NOMALIES IN THE IBM ACRITH PACKAGE

W. Kahan and E. LeBlanc

ABSTRACT

The IBM ACRITH package of numerical
~software is advertised as reliable and easy to
~ use; but sometimes its results must astonish or
confuse a naive user. This report exhibits a
few of the surprises. For instance, a finite con-
tinued fraction, easy to evaluate in two dozen
keystrokes on a handheld calculator, causes
ACRITH to overflow either exponent range or
15 Megabytes of virtual memory. Lacking
access to source code, we must speculate to
explain the anomalies. Some seem attributable
to small bugs in the code; some to optimistic
claims or oversimplifications in the code’s docu-
mentation; some to flaws in the doctrine
underlying the code. We conclude that
different techniques than used by ACRITH
might have been abcut as accurate and yet
more economical, robust and perspicuous.

Introduction

This is a report, preliminary and very likely to
change, on the “High-Accuracy Arithmetic Subroutine
Library” ACRITH offered by IBM for use with their VS
Fortran. An imminent new release of ACRITH may not
have the same bugs as we found when we ran Version 1
Release 1 Modification Level 0 of ACRITH on our IBM
3081K. And our speculative inferences, necessitated by
lack of access to source code, may have to be revised
should more information about the algorithms actually
used in ACRITH be released after this report’s first ver-
sions appear.

’ . The laudable intent of ACRITH appears to be the

A . .
provision of reliable numerical results, accurate to very

“‘mearly the last digit displayed, for a selection of

numerical tasks encountered by people whose expertise,
however refined in other areas, does not include numeri-
cal error analysis. Ideally, results should be correct
regardless of roundoff, cancellation, ill-condition or
numerical instability. ACRITH employs two strategies
to approach this ideal. First, to deliver for each desired
result either an interval that surely contains it, or else a
warning that no such interval could be found, ACRITH
uses Interval Arithmetic, a facility described in several

CH2146-9/85/0000/0322$01.00 © 1985 \EEE

322

Mathematics Department
University of California at Berkeley
Version dated Mar. 13, 1985

books (Alefeld and Hertzberger[1], Moore[2] and Rokne
and Ratschek{3]) and not controversial. Second, to
deliver narrow intervals that define its results accurately,
ACRITH must exploit extra-precise arithmetic, for
which the necessity is indisputable.

What s controversial is the way ACRITH performs
extra-precise arithmetic. It requires a Super-
Accumulator to calculate scalar products exactly, as
prescribed in the book [6] by Kulisch and Miranker, and
applies it according to a methodology described in an
IBM Symposium [7] edited by them. Also disputable are
some of the claims in the promotional literature [0, 10]
for ACRITH; it does not always solve problems so
cleanly as that literature suggests. Here are examples:

Matrix Multiplication — ACRITH always computes
a product of two matrices accurately with every element
of the product correctly rounded; that is the foundation
of ACRITH’s methodology. Now suppose we needed
comparable accuracy in the final product of several
matrices. It could not be achieved by simply invoking
ACRITH's matrix multiply repeatedly; trying that could
produce utterly inaccurate results because the roundoff
in the first multiplication, albeit correctly rounded, could
be amplified by subsequent multiplications. Something
else has to be done. In accordance with the methodology
advocated by Kulisch and Miranker [8], Rump [11] and
Bohm [4] for computing polynomials, we tried to calcu-
late the matrix product by solving an enormous triangu-
lar system of linear equations, but that took hundreds of
times too long and delivered inaccurate results. Finally
we devised a quick and short but devious method to get
correct results; but is most unlikely to occur to the naive
users targeted as potential customers for ACRITH.

Matrix Inversion The accurate inversion of a
21X 21 Hilbert matrix, with its condition number over
10%, is a prodigious accomplishment for a program that
allegedly carries only about 18 significant decimals for all
intermediate variables. In demonstrations at symposia
like the one at the Mathematics Research Center in
Madison Wisconsin in Sept. 1984, in ACRITH’s General
Information Manual [9, pg.31}, and in scientific papers
on its methodology (Rump, [7, pg.53, pg.68]), that inver-
sion is portrayed as typical of the way ACRITH tri-
umphs over problems that would confound conventional

methods. But when we shuffled the columns of that Hil-
bert matrix ACRITH could not invert it even though
shuffling columns does not affect the condition of a
matrix. ACRITH refused to invert a 7X7 matrix that
was inverted accurately in each of single-, double- and
quadruple-precision arithmetic by standard LINPACK
[14] library programs. ACRITH either refused to invert
or obtained pessimistic estimates for inverses of certain
3X 3 matrices that are all obviously well-conditioned by
its own definition [10, pg.10]. None of the matrices
mentioned so far is typical of matrices that walk in off
the street every day to be inverted, but they are all good
examples of the pathologies that justify ACRITH’s
existence. Neither can the results cited above be
declared typical of the way LINPACK or ACRITH
might handle similar examples. We know LINPACK's
success with the 7X7 example was a fluke because we
know from LINPACK's published source code how it
typically copes with various pathologies. ACRITH’s typ-
ical behavior is unpredictable because its source code is
unavailable for critical scrutiny.

Real Zeros of Polynomials — The ACRITH pro-
cedure DPZERO purports to locate a real zero of a poly-
nomial given its coeflicients and a guess at the zero.
What is claimed for the procedure {10, pg.54] is that it
will bracket the zero inside a relatively narrow interval
unless the procedure reports that such an interval cannot
be found. We found a polynomial of degree 13 whose
real zero 1/3 matched our guess to several significant
decimals, but DPZERO produced the wide interval
[1/9,1/V3] as a result without comment. We got
better results than that on a handheld calculator.

