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ABSTRACT

Architectures based on the vector-radix 2DFFT algorithm and hence
can avoid the matrix transpose problem have been proposed. The
unique feature of the proposed architectures is that the data can be
driven into the arithmetic processors in a pipeline fashion. This
paper presents a propotype chip, which has been designed in 2 um
NMOS technology, for the generalized butterfly unit. The chip is a
two-stage pipelined processor. The design experience, timing infor-
mation, and the chip features including four multipliers, one
adder/subtracter and PLA controllers are presented.

1. INTRODUCTION

The two dimensional Discrete Fourier Transform is
defined as follows:
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This transform is generally evaluated either by the classical row-
column algorithm (1] or by the "vector radix algorithm" 2, 3].

Many applications of digital signal processing require the
evaluation of discrete Fourier transforms (DFT’s) of multidimen-
sional sequences. The case of two-dimensional discrete Fourier
transform has been widely applied in the area of filtering, image
enhancement, image coding, image compression and restoration,
radar detection, and computerized tomography, nuclear magnetic
resonance (NMR) tomography and seismic analysis [4].

Since the appearance of the original Cooley-Tukey algorithm
in 1965 (5], the standard methods of computing the two dimensional
discrete Fourier transform have been governed by the separability
of two dimensional DFT. Two dimensional Fourier transform has
been decomposed into two one dimensional DFT by using the one
dimensional fast Fourier Transform (FFT) to execute the transform
either in row-column-wise or in column-row-wise format. The case
of one dimensional FFT has been carefully studied and implemented
in either software or hardware since 1965 {8, 7].

Matrix transposition and high [;O bandwidth are two major
problems associated with the use of a row-column (or column-row)
algorithm for the two dimensional DFT. Therefore techniques to
efficiently store the data in the secondary storage device such that it
can avoid the matrix transposition or minimize the traffic between
the main memory and secondary memory are very crucial in the
execution of the FF'T.

[n many applications the matrix is stored on a mass storage
device, e.g. a disk or a tape, where the smallest record that can be
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easily accessed is either an entire row or column. The way in which
the data is stored facilitates data access for one dimension but
impedes data access of another dimension. The decomposition
approach severely degrades the performance of the implementation
of a two dimensional FFT either in conventional machines (espe-
cially a virtual memory machine) or SIMD machines. The efficient
matrix transposition algorithm as shown in [8] is a solution for this
problem. However as pointed out by Moorhead [9], matrix transposi-
tion is still a serious bottleneck even for most super vector machines
in performing vector gathering operations. One way to ease the
matrix transposition problem is to employ a staging memory pro-
posed by Batcher [10] between the memory and the processor. The
staging memory can reformat or corner-turn the array of data.

The naive or "direct" algorithm for computing the one dimen-
sional DFT in Equation 1.1 required N2 multiplications. However
the 1-D FFT is an algorithm to reduce the requirement to (N log N)
multiplications. Algorithms for the 1-D FFT can be classified into
full parallel, iterative parallel, cascade, and scalar structure. Many
different architectures for the 1-D FFT have been proposed or
implemented. For example, discrete implementations for the 1-D
FFT have been mentioned in [6]. Despain et al. use the CORDIC
technique and VLSI technology to implement an 1-D FFT processor
in a cascade structure [11]. Computational tasks involving two
dimensional discrete Fourier transforms are computationally inten-
sive and need very high I/O bandwidth. Although a two dimen-
sional DFT has wide applications and has been proposed to map
row-column-wise decomposition into a SIMD machine (12], so far
there doesn’t exist a highly efficient architecture for it simply
because of the inherent complicated data communication patterns in
the row-column decomposition approach. This has motivated us to
search for new algorithms and to propose highly parallel and pipe-
lined architectures for the two dimensional FFT [13,14]. The archi-
tectures fully utilize the ideas of pipelining and parallelism which
are the important characteristics in VLSI design. This paper
reportes an attempt to implement the 2-D FFT in VLSI other than
simply using the 1-D FFT algorithm repeatedly.

