A PIPELINE ARCHITECTURE FOR COMPUTING CUMULATIVE
HYPERGEOMETRIC DISTRIBUTIONS*

Xiaobo Li

Department of Computer Science
Wichita State University
Wichita, KS 67208

Abstract: The hypergeometric distribution is a
widely used arithmetic function and is fundamental
to many statistical sampling and statistical
pattern recognition problems. Computation of the
cumulative hypergeometric distribution function,
H(a), is extremely time-consuming. As a result,
many approximation algerithms have been proposed
to - evaluate the cumulative hypergeometric
distribution. This paper describes a two-level
pipeline architecture for computing H(a) with
computation complexity reduced to c+a, where ¢ is
a constant. The main part of the design is a type
of recurrence computation. A modular and
systematic approach is suggested to implement the
recurrence formula. The computation complexity of
the proposed architecture is also compared with
various other known methods. The highly regular
Structure of the design can lead to efficient VLSI
implementation.

I. INTRODUCTION

A finite population with N elements is
classified into two groups. The probability of
drawing the n-th element from one of the two
groups depends on the previously drawn n-l
elements, The cumulative hypergeometric
probability is defined as the probability of
obtaining at most a given number of elements of a
certain group in a sample [4]. The finite
population thus can be expressed as an N-bit
binary vector with each element being either a 0
or a l. Let n be the number of 1's in the vector,
r be the number of draws, and i be the number of
1's drawn. The probability density function of the
hypergeometric distribution, h(i), is defined as

() ()

h(i) = h(¥,n,r,i) = =2 2 __1_ (1)
N
r
where 0<idmin{n,r}. The cumulative hypergeome~

tric distribution function, H(a), is defined as

* This research was supported by the NSF under
grant ECS 83-04967.

CH2146-9/85/0000/0166$01.00 © 1985 IEEE

Lionel M. Ni

Department of Computer Science
Michigan State University
East Lansing, MI 48824

a
H(a) = X h(i) 0<a<min{n,r} (2)
i=0
The cumulative hypergeometric distribution

function is a widely-used arithmetic function and
is fundamental to many statistical sampling and
statistical pattern recognition problems, such as
cluster wvalidity analysis [l], tree classifier
design [13], image template matching [10], feature
analysis [9], and permutation statistics [5].

Direct computation of H(a) is extremely time
consuming because the computation involves many
long sequences of multiplication operations. Due
to the limited computer word-length, the arithme-
tic evaluation sequence must be appropriately
ordered to prevent the problem of arithmetic over-
flow from happening. To avoid this time-consuming
computation, many normal and binomial approxima-
tion algorithms have been proposed to approximate
H(a). A recent intensive comparison study by [1]]
has shown that the Peizer approximation is both
accurate and simple. However, the relative error
of the Peizer approximation could be up to 19.7%
[11].

All of these previously mentioned algorithms
are sequential and only provide approximate solu-
tions. The advent of VLSI technology has triggered
the idea of implementing arithmetic functions
directly in hardware [8], However, for direct VLSI
implementation, these previously mentioned algori-
thms all seem to be too irregular or too complex
to be wuseful. This paper describes a two-level
pipeline architecture for computing H(a). The
architecture discussed here is based on the con-
cept of two-level pipelining and vector reduction
[12]. 1In the next section, the computation
complexities in evaluating H(a) using a direct
implementation, a recursive method, and the Peizer
approximation are discussed in that order,
respectively, The proposed hardware architecture
is based on a recursive method in evaluating H(a).
Section III describes a modular and systematic
approach in building the hardware architecture.
The comparsion and evaluation of various architec-
tural implementations are studied in Section IV,
Section V provides some concluding remarks.

II. EVALUATION OF CUMULATIVE HYPERGEOMETRIC
DISTRIBUTIONS

This section is concerned with various ways
of computing H(a). The computation time, in terms
of the number of clock «cycles, is the sole
performance index for comparing the different
evaluation methods. We first define the following
notations,

t_: number of cycles needed in performing

addition.

t : number of cycles needed in performing

multiplication,

t.: number of cycles needed in performing
division,

t_: number of cycles needed in performing

the square root operation.

t_: number of cycles needed in performing

the logarithm operation.

t_: number of cycles needed in looking up a
standard normal distribution table.

