern among
the PEs. The allocation network provides necessary data
paths to or from the memory.

(4). Ezecution: The sequence of data movements from the
memory to the allocation network, to the arithmetic
network, and then back to the memory via the allocation
network, forms a macropipeline (4. The controller

supervises the flow of operands through the macropipeline.

To clarify the above discussions, let us consider an
example of DO-loop computations.
DO 10 I =1, g
E(I) = [A(1)+B(I)+c(1)]/D(D)
10 CONTINUE
A dataflow graph is shown in Fig.2a for the above DO-
loop. Assume that each PE can perform two additjons

simultaneously. But the reciprocation needs two cascaded
PEs. The twn addition nodes are executed by a single PE,
while each division node is executed in three PEs. The
resulting dataflow graph is demonstrated in Fig.2b. Some
noncompute delays are added to the left data path in
Fig.2¢. Finally, the desired arithmetic network is set up as
shown in Fig.2d.

Two factors must be considered in implementing the
dynamic arithmetic networking concept. Programmable
noncompute delays are used in the routing network so that
unequal delays can be matched dynamically. The routing
network must have enough connectivity. Furthermore, an
arithmetic network must be pipelinable so that it can
process an operand block for each pipeline cycle. An inter-
PE link is blocked, if more than one data paths use the
same link. An arithmetic network without feedbacks is
pipelinable, if all the PEs are linear pipelines and no inter-
PE link is blocked.

A global bus or a multistage interconnection
network(such as the baseline, omega, or cube networks)
may have blocking links in some applications. These
networks are pot suitable to be used as the routing
network. We choose the crossbar switching network
because it is fully-connected, non-blocking, and easy to
control. Some programmable delay units are used. Such an
8-by-8 crossbar chip, called LINC, has been designed and
implemented in CMU [5).

Several possible choices can be made about the PE
structure; such as the INMOS transputor, the iterative
pipelines used in IBM 360/91, or a linear pipeline used in
Cray X-MP. Commercially available microprocessors are
too slow for floating-point operations due to microcoded
operations. Iterative pipelines do not support the

pipelinability of the arithmetic network. Linear pipelines
are ideal for our purpose. What we need are pipelined PEs
which are both linear and universal in functionality.

Branching instructions may become detrimental if it is
not treated properly. Instruction prefetch will not help
much, since switching from one side of the branch to
another often requires the set up of a different arithmetic
network. To overcome this difficulty, we simply merge
both sides of a branching into a single arithmetic network.
Although some PEs are producing results which may not
be used later, the pipelinability of the network is preserved
by merging.

4. Pipelined PE Designs

The PEs to be used in an arithmetic network should be
designed to possess the following properties:
{1). Uni formity: All PEs are multifunctional and identical.
This will increase the utilization flexibility and fault
tolerance of the dynamic processor. It also reduces the
development overhead.

e

(2). Flexibility: Since all the PEs are identical, each of
them is dynamically programmable to executed different
arithmetic/logic operations at different times. An
arithmetic network of PEs can be used to perform many
compound arithmetic functions.

(3). Linearity : Each PE is linearly pipelined for various
arithmetic operations. No feedback are allowed among the
pipeline stages. This property demands that each PE
generates one result per each pipeline cycle for all
arithmetic operations.

(4). Merging of Branches: Each PE is capable of merging
both sides of a branch operation into one sequence. Multi-
levell branches can be merged by cascading the PEs.

In the PE design, we partition the arithmetic functions
into several pipeline stages and exploit hardware sharing as
much as possible , so long as it dose not violate the pipeline
linearity. The resulting PE has a hardware complexity
comparable to that of the Reciprocate pipe in Cray-1
computer. The design of a 3-input/3-output PE is shown
in Fig.3. This design merges the two sides of a branch.

