A MULTIOPERAND TWO'S COMPLEMENT ADDITION ALGORITHM

Hideaki Xobayashi

Department of Electrical and Computer Engineering
University of South Carolina

Columbia,

ABSTRACT

This paper presents a
for summing a set of
numbers in parallel. The
addition 1is converted to
parallel summation of wunsigned numbers.
The conversion is performed by simply
complementing all the sign bits. Only a
few constant bits are required for sign
correction. This algorithm 1is suitable
for computer-aided design (CAD) of custom
VLSI.

novel algorithm
2's complement
2's complement

an equivalent

INTRODUCTION

Multioperand addition is essential in
parallel convolution necessary for
real-time signal and image processing [1].

Baugh and Wooley's algorithm [2] allows
unsigned implementation techniqges for
parallel multiplication. However, a set

of signed product terms generated by these

multipliers needs to be summed in
parallel,

This paper describes a parallel
algorithm for adding a set of 2's
complement numbers. Carry-save adder
(CSA) networks synthesized by a CAD tool

(3] are used as implementation examples.

ALGORITHM
The sum S of M n-bit 2's complemnt
numbers is expressed as:
M n-1 n-2 i
S = SUM (- x(n-1)k 2+ SUM xik 2)
k=1 i=0
M n-1 M n-2 i
= - SUM x(n-1)k 2+ SUM SUM xik 2 (1)
k=1 k=1 1i=0

CH2146-9/85/0000/0016$01.00 © 1985 IEEE

SC 29208

where x(n-1)k is the sign bit and xik is
the i-th significant bit of the k-th
operand. The negative term in (1) is
replaced by

M n-1 n-1

SUM x(n-1)k 2 - M 2

k=1

the complement of the
is then rewritten as:

where x(n-1)k is
sign bit. Eg. (1)

n-1 M n-2 i
+ SUM SUM xik 2
i=0

M_
UM x(n-k)k 2
=1 k=1

n-1
- M2 (2)
where the negative term depends on
the number M of operands.

only

The following two cases of M-operand
addition are considered. CSA networks are
used as implemetnation examples.

Case A: M is the d-th power of 2,
where d is an integer. The negative term
in (2) is only the (n-1+d)th power of 2.
Figure 1 shows a CSA network [3] for M = 8
and n = 8, where "o's" are positive bits
and "e's" are complemented sign bits.
Note that all summand bits are positive
allowing unsigned implementation
techniques for parallel addition. The sum
is obtained by simply complementing the
most significant bit (MSB).

Case B: M is not the d-th power of
2. The negative term in (2) is:

a-1 _ n-1+r n-1
SUM mr 2 + 2 -2
r=0

n-1l+d
(3)

Figure 2 shows a CSA network for M = 5
n = B8, where "1's"™ are constant bits
sign correction, The sum is obtained
simply complementing the MSB.

and
for
by

CONCLUSION

A new algorithm for parallel =:uwo's
complement addition has been presented.
The complexity of parallel 2's complement
adders 1is significantly reduced by s.mply
complementing all the sign bits. This
approach is applicable for CAD of custom
VLSI.

REFERENCES
1. H. Kobayashi and Y. P. Foo,
"Programmable Logic for Parallel
Convolution,™ IEEE Int. izonf.

Computer Design: VLSI in Compu:ers,
Port Chester, NY, Oct. 1984, pp.
700-704.

2. C. R. Baugh and B. A. Wooley. "A
Two's Complement Parallel Array
Multiplication Algorithm," IEEE Trans.
Comput., vol. C-22, pp. 1045-1.047,

Dec. 1973.

3. H. Kobayashi and 7. A. Snith,
"SPAN: A Synthesis Program for adder
Networks," 1lst Int. Conf. Computers

and Applications, Beijing, China, June
1984, pp. 710-714.