Note that all arithmetic
floating-point operations.

operations are

A. Direct Evaluation

In computing H(a), the order of performing
arithmetic functions is important because the word
length is limited. In directly evaluating Eq. (1),
the ratio of two long products should be done by
alternating the division and multiplication opera-
tions. Since the direct computation involves fac-
torials and a great deal of repetitive operations,
it is very time consuming. In general, to compute
C(a,b) (C is the binomial coefficient), it needs
min{b,a-b} divisions and multiplications, respec-—
tively, for 0<b<a. Thus, the number of cycles
required in computing H(a), T(direct), is data
dependent. However, the lower bound has been found
to be [10]

). (3)

T(direct) > alr+a)(t +t
- m d

It is clear that the direct evaluation of
H(a) has a lower bound computational complexity of
O(a(a+r)).

B. Recursive Evaluation

Direct evaluation of h(i) involves too many
arithmetic operations and some of the results are
repetitively computed. Another approach to
evaluate h(i) 1is to wuse a recusive formula as
defined below.

m(m-1)...(m-r+])

h(0) = where m=N-n (4)
N(N-1)...(N-r+l)

and

h(i) = h(i-1)X(i-1) where

(n-i-1)(r-i-1)
X(i-1) = (5)

i(N-n-r+i)

It takes r divisions and (r-1) multiplica-
tions to evaluate h(0). For the remaining h(i),
0<{ia, it needs two multiplications and two
divisions if the division operation is performed
first in Eq.(5). Thus, the total number of clock
cycles needed in evaluating H(a) wusing the
recursive formula will be

T(recur) = (r-1)t + rt, + a(2t +2t +t) (6)
m d m a

d
The computation complexity of the recursive

evaluation is O(a+r), which is reduced from the
direct evaluation.

C. The Peizer Approximation

Even the recursive evaluation of H(a) is time-—
consuming when N, r, a, and n are large numbers,
which are wusually the case. In programming the
evaluation of Eqs.(4) and (5), in addition to
these basic arithmetic operations, there are
considerable amount of time spent in indexing,
looping, and performing other software overhead.
Thus, many approximation methods for computing
H(a) have been investigated by many researchers. A
recent extensive empirical study of the accuracy
of twelve normal and three binomial approximations
has shown that a normal approximation by Peizer is
both far superior to other approximations and is
simple to compute [11].

First, let wus ©briefly state the Peizer
formula and give a simple discussion on its
computational complexity. When using the Peizer
approximation, H(a) is approximated by a standard
normal distribution with the cumulative
distribution function expressed as Fn(z), i.e,

H(a) @ Fn(z). The parameter z is defined below
#s:

A"D" - B"C" 2mnrsN'L
2z =
| AD - BC | m'n'r's'N
where A=a+0.5, A'=A+(1/6), A"=A'+[0.02/(A+0.5)]+

(0.01/(n+1)]+[0.01/(xr+1)], and B, B", C, C", D,
and D" are defined in a similar manner with b=n-a,

c=r-a, and d=N-n-c, respectively. Also, m=N-n,
s=N-r, N'=N-(1/6), and L is defined as L =
Allog(AN/nr)] + B[log(BN/ns)] + C[log(CN/mr)] +

D[log(DN/ms)]. The error rate of this approxi-
mation varies with respect to a. For a2, the
maximum absolute error of this approximation is
.001 and the maximum relative (percentage) error
ranges from 0.71% to 19.7%. The guaranteed number
of correct decimal places in this case is at least
3.040 [11]). The computation time of Peizer approxi-
mation, T(Peizer), is a constant and is independ-
ent of the values of N, r, a, and n. The number of
arithmetic operations needed will be [10]

I(Peizer)=38ta+22tm+18td+4tg+tr+tt n

that- the evaluation of the Peizer
includes the time needed to access
distribution table after z is derived.