Arithmetic Expressions - ACRITH contains two
utility programs, FTRANS and FEVAL, that purport to
evaluate arbitrary rational expressions to ‘high accu-
racy” [0, pg.47] (about 15 significant decimals) despite
whatever cancellation may occur in intermediate calcula-
tions, provided no over/underflows occur. However, rela-
tively simple polynomials and rational functions,
expressible with fewer than 50 keystrokes, can cause
ACRITH to overflow 15 Megabytes of memory; and
simpler rational functions can cause ACRITH to fail
because of floating-point overflow beyond about 107
even though the desired rational function and all its
subexpressions lie between 0.001 and 1000. The only
pathology in these examples is that ACRITH doesn’t like
them.

Speed — To achieve more reliable computation than
they thought was afforded by conventional modalities,
the designers of ACRITH were willing to sacrifice some
speed. The extent of that sacrifice is hard to gauge, and
hard to reconcile with their claims [9, pg.35] that
ACRITH is usually not much worse than six times as
slow as conventional calculation. The rational expres-
sions mentioned above took thousands of times longer
for ACRITH to compute than would have been required
for quadruple-precision. Worse than that is the unrepro-
ducibility of execution times in the face of what might

323

appear otherwise to be inconsequential changes in data.
We found a well-conditioned matrix that ACRITH
inverts in times that change by a factor larger than ten
when the matrix is reflected in its skew diagonal,
although the effect of this reflection upon the inverse is
merely to swap its first and last diagonal entries.

Evidently ACRITH is neither efficient nor reliable
enough to be embedded in an engineering application
and left unattended. The same might be said of much
numerical software most of which would not repay
further study. ACRITH is distinguished by extraordi-
nary claims made for its reliability [9, pp.1,3,11,35; and
10, pp.ii,11] and for the rationale [9, pg.3; and 11]
behind its methods. We seek to understand how that
rationale helps or hinders progress towards ACRITH’s
goals.

Multi-Precision vs. ACRITH

To keep this report self-contained, we shall not
resort to the terminology introduced by Kulisch and
Miranker {8 and 7] but shall instead describe how
ACRITH’s approach to extra-precise calculation differs
from conventional wisdom.

Adequate support for certifiably reliable computa-
tion cannot possibly be derived from only the data types
ARRAY, INTEGER /REAL /COMPLEX, and
SINGLE/DOUBLE PRECISION proffered by the most
popular computer languages. They lack the essential
ingredient INTERVAL. And if, instead of merely
announcing that a problem is too nearly pathological, we
wish to solve it, then the extra ingredient we need is
EXTENDED PRECISION, extended to an extent
coarsely controllable by a programmer. Note that no
amount of high precision is enough by itself to guarantee
correct results; error-analysis is necessary too [16], and
automatic error-analysis is practical only with Interval
Arithmetic. Increasing precision, like increasing memory,
serves solely to diminish the set of problems that cannot
be solved, and hence must submit to a law of diminish-
ing returns. The probability that higher precision will be
needed to solve problems declines exponentially with the
wordlength, whereas the time consumed grows super-
linearly, especially for division. To compute efficiently,
programmers must employ high-precision arithmetic par-
simoniously.

If a programmer knew in advance where high preci-
sion will be needed and how much will suffice, he could
use compile-time declarations'to :allocate statically as
much memory as that needed: precision requires. But
then, if he guessed wrong, he might have to recompile
with revised declarations- and recompute. Another
approach is to determine adaptively at run-time how
much precision is needed; which entails dynamic memory
management and its-associated overheads, which matter
only when the:precision in use is not very high, which is
most of the:tiiné. Evidently, managing high precisions
efficiently can be complicated.

"
f
i
i

Kulisch and Miranker [8 and 7] would cut through
those complications. Numerically naive computer users
are to be provided with a library of pre-programmed
procedures for all their computaticnal needs. The imple-
mentors of that library are to be protected from needless
complexity by a methodology that forbids explicit men-
tion of any higher precision than is being used to store
input data and to display final results. Therefore extra-
precise calculation must occur surreptitiously, hidden
within the subterfuges enumerated in the following see-
tion. Only the first of them is untainted by controversy.

ACRITH’s Methodology

1. Iterative Refinement is used to compute, in each
iteration, a correction term that refines the accuracy
of what was computed in the previous iteration.

2. Every variable is approximated implicitly to extra
precision by an unevaluated sum of correction
terms, each term much tinier than its predecessor,
and each represented exactly to the same precision
as the data. Only as much precision as is needed
appears to be provided, perhaps limited by a prior
static allocation of memory for the terms; but the
scheme is obliged to re-evaluate the same scalar pro-
ducts repeatedly during iterative refinements, so it
does waste time.

3. TIterative refinement requires residuals that reveal
how much an approximate solution dissatisfies the
equations to be solved. By a mechanical translation
process, each variable can be replaced symbolically
by the sum of corrections that approximates it, and
then residuals can be expressed in terms of scalar
products of correction terms. A Super-Accumulator
is introduced to evaluate such scalar products
exactly, despite massive cancellation, before round-
ing them to the same precisicn as the data; there-
fore residuals can almost always be calculated as
accurately as needed to obtain one more correction
term. But the translated expressions are cumber-
some.

4. The super-accumulator is the only site in ACRITH
where extra-precise arithmetic is performed expli-
citly. Moreover, in its pristine form the methodol-
ogy prohibits any reference to the super-
accumulator other than to round off the exact value
of a scalar product. Consequently multivariate
polynomials cannot be evaluated with the aid of
products of extra-precise intermediate results, nor
by rapid recurrences with arrays of extra-precise
accumulations, but must be calculated slowly via
nested iterative refinements using at any instant
only one extra-precise entity, the super-
accumulator. Finally, since the super-accumulator
sums products but cannot cope with quotients,
almost every rational function must be first
transformed into a ratio of polynomials before
ACRITH can evaluate it accurately regardless of
how inauspicious that transformation may be.

324

The foregoing overview of our view of ACRITH
would probably not persuade a champion of ACRITH's
methodology to change his mind, but it may explain why
we searched where we did for anomalies that, once
found, undermine confidence in ACRITH's reliability.

How reliable is ACRITH?