The Receive and the Transmit stages are the 1/0 stages
as detailed in Fig.4. The I/O ports A, B, and C are
connected to the memory via the allocation network. A
B’, and C’ come from the routing network. D and E are
feedbacks from the Transmit stage of the same PE. This is
needed for implementing vector inner-product.
Conditional branch instructions are controlled by the sign
bit and the most significant bit of the mantissa of a
normalized floating-point number (ie., to determine if
x<0, or x>0, or x=0).

The two Erponent/Logic stages are used to perform
exponential addition/subtraction and mantissa alignment.
They are also used to execute some logic and shift
operations. The Normalize stage normalizes the floating-
point results. An ROM is used to store the initial guess of
the reciprocal values. Several iterations of multiplications
are needed to produce the final reciprocal. Other
constants for evaluating transcendental functions and for
FFT computation are also stored in the ROM.

The Multiply/Add stages are designed to support four
arithmetic computations in the form of
(ziy),(z)(y),2—(z><y;ty), and X y:+y, where x and y are
real fractions. The last two operations are needed to
compute (2—AXB)X A in a Newton-Raphson iterative step
for finding the reciprocal of a given fraction.

Let 2 4, B:bo.bl oo b, tbe
two’s complement fractions. The one's complement of 4 is

denoted as A. Denote the double summations

i T

A:ao.a a

1 s
1a‘.bJ2 "7 by D. Its one’s complement s

269

denoted as D.The following formulae are used for two’s
complement addition, subtraction, and multiplication [6]:

n—1
A+B=—a0~bo+z (a+b)x2™"
i=1
A-B=A+B+27"H!
n—1 .
-
AXB = aol50+D—Z (agb,+ab))2
y=1
- n—l -~ .
= a0b0+5;)+b0+z (abytagh)2™
=1

+Hag+bl2 "4 D

Suppose B is a normalized fraction and B 5 1/2, then
we have 1/2<|B|<1<|1/B|<2. Let Ay be the initial
approximation to 1/B. Then we use the following

intermedizte expressions to evaluate 1/B in two's
complement notation:
4 ,_'{l + 0.31 T8, B>0
0 N
—l+1ls --- s B<o
4 "{O‘sl T8y B>0
0=
Ls; -+ s, B<o
By=2-A/'XB
B ':{2—(/10)(B+B) B>0
* l2—(4,xB-B) B<O0
A ,={AOXBO'+BO' Ay>0
AyX Bj-B/ 4,<0
The value of Ay is precomputed so that

|[Ay'I>[1/E|, and thus Ay"B>1. A tedious error analysis
has been performed which shows that A‘.’-B>1 for all 1,

and this sequence converges to 1/B quadratically. The two
Multiply/Add stages perform 2—(A-B+B) and A-B+B in
one Newton-Raphson iterative step. From the above
discussion, we obtain:

n—1
D+ b2~¢ A>0
AXB+B = Z:l !
n—1 - .
D-3" b2t 4272 40
2—(AX B+B) = =1
n—1
B4 g—n+2 | g—n+l To—i
D+ 2 +2 + Z b2 B>o0
i=1
n—1 n—1
D 4 9—in+2 N g—itl] -
D+ 2 + Z b2 + Z a2 B<o
f==] =1

The above arithmetic equations are executed in several
stages. Figure 5 shows the design of the required stages.
Note that all the operations share the carry-lookahead
adder. And the iterative array is shared by three
operations AXB, 2—(AX B+B), andAX B+.B. Compared
with the Baugh-Wooley multiplier [1], the only significant
hardware increase is the carry-lookahead adder being
added.

Several examples are presented below to show the
versatility of = the pipelined PE design. Most
arithmetig, lgglc operations can be implemented with a
' fized-point
tnner-product, and a logic
ZV(yAz2). Compler divide and interval multiply
are realized by the circuits in Fig.7.