5 +III. HARDWARE IMPLEMENTATION

The advent of VLSI technology has triggered
the idea of directly implementing arithmetic
functions in hardware. Several factors must be
considered in designing a hardware architecture,
First, the I/O bottleneck must be avoided. Second,
the hardware functional unit must be efficiently
utilized. Third, the interconnection pattern among
the functional units must be regular or simple.
Fourth, the extra buffer space for intermediate
storage must be eliminated. The direct evaluation
method involves much more arithmetic operations
than the recursive method. Furthermore, hardware
implementation of the direct evaluation method
needs either extra buffers for intermediate
storage or excessive functional units. Thus, we
tried to implement the recursive method in
hardware.

The overall structure of the design is shown
in Figure l. There are four computing blocks: X(i)
generation, Y(i) generation, h(i) generation, and
H(a) generation. The design is based on the con-
cept of two-level pipelining which is pipelining
between blocks and pipelining within each block.
The input parameters are N, n, r, a, and h(0). The
initial value of h(0) can be computed either by a
straightforward hardware device or by a table
look-up. The MUX (multiplexer) boxes are needed to
select an appropriate input to the pipeline units.
In the following subsections, we will describe the
‘unction of each of the four computing blocks

«__ lagramed in Figure 1.

A. Compute H(a)

The H(a) generation block contains a pipeline
adder with z=ta segments and with a feedback

path as shown in Fig. 1. After a certain period of
time, the h(i) generation block will generate
h(0), h(1), h(2), ..., up until h(a) in sequence.
Each will be produced ome per cycle. The pipeline
adder tries to accumulate these h(i)'s. The H(a)
generation block is a typical pipelined vector
reduction unit [12]. During the first z cycles
after h(0) is generated, the multiplexer will
select "0" input. After z cycles, the output of
the pipeline adder will be selected by the
multiplexer, After h(a) is generated, these a+l
scalars of h(i)'s will be partitioned into z
groups where each group has a partial sum of some
h(i)'s. To merge these z partial sums into a final
sum, which is H(a), either a symmetric merging
method or an asymmetric merging method may be used
[12]. For the asymmetric method, the time needed
to merge these partial sums will be

(z—1)+zriog151-2r1°g!£]+z

if (a+l)2z
t = (8)
T8 J(a1)+ar1) [og, (ar1y] -2 o (a1
+(a+1)+(z-a-1)riog*(a+151 if (a+l)<z

R

X(1)~GENERATION

J x(i)

Y(i)-GENERATION

Y(i) ?(o)

e

¢ o X

*
<

h(i)
GENERATION
h{1i)
[J I;[:: 0
+ z
H(a)
GENERATION

Fig. 1. An overall architecture for computing H(a)

B. Compute h(i)'s

The h(i) generation block contains a pipeline
multiplier with y=t, segments. Since h(i) is

defined recursively as shown in Eq.(5), a feedback
path is needed as indicated in Fig. 1. According
to Eq.(5), h(i) depends on the value of h(i-1).
Direct implementation of this dependence
relationship implies that only one segment among y
segments will be utilized. To fully utilize the
pipeline multiplier, Eq.(5) can be rewritten as a
companion function

h(i) = h(i-1)X(i-1)
{'h(O)X(i—l)X(i—Z)...X(O) for 1<i<y
h(i-y)X(i-1)X(i-2)...X(i-y) for y<i&a

TR

h{(0)Y(1) for 1<i<y
= (9
h(i-y)Y(i) for y<i<a
where
X(1-1)*X(i-2)*...*x(0) for 1£i<y
Y(i) = (10)
X(i-1)*X(i-2)*...*X(i-y) for y<ila

Thus, is

generation

when Y(1) generated by the Y(i)
block, the output of the pipeline
multiplier, which is h(i-y), will be fed back to
the input of the pipeline multiplier and operate
with Y(i) as indicated in Eq.(9). Note that for
¥(1) to Y(y), the MUX will select h(0) as the
input instead of the output of the multiplier. The
time delay for generating h(i) after Y(i) 1is
computed will be y cycles.