Software is considered reliable to the extent that it
conforms to reasonable expectations. Ideally, reliable
numerical software never misleads, almost always works
efficiently, and fails to cope efficiently only with prob-
lems that lie near or beyond the boundary of what is
economically feasible with the resources available. But
this ideal is too much to expect in general. At best, this
ideal can be approached to a degree that depends upon
the prowess of programmers, the clarity of explanatory
documentation, the modesty of promotional claims, and
the skills and perceptions of the software’s users. They
form a picture of the software’s effective domain,
bounded perhaps by a no man’s land in which perfor-
mance is unpredictable. Typical examples, good and
bad, can serve as landmarks to delineate that domain
experimentally when it cannot be revealed by analysis.

Lacking source code to analyse, we cannot describe
ACRITH’s effective domain with confidence. If we were
told only that

“The key feature of any of the algorithms of
the ACRITH Subroutine Library is that all
results are absolutely reliable; that means that
no false result is possible.” [10, preface],

or if the error codes listed in its documentation were our
only guide, we might infer that ACRITH delivers simply
either an error code or else an interval containing each
desired numerical result. But Interval Arithmetic
without a Super-Accumulator already does that, espe-
cially if nobody cares whether intervals are as accurate
(narrow) as the data warrants, whether results appear
quickly, whether correct usage requires special skills, nor
whether error messages appear often when the data has
no intrinsic pathology. ACRITH's architects aimed
higher.

“The routines provide solutions with high accu-
racy which could not be achieved previously
with conventional means. High accuracy
means that maximum tolerances for the exact
solution of a specified problem are delivered
which differ only in the last figure of the
mantissa.” (10, preface].

That should allay any qualms about accuracy. As for

speed, ...

“The run time performance of the ACRITH
routines is generally of the same order of mag-
nitude as of conventional ones. ... For instance,
a run time increase by a factor of 6 to 8 rela-
tive to a widely used conventional routine was
measured for solving a system of linear equa-
tions of order 100 in double precision.”” [9,
pg.35].

The factor of 6 is roughly what S. Rump [5, pg.4}
predicts from theoretical considerations. Who can use
ACRITH?

“..every FORTRAN programmer who is writ-
ing programs to solve linear and linearized
problems of numerical algebra. ... A reasonably
experienced FORTRAN programmer with
some background in numerical algebra ...” [9,
pg.4-5].
No mention of error analysis as a required skill. On the
contrary,
“If the situation is prohibitively ill-conditioned
the user will be told by a return code and an
error message of his routines. Thus he will
always be safe in his computations.” [9, pg.11]
. “If overflow occurs in an algorithm, usually
no result can be computed. This condition is
caught with the error indicator IER.
Underflow generally does not exclude the com-
putation of a correct result of an algorithm,
but may influence the accuracy of the result -
that means the width of the resulting intervals.
This condition is not considered an error.” (9,
pg.33].
Apparently underflow may degrade ACRITH's accuracy
to the extent that, for instance, a calculated value z that
should be zero may instead be located in an interval
€ <z < ¢€ where the underflow threshold
€ = 16"% =~ 5.4#107. Otherwise there is no indication
that ACRITH might produce an error message that the
data does not deserve.

These claims for ACRITH and its methodology are
formidable; and they are backed by widely published [4,
8, 7 and citations therein] examples over all of which
ACRITH triumphs, whereas conventional methods fail
allegedly for lack of a super-accumulator. Are these tri-
umphs typical of the results we could all enjoy if we
adopted its new arithmetic methodology?

Triple Matrix Product, P — ABC

ACRITH's procedure DMAMB computes the pro-
duct of two matrices to full accuracy, but no procedure
built into ACRITH computes the product of three
matrices accurately. Can such a procedure be devised
easily?

Three matrices A, B and C were constructed with
ostensibly random integer entries subject to the require-
ment that ABC = 0 but AB 5¢ 0 and BC £ 0. These
matrices were scaled to possess large entries, but not so
large as to cause overflow while ABC was being calcu-
lated. Here they are:

12 13 -1 1 11§ -8 -10
93 34 11 -12 9 2 -1 10
A=al | 5 4 3 =P8l 7 3 0 &
24 35 -11 13 3 -5 10 -1

-1 -5 4 -3
11 214 6 a = 2058788401083655 #16'°
C=1|19 3 10 g | Where 3= 6550690367084357 #16°
0 8 612 ~ = 5146971002709137 #16'°

Consider the calculation of P = ABC. The
straightforward approach calculates T := AB, then
P := TC, where the products are performed using the
ACRITH matrix multiply routines DMAMB and
DIMAM, and stored to double precision. This method’s
results, presented in the first line of table “P = ABC”
below, are very inaccurate because actually
T = AB ~ R, where R consists of roundoff, so the value
computed for Pis ABC -~ RC = -RC, which is huge.

Since P = ABC is a polynomial in the elements of
A, B and C, ACRITH’s methodology can be invoked to
evaluate P by solving a lower triangular system of equa-
tions, using iterative refinement to achieve full accuracy.
Here is such a system:

1 0 0 X c

PSS - (5)

0 A -1 P 0
where the entries are all square matrices. The accuracy
and the speed with which ACRITH calculated the
matrix product P using this method are tabulated in the
second line of table “P = ABC" below, in which
€ = 16™% is the smallest positive number representable
in double precision. Evidently both the time taken and
the accuracy achieved are disappointingly worse than a
naive user might have expected from ACRITH’s docu-
mentation. What has gone wrong?

We suspected that ACRITH did not notice that the
system was triangular but, instead, performed Gaussian
elimination with pivotal exchanges, thereby converting
the equations into something grossly ill-conditioned.
Consequently, iterative refinement was slow to converge
and stopped prematurely.

To avoid what we thought had gone wrong, we
reformulated the problem as an upper triangular system

-1 A 0 P 0
3 8118- 1)
0 0 -1 X C
The results of this calculation are presented in the third

line of table P = ABC’ below. The time was much
better, but the accuracy much worse.