2. NEW ALGORITHM AND ARCHITECTURES FOR
2DFFT

2.1. Vector Radix Algorithm

In this section, we briefly derive the vector radix algorithm for
two dimensional FFT. This class of algorithms is superior to the
decomposition approach in the merits of both the number of multi-
plication as well as the error performance due to finite word length.
For detail derivation, we refer the readers to the paper i14|.

The two dimensional Discrete Fourier Transform is
defined as follows:
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The transformed space is divided into four submatrices, namely
X([2k,,2k,), X([2ky,2ky+1], X[2k;+1,2k,), and X[2k1+1,2k2+1] and
the transformations are performed on the four submatrices as fol-
lows:
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The formulas are recursively applied on the submatrix until
we reach the transformation of a 2x2 submatrix.

The vector radix algorithm is an "in place" algorithm. It exe-
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cutes %- generalized butterfly operations in each of logN passes.
Each butterfly operation fetches four suitable data inputs from four
corners of a window on the data array, does transformation, and
sends the results back to the four original window corner positions.
The patterns of data positions vary in each pass, and so do the sizes

k
2
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of the windows. Each window provides four data inputs from ‘the
positions that have the same label.

The window operations can be carried out in parallel, or in
any particular order, with the only real limitation being that all of
the input data required for butterfly operations in any one pass
must generally be completed prior to initiation of those butterfly

operations.
. . . N
The size of the window  varies from —x~2—,
i\I—x-I—V—,...,ﬁ_ e to Ix1. {iee. it is ﬁxﬁ in sth pass). Since the
22 92 2 2 22

sige is shrunk simultaneously in two directions, different schemes are
used to emulate the shrinking window operations in each direction.
In the X-direction, the flow of the data is accomplished by a set of
synchronous switches such that the set of generalized butterfly units
get the desired data from the data pipes. In the Y-direction, the
data flow is accomplished by a perfect shuffie scheme. The cascade
of these two schemes exactly emulate the required window opera-
tions.
. N2

The vector radix algorithm executes Ve generalized butterfly
operations in each of logN passes. Each butterfly operation fetches
four suitable data inputs from four corners of a window on the data
array, does transformation, and sends the results back to the four
original window corner positions.

2.2. PIPELINED ARCHITECTURES FOR 2DFFT

2.2.1. A VLSI Parallel/Pipelined Architecture

The NxN two dimensional FFT can be advantageously imple-
mented by a highly modular architecture of Figure 1, with a cascade
of the stages consisting of a perfect shuffie switch, a synchronous
switch and a generalized butterfly unit.

A synchronous switch at the ith pass can be in either upward
or downward position. At the upward position, the synchronous
switch simply feeds the data into the pipe while the generalized
butterfly unit is idle. At the downward position, the synchronous
switch feeds the data into the active generalized butterfly unit.
Recently, a VLSI implementation of the synchronous switch has

been reported by Dr. Swartzlander of TRW [15].

Figure 2 shows the generalized butterfly unit which takes four
inputs a, b, ¢, d, executes the transformations of equations (Even-
Even), (Even-Odd), (Odd-Even), (Odd-0dd) in Section 2.1, and then
generates four outputs A, B, C, D.

The architecture can be implemented in either a fully parallel
pipelined architecture or an iteratively parallel architecture.

Each architecture variation can be implemented with bit
parallel arithmetic or bit serial arithmetic in which a CORDIC tech-
nique [ 16] can be applied.