C. Compute X(i)'s

The X(i) generation block, based on Eq.(5),
produces a sequence of X(i)'s for i ranging from 0
to a. Figure 2 shows the hardware architecture in
computing X(i). The small boxes with a "decrement"
or "increment'" control input are counters. The
initial value of each counter is indicated by the
input labelled at the top of each box. Two
pipeline multipliers and one pipeline divider are
used to implement Eq.(5). After tatty cycles,

the first output X(0) will be generated. Then the
successive X(i)'s will be continuously generated
in every cycle. The AND gate with clock and enable
inputs will make sure that X(0) up to X(a) will be
generated.

b o

EIJS!TC Eljul‘c [‘JETC G*—— clock

"“'] enable

=l

]

I____l

ty

A

Xty

Fig. 2. Hardware architecture for computing X(j)

D. Compute Y(i)'s

Y(i) is defined in Eq.(10). The value of y
depends on the number of segments of the pipeline
wultiplier in the h(i) generation box. Equation
(10) is actually a recurrence computation. 1In
fact, the design can be applied to any operator

1tt : 3 h
*" as long as the operator is associative and
commutative.

169

In evaluating various values of Y(i), X(i)'s
will be repetitively used. Again, Y(i)'s must be
continuously generated, one per cycle, in order to

fully utilized the pipeline functional units and
to speedup the computation process. For this
purpose, some dummy segments (or noncompute

delays) are needed. A pipeline dummy unit (PDU)
with one input and one output consists of a number

of dummy segments which will introduce necessary
delays for the purpose of synchronization. A
pipeline functional wunit (PFU) with two inputs

and one output performs the arithmetic operation
"%, In general, let s be the number of segments
required in the PFU for evaluating "#*", For the

case of y=2m for some integer m, Y(i)'s can be
computed by cascading m PFUs where one input of
each PFU is inserted with a PDU. This design was
originally proposed by Kogge [7]. Figure 3 shows

an example for the case of y=4. Note that the
number of segments of each pipeline unit is
indicated within the box.
X(i+2s-1)
1 PDU
X(i+25-2)
[] PFU
X(i+s-1)X(i+s-2)
2 PDU
X(i+s-3)]
X(i+s-4)
8 PFU
Y()=X(i-1)X(i~2)X(i-3)X(i-4)
Fig. 3. Compute Y(i) from X(j) when y=4
Since the value of y may vary, we shall

propose a systematic approach in the design of the
Y(i) generation block for a given value of y. A
modular and systematic approach is suggested by
using two types of building cells. Figure 4 shows
the internal design of these two building cells,
Main-cell (M-cell) and Auxiliary-cell (A-cell),
respectively. The control input k to the M-cell
will determine the number of dummy segments, which

. k . .

is 27, introduced in the PDU. The control input
¥ 18 to select one of the two inputs of the
MUX. "u" is an unit element of the operator "*",

If "#" is multiplication, then u is a constant l.

1

K — ok u
T wux O — v, — - Vmpx 0
2k
s [
(a) Main-cell (M-cell) (b) Auxiliary-cell (A-cell)

Fig. 4. The architecture of M-cell and A-cell

Given an arbitrary value of y, the
Y(i)-generation block can be systematically
constructed by using these cells. Let

_m-1
Y=Vl Yo where ym_l—l . If y=2 , then

the Y(i)~generation block can be constructed by
cascading (m-1) M-cells. In this case, yk=0 for

0<k<m-2. Thus, the first 2 dummy segments
are all skipped in each of the M-cells. As a
consequence, the resulting architecture is similar
to that of Fig. 3.

If y<>2m_1, then it needs m cascading
stages (k=0,...,m-1). In the first (m-1) stages
(k=0,...,m-2), each stage has one M-cell and one
A-cell connected in parallel. The last stage
(k=m-1) has only one A-cell. Figure 5 demonstrates
a2 design example for the case of y=13. Figure 5
also shows how a Y(i) is computed from those 13
X(i)'s, for j=i-1 down to i-13. Note that each
cell will introduce at least s cycles of delay due
to these s-segment PFUs. The extra delays
introduced by the PDUs will perform the necessary
synchronization functions. 1In the A-cell, if
yk=1, then both external inputs will g0 through

the PFUs; otherwise, the left external input will
not be wused and an internally generated unit
element "u" will be fed into the PFU. For
demonstration purposes, the relative indices of
the two inputs to the PFU are indicated by
parentheses pairs inside each cell as shown in
Fig. 5, where the one on the top is the left input
to the PFU and the one on the bottom is the right
input, The relative indices of the output of the
PFU is indicated in the output port of the cell
(or the input port of the next cell). Note that
the output will be generated s cycles later.