; ;a;k:y/‘X-MP, the reciprocal of a number is evaluated
th a Newton iterative method. To find 1/B, iterative
oper. xons A 1=(2-A;XB)A; are performed, where A is
the ;qntial approximation and A, is the i-th approximation
to'1/B. Each PE generates the new value A; from the old

&_ - Two PEs are cascaded to generate A,, as shown in
Fig.8. More PEs could be used to increase the number of

iieraﬁons and thus the precision.

‘The network shown in Fig.9a is for butterfly operations.
The two bottom PEs executes the needed multiplications.

The four top PEs perform the required
additions/subtractions. The network in Fig.9b is set up to
support an arithmetic loop with a single IF statement.

Dynamic arithmetic processor must be able to support
matrix arithmetic. We demonstrate the matrix operations
involved in solving a linear system A.-x=b

Step 1. L-U decomposition A => L-U;

Step 2. Triangular matrix inversions Lt Uy

Step 3. Back and forward substitutions y = L1.b,
x = Uly.

Three arithmetic networks are required to perform the
above . three steps. A hexagonal array is used for L-U
decomposition(Fig.10a); a triangular array for matrix
inversions(Fig.10b); and a pipeline ring for back
substitution(Fig.10c). In setting up the hexagonal array,
noncompute delays are used to equalize the delays oo
various data paths.

To sum up, the proposed PEs to be used in arithmetic
networking have three important functional features:

(1). All PEs are identical and universal in functionality
Each PE is a 7-stage pipeline that can be programmed to
execute simultaneously two arithmetic/logic operations
The only exception is division, which must be executed by
a pipeline-chain of three or more PEs.

(2). Each PE has a hardware complexity comparable’ with
the Reciprocate pipeline in Cray-1. A 10-PE arithmetic
multiprocessor can support the various arithmetic
operations defined in section 2.

(3). Each PE generates at least one result per pipeline
cycle. By changing the arithmetic network size, the user
can trade between the accuracy and the number of PEs to
be used. This tradeoff does not affect the throughput.

5. Performance Analysis

Compared with static arithmetic pipelines with fixed
interconnection links (systolic arrays), our dynamic
arithmetic processor is much more flexible from application
point of view. In fact, by using a crossbar as the routing

network, a dynamic processor can establish all desired
interconnection patterns. However, the {lexibility is
obtained at the expense of two additional overheads:

(1). The network recon figuration overhead: Whenever a
network is to be set up, the PEs must be programmed and
the routing network must be reconfigured to establish the
desired connection. This overhead, denoted by a, is often
dominated by the control time of the routing network.

(2). The network delay: Because the PEs in an arithmetic
network are connected by the routing network, data
transmissions from one PE to another must experience
additional network delays. the delay is g pipeline cycles, if
the routing network is clocked with g stages.

The following parameters are used to analyze the
performance of the proposed arithmetic multiprocessor.
The computation consists of N operand blocks(N=1 for
scalar operations). Each block will be used in m
arithmetic operations, which will be performed by an
arithmetic network of m PEs. This computation is
performed by the proposed multiprocessor in the following
way. First, a network of m PEs , which has a critical
dataflow path of length ¢, is set up in o pipeline cycles.

Each operand block passes through the allocation
network twice for operand fetching and result storing.
Because the critical path is the longest dataflow path in
the network, the operand block will pass ¢+1 PEs and pass
the routing network ¢ times. Suppose that each PE has k
pipeline stages(& = 7 in the proposed design), then the
fill-up time of the arithmetic network, is 28 + (c+1)k + ¢8.
After the network is filled up, an operand block is
processed for every pipeline cycle. Denote by T, the total

time needed to process the NV operand blocks, we have
T;= a+ [(c+1)k + (c+2)8] + N-1.