2.2.2. A Serial Pipelined Architecture

The architecture in the previous section, it requires to have
three kinds of components, namely perfect shuffle switch, data com-
mutator,  generalized  butterfly  unit, to implement a
parallel/pipelined two-dimensional Fast Fourier Transform. It offers
enormous speed for NxN 2-D FFT with the cost of great number of

hardwares which contain 5 generalized butterfly units in each

stage. In the paper (14|, we propose another pipelined architecture
for 2-D FFT with much less hardware than the one in the previous
section. For NxN 2-D FFT, this architecture has logN stages and
needs only one generalized butterfly unit in each stage. Each stage,
as shown in Figure 3, contains a multiplexer, a demultiplexer, eight
delay lines and one generalized butterfly unit. Both the multiplexer
and demultiplexer are controlled by two signal lines which are a
boolean function of the index sequences in the data flow. The archi-




tecture is especially useful for the real-time application with a raster
scan as its input device. Through the multiplexer, the data in
raster-scan format are folded and fed into four delay lines. With the
appropriate delay time enforced in every delay line, the generalized
butterfly unit are assured to correctly have four piece of data ready
for doing butterfly transformation at every time interval. When the
generalized butterfly unit finishes the transformation, it sends out
four piece of data to the output delay lines. Again by enforcing
appropriate delay time in every output delay line, the demultiplexer
is able to re-assemble the data into a raster-scan format. [n sum-
mary, the input data from a raster-scan device are able to be con-
tinuously fed into the pipelined processor by three principal opera-
tions, namely disassembly, transformation, re-assembly.

In this architecture, the delay lines can be implemented by
either of RAMs or of dual-port memories.

3. NMOS IMPLEMENTATION OF THE GENERALIZED
BUTTERFLY UNIT

3.1. Chip Implementation

The NMOS (A = 2 pm) implementation of a generalized
butterfly unit with four-bit data path is 5400 wm high, 4400 wm
wide, contains 6500 transistors, and was fabricated by MOSIS last
fall. Figure 4 shows the layout of the design. Due to the pin limita-
tion, we decide to implement the butterfly unit in the way of time
multiplexing. Each data is a complex number and hence consists of
a real and an imaginary number which is four-bit wide respectively.
In order to accelerate the computation, a complex number multiplier
is implemented by four real number multipliers.

The chip has been designed to be a two micro-stage pipelined
processor as shown in Figure 6. The first stage consists of an
adder/subtrater, while the second stage consists of those four multi-
pliers operating in parallel. The carry ripple adder/subtrater has
been responsible for the operations, namely a+b+c+d, a-b+c-d,
a+b-c-d, and a-b+c+d. It has been implemented to do an operations
in five cycles (in our case, each cycle takes 980ns). Each multiplier
has been implemented in terms of four carry save adders, as shown
in Figure 5, and takes three cycles. Two finite state machines imple-
mented in PLAs (Programmable Logic Arrays) as shown in Figure
7, are used to generate control sequences for controlling the
adder/subtrater and the multipliers. It is clear that a micro-stage in
the chip has delay time of 5x960ns = 4.8us. For a generalied
butterfly operation, it takes 5x4.8us = 24.0us.

For the case of a 1024x1024 two dimensional FFT, we need to
have ten macro-stages, as shown in Figure 3, cascading into a pipe-
line in order to implement a serial pipelined architecture as dis-
cussed in section 2.2.2. Each macro-stage include two micro-stages.
The total time to execute an 1024x1024 2DFFT is approximately

1024x1024
4

equal to x24.0us == 6.0sec. If we implement the fully

parallel/pipelined architecture as discussed in section 2.2.1, we need
to have ten macro-stages cascading into a pipeline. Each macro-
stage consists of 512 chips. The total time to execute an 1024x1024
2DFFT is approximately equal to 6ms. Both architectures can be
executed in a pipelining fashion. It would be highly efficient espe-
cially in the applications that the input data could be continuously
fed into the architectures.