Here is a better way to use ACRITH’s matrix multi-
ply procedures to compute P = ABC. Define:
T := AB(rounded); R:=(A -1) [l;] ; and

B
if (A -1 4)[;{

=0 then P:=(T R)(§)

else - (subsequent ‘refinements were not needed) .

These formulas conform to the Kulisch-Miranker discip-
line, but at thé eost of computing AB three times. We
rearranged the formulas slightly to compute AB only
once by referring directly to the super-accumulator; this

e

renegade algorithm is the one whose results appear in
the last line of table “P.== ABC" below.

P = ABC?: Triple:Matrix Product Calculations

Method ical Element of P | Execution Time
(AB)C ¢ [-10% 1059 .006
Lower Tri -w::c,m::s 3.07
Upper Triangy -10%%¢,10%¢ .34
Rene; 0.0 .007

Times are ds on an [BM 3081K.

elements in table “P = ABC" above are typi-

Agﬁélements found in P after the various methods
w ied; the intervals returned by the first three
methods were all within a factor of about 10 of the typi-
cal ‘element shown there, and for the fourth method P
was exactly zero.

The calculation of P illustrates a problem that
arises whenever two of ACRITH’s procedures are com-
posed. Even if the errors in the first procedure’s output
are confined to the last digit delivered, they can be so
magnified by the second procedure as to swamp the
desired result. That is what happened when the error R
in the first product AB was expanded into RC by the
second product. To avoid such error magnification, the
first procedure's result could be passed as a multi-
precision entity, a series of corrections, to the second
procedure; but ACRITH’s procedures are not designed to
accept multi-precision inputs. Instead, a new procedure
has to be devised from scratch to accomplish the desired
result. We think this problem exposes a fundamental
flaw in ACRITH's methodology; anyway, it might well
defeat a naive user.

Inverting The Hilbert Matrix

When n is large the n-dimensional Hilbert matrix H
is well known to be extremely ill conditioned. The ele-
ments of H are (H)=(k/(i+j-1)) for
1< 4,7 < n. Strictly speaking k should be 1 but, to
avoid distracting rounding errors when the elements of H
are constructed in the computer, it is customary to
choose k = lem(1,2,3,...,2n-1). Here lem is the least
common multiple function. This definition makes the
entries of H integers representable exactly provided n is
not too large. The elements of kH™! are all integers too,
and their calculation is a standard test for floating-point
matrix inversion routines.

Among the “Typical Scenarios” in ACRITH's pro-
motional literature [0, pg.31], and among the examples
that are cited [11, pg.68] to vindicate the Kulisch-
Miranker methodology, pride of place belongs to
ACRITH’s inversion of a £1X21 Hilbert matrix H on an
IBM machine carrying only about 16 significant decimals
for all intermediate calculations except the scalar pro-
ducts in the super-accumulator. Since H has a condition
number over 10%, this is a phenomenal accomplishment
if it is truly typical. Could it be an accident?

326

Exchanging columns of a matrix merely exchanges
corresponding rows of its inverse with no change to its
condition number. After we swapped columns 1 and 19,
2 and 18, 3 and 17, ... of H, ACRITH refused to invert it
but signaled instead “The matrix is extremely ill-
conditioned or singular; no inclusion could be com-
puted.” So ACRITH's performance upon H is not typi-
cal.

We cannot say what kind of performance is typical
for ACRITH because we do not know what method it
used to invert H. We do know that the algorithms
Rump described in [11, pg.62, pg.65], and which might
have been presumed to have produced the results for H-1
he presented three pages later, are not the algorithm
ACRITH uses. We tried them; they cannot improve an
approximation to H~! by iterative refinement unless that
approximation is H7! itself exactly. Besides, during a
conversation in Madison Wisconsin in Sept. 1984, Rump
admitted that the results in his paper were not obtained
by the methods described therein but by some others he
could not describe because they were ‘“‘Proprietary.” We
have tried to guess what ACRITH does and, with Dr.
K.-C. Ng's help, have devised algorithms that iteratively
refine triangular factors of H before using them to com-
pute an approximation to H-! that can subsequently be
iteratively refined. Such an algorithm seemed capable of
failing or succeeding capriciously depending upon the
ordering of the columns of H. Much better algorithms
are easy to find, especially by one willing either to
exploit the IBM 370’s quadruple-precision hardware or to
access the super-accurnulator in a renegade way contrary
to the Kulisch-Miranker doctrine, but they are not the
subject of this report.

Another Atypical Example

The numerous examples that show how ACRITH
triumphs where mundane methods fail are clouded by
the suspicion that some of them may be atypical.
Therefore a potential user must discover by trial and
error what ACRITH can do. Such trials can mislead
too. Consider the following matrix D devised along lines
suggested by Prof. James W. Demmel of New York
University’s Courant Institute:

1 p 0 0 o0 o

0 1 0 o0 0 o

0 o 1 0 0 o0 p
D=0 o o 1 0 0 p%2

60 0o 0 o0 2 o 2

0 0 0 0 0 1 g

A LRI Y

We set p = 27! and submitted D to be inverted on the
IBM 3081K in single-, double- and quadruple-precision
respectively by the pairs of standard LINPACK (14]
library routines SGECO and SGESL, DGECO and
DGESL, and QGECO and QGESL. (The last two are
obvious adaptations of the two before.) The computed

inverses were all correct to the last digit of their respec-
tive precisions, as was verified by comparison with an
inverse computed symbolically. On the basis of this
experience, D seems well-conditioned.

ACRITH’s procedures INV and DINV {10, pg.65,
pg.67] perform “Inversion of a single [double] precision
point matrix with high accuracy.” (A ‘‘point matrix” is
one whose elements are all ordinary numbers rather than
intervals.) Both procedures signaled that D is too ill-
conditioned to permit an inverse to be calculated. How
can this signal be reconciled with the correct inverses
returned by LINPACK? LINPACK and ACRITH are
both right!