The proposed multiprocessor is compared first with a
processor having a single PE and then compared with an

equivalent systolic array with m PEs. For a single-PE
processor, it requires at least T1 =k + mN - 1 cycles,
where mN is the total number of arithmetic operations to
be performed. The speedup of the arithmetic multi-PE
network over a single-PE processor is then:
P T, k+mN-1
m™OT, at(c+1)k+(c+2)8+N—1

If the above computation is executed by a static systolic

array, there are no reconfiguration overhead (a=0) and no

network delay (§=0) involved. We obtain the following
computation time for a static systolic array:

TS = (C+1)k + N- 1

The throughputs of the static systolic array and of the
dynamic arithmetic network are /T, and 1/T,
respectively. Thus (1/Td)/(l/Ts)=T:s/Td represents the
performance ratio of the dynamic multi-PE network
versus static systolic arrays. This performance ratio is
plotted in Fig. 11 under the assumption o = 50, k = 7,
and ¢ = 15. The curves correspond to two dynamic arrays
using a crossbar routing network and a Benes network
respectively.

A dynamic arithmetic processor can perform equally well
as a static systolic array, if the problem size is sufficiently
large. This is especially true for a moderate size network,
say with 64 or less PEs. A 10-PE network can support
most compound arithmetic computations. Such a processor
can maintain 80% of the peak performance of a static
systolic array for all the compound arithmetic functions.

It is fair to conclude that for general-purpose
applications, the flexibility in implementing many
different algorithms in the proposed dynemic
multiprocessor is far more important than a minor speed
degration due to the added network overheads. There is no
doubt that static systolic arrays are still superior for
implementing fixed algorithms. However, they become
useless when the application algorithms are changed.

We analyze below the performance of a dynamic
arithmetic processor with, say m=10 PEs. We are
interested in finding the throughput of the processor in
evaluating typical compound arithmetic functions. The
throughput is measured as the number of floating-point
operations executed divided by the total computation time
T, where 7 is the pipeline cycle time.

The benchmark computations include a complez vector
diviston, an interval vector multiplication, an N-point
FFT computation, and an arithmetic loop with a single IF
statement, as specified in section 2. The arithmetic
networks to be used for performing these functions were
shown in Fig. 7 and 8. We have

T /=a+(c+1)k+(c+2)+N—1=66+12c+N

271

for the assumed values of ¢==50, f=5, and k=T.

The following throughput expressions are obtained
through simple operational analysis. For example, a
Complex Divide needs to execute 6 multiplications, 2
divisions, and 3 addition/subtractions. Altogether there are
11 floasing-point operations involved in a single complex
division. An N-component vector division needs to
perform 11N operations. From Fig.7a, the arithmetic
network: for Complez Divide has a critical data path of
length c=4. Thus the total computation time is
T =(66+12c+N)-=(114+N)-r. Thus LIN/(=T,) gives
the thrcughput expression.

1IN
Throughput(Compler Divide)::h(114+N)r
Throughput(Jnterval Multiply)=— -
iroughput(Interva ulttp y)_(90+N)r
12Nlog ,N
Throughput(FFT)==r———
iroug PU(FT) (156+MOK 21\[)1’
st 1 1 TN
roughput(/F in "”)_(90 +N)r

The throughput performances are plotted in Fig. 12. If
the pipeline cycle time is - = 10 ns, a 10-PE arithmetic
multiprocessor can achieve multigigaflops performance for
most cornpound arithmetic computations. Furthermore, the
above computations achieve half of the maximum
throughput, if N > 114, 90, 19, and 90 respectively. This
implies that the dynamic arithmetic processor can
significantly speed up compound arithmetic computations
even when the vector has only moderate length.

8. Conclusions

With today’s VLSI technology, it is not premature to
consider implementing advanced arithmetics directly in
hardware. On the other hand, designing a very powerful
arithmetic multiprocessor with the capability of supporting
various types of compound arithmetics is still a yet-to-be-
challenged task by computer industry . This paper suggests
a networking solution to this problem. Performance
analysis shows that if the problem size is reasonably large,
the dynamic arithmetic multiprocessor network can
perform almost equally fast as their static counterparts.
Continuing works are being conducted on the instruction
set design, the VLSI design of the PE, and the effectiveness
of using the proposed multiprocessor for solving partial
differential equations(PDE) problems.