3.2. Chip Operations

The chip is operated by a two phase non-overlapped clock
scheme. Each clock phase has 50% duty cycle with 960ns cycle time.
First of all when the signal "LOAD" is activated, the chip latches
the twiddle factors WQ, W§, W§, and W{™Y into input registers.
Then the chip starts to execute the transformations by activating
the signal "START". When the "START" signal is received by
FSM1, a reset signal will be generated. This will force FSM2 to gen-
erate the signals( "INIT" and "ADD/SUB") to control the
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adder/subtrater such that the operations of a+b+c+d, a-b+c-d,
a+b-c-d, and a-b+c+d can be computed sequentially. When each
operation has been completed, FSM2 issues a "DONE" signal to
latch the result and activates FSM1 to start the multiplications and
latches the results into the output registers. It is our intention that
the adder/subtrater (the first micro-stage) and the multipliers (the
second stage) are operated simultaneously in the pipelining fashion.
Then the chip can continuously accept the input data from the pre-
vious macro-stage and feeds the results to the next macro-stage.

3.3. Implementation Experience

In this section, we focus on the design experience of the chip
on the different level representations, which include functional
specification level, register-transfer level, logic design level, mask
layout level and circuit level. At the functional specification level,
Figure 2 serves as a specification of the generalized butterfly unit.
At the register transfer level, functional specification has been
translated into a set of multipliers, adder/subtraters, registers, mul-
tiplexers and control sequences. The main result at this level is an
APL based register-transfer simulation of the structure, as shown in
Figure 8, to verify the functional correctness of the implementation.

At the mask layout level, we transiate the register-transfer
building blocks into the transistors through careful logic designs.
With the capability of CALMA design stations at the Department of
Electrical and Computer Engineering, North Carolina State Univer-
sity, the VLSI layout becomes more managable and enjoyable. The
chip is composed of four kinds of cell elements ( excluding 1/0
pads), namely register, multiplexers, adder, PLA. Among them,
PLA has been automatically generated by the PLA generator -
PLATT which has taken the output of the multiple output logic
minimisation program - MINI. With all cell elements designed, the
final step is to assemble them. [t is not suprised that the moat
difficult, tedious, and time consuming task is the wire routing pro-
cess to interconnect the cell elements. A modium of cleverness for
macro cell placement and routing program for building blocks
design style such as BBL [17] is definitely required to facilitate the
custom design in the future.

After the layout being finished, we make a conversion of the
layout from CALMA’s GDSII STREAM format to CIF format.
Design Rule Checker, DRC, and Electrical Rule Checker, ERC, have
been applied to ensure the geometric and electrical correctness of the
layout (in CIF format). Then the logic correctness has been checked
by a switch level simulation program - ESIM. The software pro-
grams of CRYSTAL and SPICE can provide us the worst case tim-
ing analysis. Finally the entire layout has been plotted by a
HP7580 plotter. At North Carolina State University, we are gratefu
for having accquired the design tools from MCNC, MIT, UCB and
the tools developed by the first author in the Department. Those
tools has been proved very useful and should be recommended to the
VLSI designers.

3.4. Implementation Improvments

Several implementation improvments can be achieved. In order
to speed up the multiplication, the carry ripple adder at the final
stage of the multiplier can be replaced by a carry look ahead adder.
This can reduce the cycle time from 960ns to 160ns even if the tech-
nology has not been changed. Instead of implementing the opera-
tions by only one adder/subtrater, we can dedicate more chip area
to implement the operations (e.g. a+b-+c+d etc.) to accelerate the
operations dramatically. By the combination of both improving
schemes, we are able to reduce the total execution time for an
1024x1024 2DFFT to 0.5sec if the serial archtecture is implemented.
If we implementd the parallel/pipelined architecture, it takes
approximately 0.5ms. Certainly further improvments can be
achieved either by improving technology (e.g. A=1pm) or by having
more compact layout.




4. CONCLUSION

In this paper, we have presented two 2DFFT pipelined archi-
tectures, which are very efficient in the realtime applications if the
input device is a raster scan device such as that is used in the satel-
lite data transmissions. The unique feature of the proposed architec-
tures is that the data can be driven into the arithmetic processors in
a pipeline fashion. we have presented a prototype chip, which has
been designed in 2 ' m NMOS technology, for the butterfly unit. By
our current chip design, it is possible to have 1024x1024 two-
dimensional Fast Fourier Transform in 6 sec by a serial pipelined
architecture or in 8 ms by a parallel architecture.
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