The condition number of D is roughly
48/p* =~ 3.5#10'8, just beyond what can typically be
inverted using IBM’s double-precision format (14
significant hexadecimal digits) to hold triangular factors
and other intermediate results. However, D is so con-
trived that in single- and double-precision LINPACK'’s
rounding errors will cancel out, leading to an atypically
correct result; and in quadruple-precision LINPACK
commits no rounding error at all. On the other hand,
ACRITH commits a rounding error forced upon it by the
Kulisch-Miranker methodology, and D is so designed
that the rounding error blossoms despite the super-
accumulator. D is just that rounding error away from
singular, so ACRITH’s warning is deserved; almost all
matrices so ill-conditioned as D lie beyond what we
believe is ACRITH’s effective domain.

Suppose a numerically naive programmer wished to
invert matrices accurately; how might the foregoing
results influence his choice between ACRITH and, say,
LINPACK? Given results only for H (the Hilbert matrix
of the previous secticn), or only for D, he might choose
badly. Given both results, and results for H with
columns swapped too, he would realize with diminished
naivety that neither H nor D exhibits ACRITH's potency
fairly. Too many of the examples published to promote
ACRITH and its methodology seem unfair that way;
they intimate that ACRITH never fails to deliver fully
accurate results unless some extreme pathology in the
data justifies a warning message instead. They afford no
hint that a no man’s land of innocuous problems may
exist where ACRITH gives inaccurate results, or none, or
takes far too long.

Two Well-Conditioned Matrices

The extent to which a matrix is well or il
conditioned can be measured in several mathematically
equivalent ways. One is the condition number
A M) = |IMlel|M~Y|, where | - - - || is some matrix norm
that measures the overall magnitude of a matrix analo-
gously to the length of a vector. A second is the relative
nearness of M to singularity; the singular matrix S
nearest M lies at a distance (S - M|l = [|MIl/+{(M)
roughly. A third is the extent to which relatively small
perturbations AM can become magnified by inversion;
when llaMl| is tiny enough,

327

(M + AM) - MY/IMY| can be about as big as
A M)elAMII/IMIl but not much bigger. This is quanti-
tatively what the next quotation means:

“If the solution value changes only moderately
at a specified change of a certain data com-
ponent the problem is well-conditioned with
respect to this component. If a large change in
the solution value is induced the problem is fli-
condstioned with respect to this data com-
ponent.’’ [10, pg.10]

Regardless of how he understands this quotation, a pro-
grammer must find the next ones reassuring:

“One of the unique advantages of the ACRITH
Subroutine Library is the generation of highly
accurate and verified solutions even in cases of
extreme ill-conditioning. The observed
changes in the computed solution values are
exclusively due to the specified changes in the
data. ... This will particularly cover the many
cases where the ill-conditioning has inadver-
tently been introduced through an incon-
siderate formulation of the mathematical model
(for example, by poor scaling) but is not an
intrinsic property of the situation.” [10, pg.11].

Let X be a tiny number: we used
A =167 222.3+101°. When X is small the matrix M

below is very well-conditioned because
AM) = IMllsliIM-Y| < 5 for the commonplace norms:
DL 11 -2
M=|1 a1 a|,mM=_1_|1 1 1-2
3% -3 . .
1 -1 0 2 1-22% 1+ 2x

Changing M very slightly to M + AM changes M™!
very slightly to
M+ AM)y'= M1+ MTAMM'+ - . For
instance, varying the elements of M each in its twelfth
significant decimal will vary the elements of M~! each in
its eleventh or beyond, but not in its tenth. This well-
condition was confirmed by ACRITH when we submitted
the interval matrix [(1 - 167)M, (1 + 16%)M] to pro-
gram DINYV, “Inversion of a double precision interval
matrix with high accuracy” [10, pg.68], which produced
an interval inverse whose interval elements each had
endpoints agreeing to eleven significant decimals.

Let the diagonal matrix A = diag(1/\, X\, \) and
define T = AMA. This amounts to scaling the rows and
columns as if the units used for variables had been
changed from, say, millimeters to miles, except that the
scale factors in A are all powers of 16 to avoid rounding
errors on a hexadecimal IBM machine. Consequently
T-'="A"*M-'A"! is obtained by the reverse scaling of
rows and columns and should be computed as such
despite roundoff. Indeed, T is as well-conditioned as M
in the sense that varying the elements of T each in its
twelfth significant decimal will vary the elements of 7!
each in its eleventh or beyond, but not in its tenth.

e o o

i
f‘

i

xm‘m

o
itk

i
i

_ __ _ "

Therefore T is well-cop ed'by ACRITH's criterion
quoted above, and thisishdald-have been confirmed when
we submitted rx57¢ the interval matrix
[(1-167"T, (1 + 16"%T] to DIINV. Instead of inter
vals with endpoints agreeing to eleven significant
decimals, as the .data deserves, DIINV produced
grotesque intervals with endpoints in all cases over five
times too big and with opposite signs! No warning mes-
sage. Not so accurate as was promised in the quotations

above. What has gone wrong?

We think ACRITH’s failure here was caused by
three bugs, all founded upon a misunderstanding of the
matrix_norms. Ideally, the norm apt for any specific
situation should have roughly the same value for all per-
turbations regarded as about equally (in)consequential.
The usual norms, like the root-sum-of squares norm,
have this property for most endfigure perturbations of
M, but not for similar perturbations of

2 -1 1]
T =1 -\ ‘Vi
1)2 0

In those norms, endfigure perturbations of T’s lower
right corner 2X2 submatrix look negligible compared
with endfigure perturbations of the first row and column.
To make the usual norms measure perturbations aptly,
T must be rescaled until it more nearly resembles M; but
ACRITH does not rescale correctly, if at all. Conse-
quently, ACRITH selects the element ““2" as a pivot dur-
ing Gaussian elimination, causing rounding errors that
wipe out A% this is the first bug. Wiping out A2 makes
T look singular, or very ill-conditioned, so iterative
refinement converges too slowly and terminates prema-
turely with no warning; this is the second bug. The
third bug is the omission, from ACRITH's documenta-
tion and claims quoted above, of any warning that scal-
ing problems are handled nc better by ACRITH than by
most conventional linear equation solvers.