y=13'1101=y3y2y1y0

X{(i+4s-1) unit element (u)

|

k=0={ (2) — 1 — (1)
(3) (u)

M-CELL A-CELL
X(i+3s-%) (2,3) (1)
k=l— (2,3) — 0 =~ (u)

(4,5) (1)

M-CELL A-CELL
X(1+2g-%) (2,3,4,5) 1)
k=2— (6,7,8,9) — 1 —1 (2,3,4,5)

(10,11,12,13) (1)

M-CELL A-CELL
X(i+s-%) (6,7,...,12,13) (1,2,...,5)
k=3 1—4 (6,...,13)

(1,...,5)
A-CELL

l

Y(i)=X(i-1)...X(i~5)X(i-6)...X(i-13)

Fig. 5. An illustrative example for the case of
y=13 using two types of building cells

Figure 5 shows the inputs and outputs of the
PFUs of each cell at the instant whea Y(i) is
generated. Note that X(i+3s-*) at the stage k=1
means that all integer indices are relative to
X(i+3s-*). For example, (2,3) in the M-cell of
stage k=l represents X(i+38-2)X(i+3s-3). These
A-cells contribute X(i-1) to X(i-5) as shown in
Fig. 5. The three M-cells will contribute 8 X's
from X(i-6) to X(i-13). In each M-cell, if yk=0

then the first 2k dummy segments will be

skipped; otherwise, an extra delay of 2k cycles
will be introduced. For example, in stage k=2 with
y2=l, 4 extra cycles are introduced. Thus, the

input (2,3,4,5) becomes (6,7,8,9) and is one
input of the PFU. The other input (10,11,12,13)
comes from (6,7,8,9) with 4 extra delay cycles
introduced by the second PDU.

]
i
]

31
!
]
]

X(3)

Y(i)

Fig. 6. An illustrative example for the case of
y=13 by eliminating those redundant
components from Fig. 5.

The modular design provides a systematic
approach in comstructing the Y(i)-generation block
by using two types of cells. In general, for a
given y, it needs logzy M-cells if y 1is an

of 2 L}ogzyJ M-cells and
Thus,
feeding X(0)
Y(1) to/from the Y(i)-generation block will be

power and

A-cells,

integer
r10g2§]

interval, t_,

otherwise. the time

between and getting

ty=s r1082ﬂ=tmr1°82tnn (11)

Note that if the Y(i)-generation block is
designed individually for each y and without using
these building cells, the design may be slightly
simplified by eliminating those wunused PDUs.
Figure 6 shows an example for the case of y=13
again, The A-cell used in stage k=0 of Fig. 5 can
be replaced by a (s-l)-segment PDU because its
right input is always a unit element and the first
l-segment PDU in the left M-cell <can be
eliminated. The first PDU in the M-cell of stage-l
can also be eliminated because y1=0. The time

needed in filling up the Y(i)-generation block
thus can also be slightly reduced.

m

IV. PERFORMANCE EVALUATION AND COMPARISON

We unow derive the total computing time in
evaluating H(a), which is denoted by T(pipe). It
takes t +t, cycles to generate X(0) from the
X(i)-generation block. Y(l) will be generated
tmrlogztn] cycles later from the
Y(i)-generation block as indicated in Eq.(1ll),

h(0) will be generated another t cycles later

via the h(i)-generation block. It takes "a" more
cycles to generate h(l) to h(a) in sequence. Thus,
we have

T(p1pe)=tm+td+tmriogzt;]+tm+a+tmerge (12)
where t is defined in Eq.(8) by
merge
replacing z to ta' The computation complexity of
the proposed pipeline architecture 1is clearly
o(a).
We compare the computation times of all
methods, T(direct), T(recur), T(Peizer), and
T(pipe), as indicated in Eqs. (3), (6), (7), and

(12), respectively. Note that the computation time
only involves the arithmetic evaluation time.
Programming overhead needed in evaluating the
other three methods, such as looping and indexing,
is not considered.