References

1. Baugh, CR. and Wooley, B.A. *A Two's Complement
Parallel Array Multipication Algorithm®. IEEE Trans. on
Computers C-22, 12 (Dec. 1973}, 1045-1047.

2. Chin, CY. and Hwang, K. *Packet Switching
Networks for Multiprocessors and Dataflow Computers®,
IEEE Trans. on Computers C-88, 11 {Nov. 1984),
1110-1111.

i

3. Cray Research, Inc. The Cray X-MP Series of
Computer Systems. Minneapolis, Minnesota, 1984.

p 4. Handler, W. "The Impact of Classification Schemes on
Computer Architecture®. Proc. Intl. Conf. on Parallel
Processing (1977), 7-15.

5. Hsu, F.H., Kung, H.T., Nishizawa, T., and Sussman, A.
LINC: The Link and Interconnection Chip. Dept. of
Computer Science, Carnegie-mellon Univ, May, 1984.

8. Hwang, K.. Computer Arithmetic. Wiley & Sons,
New York, 1979.

7. Hwang, K. “Multiprocessor Supercomputers and
Scientific Applications®. IEEE Computer Magazine
(June 1985).

8. Hwang, K. and Cheng, Y.H. "Partitioned Matrix
Algorithms for VLSI Arithmetic Systems®. IEEE Trans.
on Computers C-31, 12 {Dec. 1982), 1215-1224.

9. Hwang, K. and Xu, Z. Dynamic Systolization for
Developing Multiprocessor Supercomputers. TR-EE 84-42,
School of Electrical Engineering, Purdue University, Oct.,
1984.

10. Ni, L.M. and Hwang, K. *Vector Reduction
Techniques for Arithmetic Pipelines®. IEEE Trans. on
Computers C-34, 5 (May 1985).

11. Snyder, L. *Introduction to the Configurable, Highly
Parallel Computer*. IEEE Computer (Jan. 1982), 47-34.

ABC D

(a) Dataflow Graph (b) Multi-PE Network
PE Network
=1
Fi}s (28
%:El——?:;"

{¢) Network with Delays (d) Network Implementation

Fig.2. Mapping a dataflow graph into an
arithrnetic network

Peripheral and Frontend System

‘ e ‘

I/O Subsystem je--------

Q
1
f Shared Memonu !
""""" —1" 7771 Global
Global Network -~ =+ Controller
i Procesors "»:—_:-:
Pn] P.]
|
]
L Interprocessor Network]- ——————— -

() The multiprocessor structure

Local
/o ™

Global Network Global Controller
dd Local
m Instruction | Controlier
Stream
Arithmetjc Network
Loul_ , Processing Elements |
Memories H :
i, A
% ' x|
5 i - o 1
| it 2 e e i
i z 1]l s F4 .
£ R el !
: 5 [- s|!
: i v : E ;
L '
SN =M= .
e e mmm———— J4
Interprocessor
Network

(b) The arithmetic network in each processor
Fig.1. The system architecture of the Remps

Receive

T

Exponential/lLogic
1

1]

Multiply /Add
I

ROM

Exponential/Logie
1

Multiply /Add
n

Normalize

Transmit

Fig.3. Arithmetic pipeline in each PE

- r' 'Y
t e —
i pe=

Branch Sh."n - Delay

Recelve (Control Registers] o ect
4

. . . . H

M ' : .
4

] Multiplexer
Transmit

pt ¥

E

an

Fig.4. The Receive and the Transmit stages in FE

Transmit

x ty

(a) Fixed-point addition/
subtraction

X y 1z
Y
Receive

Exponiential - |
Expontential
Add

Multiply - 1

1

Expontential - Tl

Expontential
ompare

and Mantissa
Alignment

Normalize

Transmit

y+xey

Recelve ,

Logic-1
AND

b

Logie-II
OR

Transmit]

2V{yA2).