A Polynomial Equation

Bad examples make bad generalizations. Many of
the examples, published to show where conventional
floating-point arithmetic is inferior to ACRITH and the
Kulisch-Miranker methodolcgy, come with comparisons
of results obtained from simple programs versus results
obtained for the elaborate programs that implement that
methodology [7, pg.30-46, 53, 66-68, 73, 79, 134-136; 9,
pg.7-9; 8, pg.14-18; 12]. At times the comparisons
resemble an attempt to infer, from the observation that
a. Diesel locomotive can pull a heavier train than a
coolie, . that the coolie must be weaker than the
locomotive’s engineer. But two of the cited publications,
[8, pg.15] and [12, pg.168), invite comparisons with
handheld caleulators. That sounds like a sporting propo-
sition.

328

P(z)=15943232'%-69087332'% + 138174662 - 1688801 4'°
+ 140733452° - 84440072% + 375289227 - 12509642°
+ 3127412% - 579152 + 772223 — 70222 + 39z - 1

is a polynomial that reverses sign at z — 1/3 and van-
ishes nowhere else. ACRITH has a program to locate z :

“The subroutine DPZERO computes bounds
ZL, ZR of high accuracy for a real zero of the
polynomial P which is near a specified approxi-
mation ZETA. That means that P(ZL) and
P(ZR) are not of equal sign and that the
difference between ZL and ZR is small. .. If
the zeros of P are extremely ill-conditioned (if
two or more zeros are between two successive
floating-point numbers) the inclusion may fail.”
(10, pg.54|

(DPZERO issues IER==3 to signal that ‘“Inclusion
failed” whenever it cannot find values ZL and ZR that
straddle a place z where P(z) reverses sign.)

We submitted P and various guesses ZETA to
DPZERO; from values like 0.333...3333 and 0.333...3334
for ZETA we got always an interval like [1/9, 1/V3] for
[ZL, ZR]. Although that interval does contain the zero
z = 1/3, its endpoints are inexplicably farther from the
zero than the first guess ZETA. No error was signaled;
DPZERO set IER =0 to indicate “Normal end.”

We must expect to lose some accuracy because
P(z) = (3z - 1)!'®. Therefore, if roundoff causes
P(z) £ ¢ to be computed in place of P(z), we should
expect estimates like (1 + €/1%)/3 to turn up for the
zero. In effect, we expect to get only. about one thir-
teenth as many correct significant digits for a thirteen-
fold zero as are carried during the calculation of Plz) 1t
the super-accumulator’s accuracy were unbounded there
would be no loss of accuracy when the zero of P was cal-
culated. However, values of |P| below the underflow
threshold € = 167% are flushed to 0, so we expected esti-
mates like (1 + /13)/3 = (1 & 167)/3 for the zero
from DPZERO. We do not know what bug caused
DPZERO to deliver ZI, = 0.1111--- and ZR =—
0.5773 - - - instead. Neither can DPZERO say anything
about how many times P(z) reverses signin ZL < z <
ZR except that the number must be odd.

The Hewlett-Packard HP-71B handheld caleulator
(18] carries twelve significant decimals for its floating-
point variables, and with its HP 82480 Math Pac ROM
(part no. 5061-7226) it conforms to the proposed IEEE
standard p854 [13] for floating-point arithmetic. For a
start we submitted the coefficients of P to a program
PROOT in the Math Pac to obtain estimates of all 13
{complex) zeros of P. As expected, the estimates all
agreed with z = 1/3 to at least 12/13 of a significant
decimal. Next, a BASIC program that computes P(z)
from its coefficients was submitted to a program
FNROOT in the Math Pac, and the real zero of P(z)
was estimated from various starting guesses analogous to
ZETA. Since directed roundings (OPTION ROUND
POS and NEG) are built into the calculator, we used

them during the calculation of P(z) to get lower bounds
ZL ranging from about 0.26 to 0.27 and upper bounds
ZR from about 0.42 to 0.43 for the zero, depending on
the starting guesses. Thus have we verified by a compu-
tational mathematical proof that P{z) reverses sign an
odd number of times between ZL and ZR. For this
polynomial P(z) the HP-71B calculator's bounds are
tighter than ACRITH’s; we don’t think that implies the
calculator is the more powerful engine.

Rational Expression Evaluation

“The subroutines FTRANS, FEVAL and FDELET
allow the evaluation of arithmetic expressions with high
accuracy. ... This holds as long as no over- or underflow
occurs.” [10, pg.47] Any rational expression in FOR-
TRAN syntax can be submitted to ACRITH's FTRANS
procedure to be transformed into what is essentially a
ratio of two multivariate polynomials for subsequent
evaluation by FEVAL. Each polynomial is evaluated as
the solution of a triangular system of formally linear
equations ostensibly solvable to arbitrarily high accuracy
by iterative refinement using a super-accumulator to cal-
culate scalar products exactly. After the two polynomi-
als have been computed accurately enough, their quo-
tient may be obtained almost equally accurately with
one division. Details may be found in [4]. This scheme
underlies the claim [8, pg.49] that the Kulisch-Miranker
methodology is applicable universally; ‘... polynomials
and then arbitrary arithmetic expressions can be
evaluated with maximum accuracy (the validation step
included) ...”" and then equations can be solved to evalu-
ate algebraic functions, and then transcendental func-
tions can be approximated as usual by algebraic func-
tions. The obvious defect is that the same scalar pro-
ducts have to recalculated in the super-accumulator
again and again during iterative refinement, but this
defect is mild and avoidable by renegade algorithms like
our ABC multiplication above that accessed the super-
accumulator directly. Less obvious is the potential for
overflow latent in the transformations. Here are exam-
ples.