To give a better feeling in comparing those
different methods, a numerical example is
demonstrated based on the architecture of CRAY-1
[2]. Thus, we have ta=6, tm=7 and td=29. The

logarithmic operation is performed by table
lookup, which takes t8=tt=4 cycles. The square

root operation assumes a standard algorithm [6]
with tr=30 cycles. Table 1 shows the number of

cycles required for each method based on these
figures. Note that the computing time of the
Peizer approximation is problem dependent. There-
fore, this approximation is preferred when "a" is
extremely large and the exact value of H(a) is not
necessary. Of course, one may wish to implement
Peizer's approximation in hardware and to exploit
all possible parallelism. We have found that the
hardware implementation of Peizer's approximation
will need T(Hardware-Peizer) cycles [10].
T(Hardware-Peizer)=3t +4t +t +t +t +t (13)
a m d g r t

However, there is a considerable amount of
functional unit hardware involved in implementing
Peizer's approximation and this will not gain too
much in terms of the computation time compared
with the pipeline implementation which provides an
exact result.

V. CONCLUSIONS

In this study, we reviewed some existing tech-
niques for computing the cumulative distribution
function of the hypérgeometric distribution. Since
the direct computation is very time consuming, an

i
i

approximation is desired in many cases. The recur-
sive algorithm for the exact computation avoids
much of the repetition of the direct method. We
proposed and presented a detailed hardware pipe-
line architecture which implements the recursive
formula. The main part of the design 1is the
Y(i)-generation block which is actually a general

solution for a kind of recurrence computation.
This pipeline architecture 1is computationally
efficient, 0(a), as compared to other exact

computations, O(a(a+r)) and O(a+r). The modularity
and the regularity of the system architecture make
it suited for VLSI implementation,

Table 1. Comparison of computation times (cycles)

T(direct)] > 36a(a+r)
T(recur) 36r+78a-7
T(Peizer) 1032

if a>5 then a+85
T(pipe)

if a<5 then 2a+70+6[1log, (a+1)]-

zriogz(a+151
REFERENCES

[1] Bailey, T.A. Jr.
validity profiles,"
Vol.1l5, pp.61-83, 1982,

and Dubes,
Pattern

R.C., "Cluster
Recognition,

[2] Cray research, Cray-1 Computer System

Hardware Reference manual, 2240004, 1977.

[3] Fowlkes, E.G. and Mallows, C.L., "A method
for comparing twc hierarchical clusterings,"
J. of American_ _Statistical Association,
Vol.78, pp.553~569, September 1983.

[4]

(5]

[6]

[71

[8]

[9]

{10]

[11]

[12]

[13]

and Stone, C. Introduc-

Hoel, P., Port, 8.
Houghton Mifflin

tion to Probability Theory,
Pub. Co., Boston, 1971.

Hubert, L., "Generalized proximity function
comparisons," British J. of Math., Statist.
and Psychol., Vol.31, pp.179-192, 1978.

Hwang, K., Computer Arithmetic, John Wiley

& Sons, New York, 1979.

Kogge, P.M. The Architecture of Pipelined
Computers, Chapter 2, McGraw-Hill Book Co.,
1981.

Kung, H.T., "Let's design algorithms for VLSI
systems," Technical Report CMU-CS-79-151,
Carnegie-Mellon University, Computer Science
Department, January 1980,

Li, X. and Dubes, R.C., "The selection of
significant dichotomous features," Proc. of

the 7th Int'l Conf. on Pattern Recognition,
Montreal, Canada, pp.260-263, August 1984,

Li, X., "A probabilistic association measure
for pattern recognition,"” Ph.D. Disserta-
tion, Department of Computer Science,

Michigan State University, 155 pages, August
1984,

Ling, R.F. and Pratt, J.W., "The accuracy of
Peizer approximations to the hypergeometric
distribution, with comparison to some other
approximations,” J. of American Statistical
Association, Vol.79, No.385, pp.49-60, March
1984,

Ni, L.M. and Hwang, K., "Vector-reduction

techniques for arithmetic pipelines," accept~

ed to appear in IEEE Trans. on Computers,
May 1985.

Tebbe, D.L., "A Multi-catehory decision
network of dichotomous decision trees,"
Proc. of the 7th Int'l Conf. on Pattern

Recognition, pp.264-266, 1984,

|
j%
i