13:39:53.93
o o o o

SPAN V1.00

5-0CT~1984
e 0o o o

copoo
[
co
1 c
(]
1 C
{ [
10

o
DT PN Iﬁl
o—o o & - -
oo h - Bl i .
o~ - - e _.l.l Bl e Ea T Y 7]
- — - e
- 7]
- -~
Z d 4]
] L~
-—= lL Py .)
—_—{m N - c
- lL.J_ll.l ~ - =
[adinn el ™ Lol e o ~ N Lallsadis] s
—_—{ ~ ~ 8
o~ o~ N vy ot
~ o
M “ ﬂ M Zul ~ S e (0]
) i) 0 o e -
- - - - ~w—w =l S —
~ = ers " ebn [}
H n H “ . o~ ey r——tn i ——n o o= ~
| 0
- - » ® 8 s n - ” .
— - - " o= i «©
-
000000 00000O 00O0Q0C 000 00 o N - ull4 1]
n—n
000000 0000O0CO0 0000 o0C oo o~ CTLTPODOO — - L o
< VMO g L] =
" N e nH > > =l-= Lo
000000 000000 CCO0O0 [o 3o o) o0 O~ R O
— — vl = Fle wnil-w - o
= ~
0OC0CO0O0COiOCOO0O0C0O0I 0O00C0iIOO0iIOO| Om) < S — il Ee] o =
= — = S R -
< - . ee)
0000 O0CO 000000 0000 000 o0 O = - ———
M = = o tn N
000000 000000 0000 Lo ol o] o0 Own] -t T = +
CA v & > = bLl_ Py x 3
000000 000000 0000 [e o0 [V-] s WD > =z “L L n o nf—-n o
LesEan -4 0 L5 l b Dy
YLl - " v ownip——ln o © Om
[N N N N N] 0000O0CO0 0000 00 Q0 o0 (o o >z w»n v 13 Wt~
wv w 1] n w M
oo 00001 Q001 00| O - ~ L
P E v s | s
[00 Oo [)=)
| e U
n—n ok Hw +
] [X<}
i | —~ w —{in SlJIl.n i © wiwp -~
v = @ e 0 @ j—de sl cu
v~ w w A)
© e = « wn.a
w w O~
oo © ©
i I_ =
@ o« ¥ oy
w —w _I||7 |]W o aofen Q
Lot L ~ o© N onflf—4s oo o)
8 g B g e s el
~ ~ = 17 .t
~ Fre
~ e ~ ~ ® e
o~ I gy
~ e «© © olw
o~ o~ e obds al-w
~ = S Y
~—{r w o = -

13:47:29,99

SPAN V1.00
5-0CT~1984
® 0 0 0 0 0 0o O
e © 0 0 0o o o o
e o 0 0o 0 o o ©

1

o0

oo

[ele}

oo

oo

oo

c o

[N N

7-FA 2-HA
7-FA 2-HA
8-FA 1-HA

CLA

o ¢ 0o 0o O O O ©o
0o © o 0 0o O o ©°
o 06 ¢ 0o 0 0 0O o o©
© ¢ 0 0 o o o o©°
© 0 O 0O 0 O O o
0o 0 © o o o o o ©
0O 0 ¢ 0 0 0 0O o o
© 0 © 0O 0o 0o O o o

(=]

[}
O 0O 0o 0 0o 0O O O o o
o
Q

oo

o~

o~

om

[

own

O w

or

(o}

(o8

11100

z

H

2 12

2

2
3

W O OO S O O |

393

3

22

5

196

10

140
3

b

3
uy

f L L

Yuss3ssszzz2222113111

(a)

4
i
K]

LA

CPU Time (ms)

Stages
FAs
HAs
Gates

CLA

-G

-

— o

[~

—n

877 77?7 76%6%8¢6€6

Logic synthesis.

8. (a)

19

(b)
5 and n =

ircuit layout.

~
"~

CSA network for M

(b)

o~
v
L]
)
o]
o