Let r(z) be the root nearest 1 of the cubic equation
(r-1)r-1+ z)>=1. When z is big that root r(z)
is closely approximated from above and below respec-
tively by the two continued fractions

J)=14 1/(z+ 1f(z + Y(z + 1/(z + 1/
and
g{z} =1+ 1f(z + (z + 1/(z + Y(z + V(= + 1/zP)P))

Their values at z = 5 and z = 17 are displayed below.

Formula at z =5 at z =17
HP-71B's f(z) 1.03937 732815 1.00345 88002
HP-71B’s g{z} 1.03937 732811 1.00345 88002

r(z} 1.03937 73281139.. 1.00345 880002251..
ACRITH's f{z} | 1.03937 7328150982 Exponent Overflow

ACRITH's g(z) 15 Megabytes = Insufficient Virtual Storage

329

The HP-71B evaluates f{z} and g¢fz) satisfactorily
throughout 0 < z < oo, including values z like 10799
and 1049, and does so in less than a second for all but
the most extreme 2's. FTRANS took over twelve
seconds on the IBM 3081K to translate f(z) into a form
that took FEVAL about two seconds to evaluate when it
was not thwarted by overflow beyond 165 = 7.237+10%
in some intermediate expression. Overflow would have
thwarted FEVAL at g(5) too had not FTRANS first
exhausted 15 Megabytes and almost six minutes working
on it.

To explain why such tame expressions turn so fero-
cious inside ACRITH, we need merely exhibit them as
ratios of polynomials. f(z) = 1+ Nf(z)/Df(z) and
g(z) = 14+ Ng(z)/Dg(z) where

Nf(z) = 2% + 282% + 3542 +
+ 5130962z% - - + 1982% + 202 + 1 ;
Df(z) = 2% + 302> + 4072% +
+ 1020523z% + <+ 2432% + 222°% + 2%
Ng(z) = 2! + 602" + 1714218
+ 38001768889232% + - - + 970z'° + 4427 + z* ;
Dg(z) = 2'% + 622! + 18312'% 4
+ 82771632488482%° + - - - + 8812% + 422° + 1 .

Obviously FEVAL overflows because 175 > 1078 > 16%3
< 1088 < 5128 Byt we have no idea of how FTRANS
overran 15 megabytes.

Were examples like these hard to find, the defect
they expose in ACRITH's methodology might be toler-
able. We fear such examples may be abundant. Con-
sider a familiar Chebyshev polynomial:

Toy(2) = cos(64arccos z)

= cosh (64arccosh z)

=-1+ 2(-1+4 2(-1+ 2(-1 + 2(-1+ 2(-1+ 2z%3)%Y)3)2.
A handfull of keystrokes can calculate Tg,(z) on a hand-
held calculator, but only the last expression can be fed
to ACRITH, and when that is done FTRANS munches
for almost seven minutes on an IBM 3081K and then
overflows 15 Megabytes' memory again. Naive program-
mers might feel less bewildered by the event if they saw
Tes(z) = 92233720368547758082% — 1475739525896764129282% +

4+ 64563348943566620590082%% — - - - - 204877 + 1

but they would be no less appalled. And if overflow does
not stop the computation, a programmer might wonder
how to explain why FEVAL can take perhaps a million
times longer than conventional quadruple-precision arith-
metic to get a result no better for expressions like these.

(We obtained the explicit polynomial representation
of the foregoing functions in two ways. We ran Prof. D.
Stoutemeyer’'s muMATH-83, obtainable form the Soft
Warehouse in Honolulu or from Microsoft in Bellevue
WA, on an IBM PC; several minutes sufficed for each
function. We also ran the local symbol manipulator
VAXIMA on a DEC VAX 11/780 for a few seconds to
confirm the results.)

N lw‘ Ty

A Timing Anomaly

How predictable are the times that ACRITH spends
in its own programs? We tested the matrix inversion
procedure DINV on two n X n matrices A and B whose
inverses differ in what we thought is an inconsequential
way, but it isn't. Let Ay = min(i,j) and
B;j := n+1 - maz(s,5); each is obtained from the other
by reflection in its skew diagonal thus, shown for n=:5:

11111 5 4 3 21
1 2 2 2 2 4 4 3 2 1
A=112 3 3 3 , B=1]13 3 3 2 1
1 2 3 4 4 22 2 21
1 2 3 45 11111
Their inverses are tridiagonal matrices related the same
way:
2-1 0 0 0 1-1 0 0 0
-1 2-1 0 0 -1 2-1 0 0
Al=[0-1 2-1 o|,B'=]|0-1 2.1 o
0 0-1 2 -1 0 0-1 2 -1
0 0 0-1 1 0 0 0-1 2

These inverses differ only in that their first and last diag-
onal entries are exchanged. However, the results com-
puted by DINV differed in two other ways. The times
DINV took to invert the matrices on an IBM 3081K are
displayed here in seconds for n =20 and n=40:

Times for Inversion
n Al B!

20 0.27 2.99
40 1.44 18.44

Why does ACRITH take over ten times as long over
B as over A? Part of the reason becomes clear when the
second way in which the inverses differ is noticed. A-!is
computed exactly, presumably because all intermediate
results were integers and no rounding error was gen-
erated during Gaussian elimination. Therefore no itera-
tive refinement was needed to clean up. But during the
inversion of B Gaussian elimination generated rational
numbers that had to be rounded off. Consequently the
first estimate of B! was only approximate, and iterative
refinement had to be carried out to get refined estimates.
The final results are all tiny intervals, the tiniest possi-
ble, and quite satisfactory. Unfortunately, iterative
refinement had to be carried to great lengths to push the
ofi-diagonal elements down into underflow to achieve
such near perfection. It is a pity that ACRITH could
not. know that we would not have cared in this instance
had iterative refinement stopped much sooner.