(c) Loglic Operation

Fig.6. Typical arithmetic functions performed

by each PE pipeline

273

A

U

all el s
U U

u_,eft Shift,Complement,Bypass —[

Ugl

A'+B'+C'+8"

U Sum

Carry Lookahead Adder

S R S é
. ; j
Limy Ljm1 202 ﬂB

Carry

O/P (one of the 4 operations)

Fig.5. The Multiply/Add stage in each PE pipeline

(ac+bd)/(c:“;+o!2) (be—ad)/(c?+4?)

L L 1/e4by)
> 1
axd| bXc }°‘?
‘ b b0
/ axc Xd S
(a) Complex Divide T
a ¢ 1;’ c d b
]
max (ac,ad,be,bd) min (ac,ad be,bd) +
{ ¢ L2
Compare Comparé]
c2
max | min max | min
ompare Compare
[
axC‘ bXc ’,
axd bxd
—)
’ (b) Interval Multiply
a i b

c d
Fig.7. Arithmetic networks for complex divide
and interval multiply

bt

1

] i Y——_—Yl if Xi>0 else Y2) } y
Select ; >
- Y,=AB+CD PE| | PE| | PEY [P
ROM 1 / X(Condition) I 2
[&

Y2=AB-CD 2
P E' PEz
TR I8 T2-AB)

Mattply 11| B
B PE| |F
Transmit _] 5 é

p PE
A, |B EJ 4. t 4
| Receive _l FE, r l E) G cosé Hr F
-~ A BC D (a) Butterfly Computation
Multiply - Minus

2-A,B {(b)-Branch Merging

Fig.9. Arithmetic networks for butterfly and branch operations

Transmit] 2 -
(- b F————— :::
: : "
s PE [+ ¢ ::
: e
Ap=1/B) m =<
v / p—e 1
. b S
Fig.8. Floating-point reciprocation 7 %ﬁ T
. . —
using two PEs in cascade External { ==PEs . —
* 3 ; >. ——.r:
e 2] wat | AN -
19- 19
:__,.PEv — —
. ") [.,
8 ' =3
25 " w25
3 = ! — J
s 11(Routing Netwark
Qutputs
5 {a) L-U deccmposition
[
' Inputs Routing Network
= .
- E= =) Ontpet Input —— PE, -
N ,
[ﬂ—--\ External Inputs 3 l v 3
PE, ~—
——— 4 4
\
B
m . Feedback 5 . —= 5
>< Inputs 6 PE; é _, 6
-
/" \
a, "IrE, ' 7
a — 8
Oulput

(c) Back sukstitution

(b) Triangular matrix inversion

Fig.10. Arithmetic networks and multi-PE implementations

for solving linear system of equaticns

274

Performance Ratio, T,/T,

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

a, 1, N-Point FF'T (Fig.9a)
2, Complex Divide (Fig.7a)
3. Interval Multiply (Fig.7b)

5 4, Branch Merge (Fig.9b)

£

5o

g

£ g0t /" .
ol /
2t
2*r
22

1.0[-
——
———— Crossbar
——
T —————— Benes 0.9}~
N=2048
. 0.8}- Crossbar Network
~ S 0.7}-
\\ =
[=]
\\ Crossbar 5 06 Benes Network
N=64 [—
\ g 0.5
Benes]
£
5 04 —
)
& 0.3
0.2F
Network Size (m 0.1
(m) Problem Size (N)
1 1 1 1 1 1 I 1 1 1 1 ! L 1 1
4 32 64 128 258 512 18 32 64 128 256 512 1024 2048 4096
{a) Performance vs. network size (b) Performance vs. problem size

Fig.11. Relative performance of dynamic arithmetic networks and static systolic arrays

il

92 gt 96 98 ol

on the multi-PE arithmetic networks

275

i L L - J i *

" Froblem Size (N)

Fig.12. Throughput performances of several compound arithmetic functions implemented