In general, different users may have different notions
of what accuracy is adequate. ACRITH cannot read
their minds, so it is obliged to go for maximum accuracy
every time. This matters a lot only when some com-
ponent vanishes-in an array of results, because then
maximum accuracy is limited not by a modest number
of significant digits to be displayed, but by the underflow

330

threshold. Here is one aspect of accuracy management
that cannot be brushed away; the problem is not just to
find a way to calculate something as accurately as might
be needed, but also to know when to stop.

Conclusions

ACRITH's perceived reliability, and therefore its
utility, are jeopardized because malfunctions like
overflow, inaccurate results, error warnings or extremely
slow execution cannot be attributed correctly to some
blameworthy pathology in the data. To say that
ACRITH is correct in the sense usually understood for
crude Interval Arithmetic, which is to say that when a
result appears it is always an interval that contains the
desired result, is not good enough; such a claim could
mean no more than that a machine was wired to print
out only the interval “[-oo, o0]”. ACRITH promises
more than that, more than could be claimed for crude
quadruple-precision interval arithmetic, but too often
delivers less.

ACRITH is not at all typical of IBM products but
seems instead first to have escaped prematurely from a
research project and then to have evaded quality con-
trols. We think its bugs can probably be repaired, but
most likely not without abandoning restrietions upon
access to the super-accumulator imposed by a doctrine
that forbids explicit mention of extra-precise variables.
And then, partly because of experiments performed for
us by P. Tang, we expect that ACRITH’s goals will turn
out to be achievable more economically with the aid of
something like quadruple-precision interval arithmetic
than with a super-accumulator. If that happens it will
vindicate our judgment that ACRITH’s methodology is
generally not a good way to manage extra-precise arith-
metic.

To prevent misunderstanding, we repeat that the
management of extra-precise arithmetic is at the core of
our disagreement with ACRITH's doctrine. Except for
that, we share most of ACRITH's goals and much of its
overall strategy:

o Iterative refinement using contractive mappings to
make a good guess better;

o Extra-precise calculation as needed to get accept-
ably accurate results;

e Interval arithmetic to know for sure when results
are accurate enough.

We think ACRITH's defects are consequences mostly of
an unnecessarily complicated approach to its goals.

Our conclusions contrast starkly with the doctrine
promulgated by Kulisch, Miranker and their disciples,
and accoutred in a vast panoply of algebraic terminology
and theorems. If we are right, where is the flaw in their
theory? They have proved that their methodology is in
principle sufficient to compute everything computable,
but not that it is necessary nor that it is efficient nor
that it is intellectually more economical than the lore in
the vaster literature that precedes and surrounds theirs.

Their theory suffers from what might be called Algebraic
Intransigency, a lack of a kind of transitivity;
specifically, scalar products of scalar products of scalar
products ... induce first numerical constipation in the one
super-accumulator their doctrine allows, then symbolic
constipation in the algebraic transformations their doc-
trine demands.

Acknowledgments

We have benefitted greatly by conversations with
Dr. J. W. Demmel (now at New York University), Dr.
K.-C. Ng, Prof. B. N. Parlett, and P. Tang at the
University of California in Berkeley, and with Dr. A.
DuBrulle, Dr. F. N. Ris and Dr. S. Rump of IBM. We
would also like to thank the IBM Corporation Ltd. and
the Digital Equipment Corporation for contracts and
grants which partially supported this work.

References
Interval Arithmetic

(1] Alefeld G. and Herzberger, J.: “‘Introduction to
Interval Computations.” Academic Press, New York
(1974).

[2] Moore, R.E.: ““Methods and Applications of Interval
Analysts.” SIAM Studies in Applied Mathematics,
SIAM, Philadelphia (1979).

[3] Rokne J. and Ratschek, H.: ‘“Computer Methods for
the Range of Funetions.” Halstead Press, New York
(1984).

ACRITH Methods

[4] Bohm Harald: “Evaluation of Arithmetic Ezpressions
with Mazimum Accuracy,” in |7} pp. 121-137.

{5) Kaucher E. and Rump $.M.: “E-Methods for Fized
Point Equations f(z)==z,”” Computing, Vol. 38,
pp. 31-42, (1982).

(6] Kulisch U. and Miranker W.L.: “Computer Arith-

metic sn Theory and Practice.”” Academic Press,
New York (1981).

[7] Kulisch U. and Miranker W.L., eds: “A New
Approach to Scientific Computation.” Academic
Press, New York (1983).

(8] Kulisch U. and Miranker W.L.: *“ The Arithmetic of
the Digital Computer.” IBM Research Report RC
10580 (#47356) 6/15/84 (1984).

[9] High-Accuracy Arithmetic, Subroutine Library,
General Information Manual, IBM Program Number
5664-185 (1983).

[10] High-Accuracy Arithmetic, Subroutine Library, Pro-
gram Description and User's Guide, IBM Program
Number 5664-185 (1983).

{11] Rump SM.: “Solving Algebraic Problems with High
Accuracy,” in 7] pp. 51-120.

(12) Rump S.M.: “Wie zuverlissig sind die Ergebnisse
unserer Rechenanlagen?,” Jahrbuch Uberblicke
Mathematik, pp. 163-169, (1983).

331

Miscellaneous

{13] Cody W. J. et al “A Proposed Radiz- and Word-
length-independent Standard for Floating-Point
Arithmetic,” IEEE MICRO 4, no. 4 pp. 86-100,
(Aug. 1984).

(14] Dongarra, J.J., Bunch, J.R., Moler, C.B. and
Stewart, G.W.: “LINPACK Users’ Guide.” SIAM,
Philadelphia (1979).

[15] HP Journal 35, no.7, (July 1984).

[16] Kahan W.: “Interval Arithmetic Options in the Pro-
posed IEEE Floating Point Arithmetic Standard,”
Proceedings of a Symposium on Interval Mathemat-
ics, pp. 99-128, Academic Press, New York (1980).

